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Decision-Making Analytics Using Plural Resilience

Parameters for

Adaptive Management of Complex Systems

Shital A. Thekdi'** and Joost Santos>

It is critical for complex systems to effectively recover, adapt, and reorganize after system
disruptions. Common approaches for evaluating system resilience typically study single mea-
sures of performance at one time, such as with a single resilience curve. However, multiple
measures of performance are needed for complex systems that involve many components,
functions, and noncommensurate valuations of performance. Hence, this article presents a
framework for: (1) modeling resilience for complex systems with competing measures of per-
formance, and (2) modeling decision making for investing in these systems using multiple
stakeholder perspectives and multicriteria decision analysis. This resilience framework, which
is described and demonstrated in this article via a real-world case study, will be of interest to
managers of complex systems, such as supply chains and large-scale infrastructure networks.
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1. INTRODUCTION

The study of resilience commonly involves
analyzing a system’s ability to absorb, recover, and
adapt after a disruption (Aven, 2011; Haimes, 2009a;
Linkov et al., 2014). Methods for studying resilience
often involve the analysis of some performance indi-
cator or figure of merit (Henry & Ramirez-Marquez,
2012) for the system, then measuring aspects of
the system recovery process (Ayyub, 2014). This
recovery process can be studied in relation to specific
scenarios or disruptive events, though broader goals
for resilience management also involve the assess-
ment of strategies to protect against unforeseen
or surprise events (Aven, 2015). There is need to
expand the study of resilience to consider complex
systems that may involve multiple performance
indicators and system uses. In addition, there is need
to understand how to invest in resilience initiatives
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for systems that are both complex and adaptive.
For example, a supply chain system is a complex
adaptive system, as defined by the system’s abilities
to evolve, self-organize, and anticipate disruptions.
These systems contain several subsystems including
transportation infrastructure assets, suppliers, man-
ufacturing facilities, customers, information, people,
and services (Lummus & Vokurka, 1999). Effective
supply chain operations require efficient and healthy
transportation networks as well as available work-
force sectors, resource inputs, technologies, cyber
networks, and other functioning subsystems, among
others. Because consequences of disasters can be
severe, such as the $125 billion damage from the
2017 Hurricane Harvey (NOAA Office for Coastal
Management, 2018) or the $90 billion annual impact
of influenza in the United States (Molinari et al.,
2007), it is imperative to enable these types of com-
plex systems to maintain operations or to quickly
recover operations following a disruptive event.

The term “complex system” is often used to
characterize a system that contains many parts or
interdependent subsystems (Bar-Yam, 2002). Fur-
thermore, “complex adaptive systems” are systems
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that evolve by improving their ability to interact with
surrounding subsystems; they synergize through the
ability to perform through interactions of subsys-
tems; and they anticipate through seeking to adapt
to changes in circumstances (Holland, 1992). Once a
complex adaptive system has been disrupted, regard-
less of the status of recovery efforts, the system would
subsequently develop or morph into an adapted and
reorganized system. Indeed, Rose and Krausmann
(2013) emphasized that a system’s inherent (or static)
resilience should be supplemented with adaptive (or
dynamic) resilience, which is the ability of the system
to improvise and implement creative measures when
subjected to stress. In fact, the aspects of transforma-
bility or reconfiguration are viewed as key dimen-
sions in the evaluation of resilience for sociotechnical
systems (Amir & Kant, 2018). More resilient systems
may perform this type of adaptation more easily and
more acutely than others, but the original complex
system is not the same as prior to the disruption
(Hughes, Bellwood, Folke, Steneck, & Wilson, 2005).

If a broadened measurement of resilience in-
cludes abilities to recover, adapt, and reorganize,
various levels or attributes of system performance
should be studied in relation to each other. Particular
attributes may have varying levels of importance
for a given purpose, stakeholder, disruptive event,
or investment. A measurement approach that is
only based on recovery time or single performance
metrics, such as in singular resilience curves (Ayyub,
2014; Henry & Ramirez-Marquez, 2012), may under-
mine the future system needs. In other words, a slow
and agile system recovery may allow for systems
to adapt to postdisruption needs such as capacities,
demographics, and functions, among others. Thus,
a broadened measurement of resilience should
contain measurements of performance that extend
beyond single status quo metrics. They should
also acknowledge stakeholder needs through both
analytics and decision-support processes (Linkov
et al., 2018; Thorisson et al., 2017). For example,
Table I provides a sample of performance indicators
that apply to stakeholders at some point within the
infrastructure life cycle. The relevance of particular
indicators may be influenced by system functions,
the operating environment, interested stakeholders,
and many other factors. A subset of these perfor-
mance indicators will be used for the case study in
subsequent sections of this article.

This article will address the challenges by
presenting a methodology that contributes to the
process of understanding and modeling resilience for

Thekdi and Santos

complex systems, such as supply chain systems, with
consideration of multiple and possibly competing
valuations of performance. First, this approach will
model resilience for complex systems using several
competing attributes of performance, such as work-
force, infrastructure capacities, and sustainability
initiatives. Next, this approach will demonstrate deci-
sion making with the plural resilience measurements
using models for multicriteria and multistakeholder
prioritization of protective alternative investments.

This article is the first to capture the plurality
of resilience measurements for increasingly complex
systems such as supply chains, including issues of
system recovery and reorganization, in a multistake-
holder model. The methodology is applicable to a
wider variety of system types, such as infrastructure
systems and information systems. The methods and
results will be of interest to managers of complex
systems, such as supply chains and large-scale
infrastructure networks.

This article is organized as follows. Section 2
will provide an overview of relevant literature for
understanding the topic of resilience, risk, and
performance management. Section 3 will provide
the general mathematical approach of this arti-
cle. Section 4 will demonstrate the approach on
a hypothetical case study involving a distributed
supply chain network. Section 5 will provide general
conclusions and opportunities for future research.

2. BACKGROUND

2.1. Modeling Resilience

Research involving the protection of or risk to
supply chain networks has traditionally involved
the understanding of how a network responds to
various specific disruptive scenarios (Klibi & Mar-
tel, 2012; Thekdi & Santos, 2016) and evaluating
other event-specific risk mitigation options (Jiittner
et al., 2003). However, there is new and renewed
interest in the topic of resilience, which involves
understanding how a system recovers and adapts
after a disruptive event. The topic of resilience has
been studied across a wide variety of disciplines. For
example, ecosystems (Holling, 1973; Hughes et al.,
2005), social systems (Adger, 2000; Lopez-Cuevas,
Ramirez-Marquez, Sanchez-Ante, & Barker, 2017),
infrastructure (Bruneau et al., 2003; Zobel, 2011),
economies (Rose, 2004), cyber systems (Gisladottir,
Ganin, Keisler, Kepner, & Linkov, 2017), and many
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Table I. Sample of Performance Indicators for Infrastructure Systems

System
Characteristics Performance Indicator Relevant Metrics
Function ® Geography for service Service coverage, capacities for regions
® Schedules for service Frequency of service, efficiency
® Environmental Emissions, air quality
conditions
Capacity ® Redundancy in design Network redundancy
® Geographic growth System utilization, system area, changes in capacity
Users ® Population shifts System utilization, usage on segments
® Demographic changes Transportation modes
Stakeholders ® Ownership changes Public owners, private owners, public-private partnerships
Social ® Social capital Social trust
® Social memory Past deficiencies, public relations issues
Sustainability ® Eco-friendliness Carbon footprint, environmental impact, neighboring ecosystems
® Energy efficiency Energy usage
Health and Safety ® Health conditions Accident rates, employee sick days
Economy ® Availability of goods Economic activity
and services
Infrastructure ® Transportation Road, rail, air, sea transport condition
® Schools School condition

others. Typical engineering system definitions rely on
the understanding of robustness, rapidity, resource-
fulness, and redundancy for the system following
disruption (Bruneau et al., 2003). There has been
significant work in developing a broad understanding
of these metrics and formalizing decision-making
concerns (Ayyub, 2014). These models often assume
there is a single (or aggregated) measurement of
performance, such as the percentage quality of
infrastructure functionality or figure of merit (e.g.,
network efficiency, connectivity flow, through-
put rate) (Henry & Ramirez-Marquez, 2012). In
contrast, emerging research has studied resilience
in the context of “success criteria,” representing
possibly competing stakeholder goals (Thorisson
et al., 2017). The resulting analysis often supports
organizations to invest in policies and practices that
target a predecided status-quo level for operational
performance.

In assessing and managing the operational
performance of a system, it is necessary to evaluate
how the system performs under “business as usual”
scenarios and how it behaves when it is subjected to a
disrupted event. The concept of “resilience triangle”
is one of the widely used visualization models for
describing the ability of a system to resist degrada-
tion relative to its status quo (robustness) and the
speed with which it recovers to an acceptable level
of operational performance (rapidity). Consider the
notation used for a resilience triangle as depicted

F(t)

Fig. 1. Resilience triangle definition using notation from Henry
and Ramirez-Marquez (2012).

in Fig. 1, using the assumptions and notation given
in Henry and Ramirez-Marquez (2012). Let F(¢)
represent the performance function for the system, #,
represents time at the initial state, ¢, is the time of the
disruption, ¢, is the time of the final disruptive state,
t, is the time of the resilience action, and #; is the time
of recovery. Now suppose E = {ej, e, ..., ey} is the
set of all disruptive events and resilience is computed
at time t,, where , € (t4, t7). Then, resilience R(t|e;)
is represented as the ratio of recovery and maximum
loss, computed in Equation (1) as follows (Henry &
Ramirez-Marquez, 2012):

F(t,ej) — F(tale))
F(to) — F(tale;)

R(trlej) = (1
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This definition can be broadened to apply to
complex systems in several ways. First, this notation
and definition should characterize the possibility that
a system can adapt and be made stronger following
a disruptive event. Hence, modeling methods are
needed to understand resilience beyond the achieve-
ment of a status quo performance function. Second,
this notation and definition should consider multiple
and possibly conflicting measures of performance
that may exist in a complex adaptive system. As
discussed below, measures of performance may
be noncompensatory, thereby not allowing these
measures to be represented in a single function.

2.2. Pluralistic Considerations for Risk

Foundational principles of risk and resilience
involve a nuanced understanding of time-dependent
system states. The performance indicators or capa-
bilities of a system are a function of the state vector.
The resilience vector is a function of system inputs,
system states, and time (Haimes, 2009b). These
principles support the notion that risk and resilience
management are multidimensional, with possibly
noncommensurate objectives, or involve stakeholder
disagreement.

Risk and resilience management of complex
systems requires an understanding of numerous sub-
systems and related interdependencies. In addition,
these complex systems often serve multiple func-
tions, have multiple owners/operators, and involve
a wide variety of stakeholders. For practical appli-
cations, the interdependencies within the system can
be dynamic and partially understood. A commonly
used tool to model risks and scenarios is hierarchi-
cal holographic modeling (HHM) (Haimes et al.,
2002). This HHM model shows various perspectives
on the system requirements using a hierarchical
format. This structure can be used to generate risk
scenarios, identify various stakeholder perspectives,
and formalize understanding and management of
risk sources.

Other methods have been used to understand
the relationship between social and technical com-
ponents of large-scale systems. For example, the
functional resonance analysis method breaks down
sociotechnical systems into three components: hu-
man, technical, and organizational (Hollnagel, 2012).
Also, the driver-pressure-state-impact-resource ap-
proach combines socioeconomic modeling with spa-
tial analysis (Pirrone et al., 2005). Furthermore, the
PEOPLES model (Cimellaro et al., 2016) presents
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a multidisciplinary approach to account for the
plural dimensions of resilience as follows: population
and demographics; environmental and ecosystem,;
organized governmental services; physical infras-
tructures; lifestyle and community competence;
economic development; and social-cultural capital.

2.3. Performance Measurement and Relationship
to Risk

Principles of performance management are
deeply integrated with concepts of risk. Lebas (1995)
states that “[a] performing business is one that will
achieve the objectives set by the managing coalition,
not necessarily one that has achieved the objective.”
Similarly, the understanding of risk is formed on a
future projection of events, albeit these are potential
events that can cause losses to the studied system.

For practical management applications, no
single measure of performance or risk is sufficient
for investment decision making. Some applications
prefer to include multiple measures of performance
using monetized valuations for a wide variety of
performance metrics. However, the translation from
a nonmonetary performance metric into monetary
terms can lack objectivity and be inconsistent with
stakeholder valuations. The reader is invited to ex-
plore ethical concerns for monetizing environmental,
safety, and health topics in Kelman (1981).

When multiple objectives are included in a
decision-making problem, either a compensatory or
noncompensatory approach can be used. A compen-
satory approach allows for low performance for a
particular criterion to be offset by high performance
for another criterion. Conversely, a noncompen-
satory approach involves an analysis of tradeoffs
among relevant criteria (Goodwin & Wright, 2014).
In the case of complex systems, it can be argued that
a noncompensatory approach is critical for decision
making. For example, decisionmakers may be unwill-
ing to state that overperformance in sustainability
criteria compensates for underperformance in safety
criteria.

3. METHODS

3.1. Overview of Approach

Fig. 2 provides an overview of methods for
this article. First, we identify relevant performance
metrics and model parameters, acknowledging that a
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Model relevant performance indicators and stakeholder perspectives

System Characterization
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Fig. 2. Overview of methodology for decision-making analytics using plural resilience parameters.

complex system can be evaluated from several com-
peting performance perspectives. Next, we model
system resilience using the relevant performance
indicators. Then, we develop a decision-support
model for understanding the effectiveness of alter-
native investments using stakeholder perspectives
and scenario analysis. Although the methods of
this article are data focused and are designed to
be objective, these performance values will be vital
for understanding how to choose investments and
policies that can enhance system resilience.

This section is organized as follows. Section 3.2
describes the approach for system characterization,
allowing for decisionmakers to understand problem
scope and model plural resilience characteristics.
Section 3.3 provides the approach for multicriteria
decision support, allowing for identifying relevant
criteria, understanding relative importance of crite-
ria, and ranking potential investments that can be
used to enhance resilience. Section 3.4 provides sen-
sitivity analysis to understand the appropriateness of
decisions.

3.2. Formulation of Plural Resilience Measures

Table II provides a summary of the parameters
used for the problem formulation. These parameters
include plural performance and resilience charac-

teristics, F and R, respectively. Also included are
elements for multicriteria decision making, including
potential alternative investments, relevant criteria,
ratings for alternative investments against criteria,
and relevant stakeholders.

Here, we introduce an alternative measurement
of resilience that allows for flexible understanding of
how recovery will meet the needs of a transformed or
reorganized system, as shown in Equation (2):

Fir'_Fi j
Filule) = Filale)) - p1o) <Gy, F(tley)> B (0)

G ()~ F (ley)
R rle;) = 1, Fi (tdle) = Gi, F(t1e;) > B (1)
0, F()<B

@

Similar to the formulation by Henry and Ramirez-
Marquez (2012), this resilience formulation com-
pares system recovery to loss at time ¢.. However,
this differs from the established model in the fol-
lowing ways. First, instead of measuring loss as
compared to the system’s initial state, we compare
with a specified performance target, G;. This target
may increase or decrease with time, contingent
on system reorganization, during or following a
disruption. This is an agreement with emerging
principles of performance and risk management
that call for reference to some target performance
level, which may change over time (Thekdi & Aven,
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Table II. Summary of Notation Used in the Problem Formulation

Parameter Description

Fi(1) Function for performance indicator i, such that 0 < F;(t) <100,i=1,...,p

Gi(1) Target for performance indicator i, such that 0 < G;(r) <100,i=1,...,p

B;i(t) Robustness limit (minimum performance) indicator 7, such that 0 < B;j(¢r) <100,i=1,..., p

R Resilience measured for performance indicator i, such that R, > 0i=1,...,p

C Criteria used to evaluate alternative investments, C = (cy, ..., Cm)

A Alternative investments used to improve system resilience, A = (ay, ..., a)

S Stakeholders considered for evaluating alternative investments S = (sq,..., 5q)

w Weights assigned to criteria, 0 < w;; <1, Z';’:l w;j = lforalli = 1,..., q

Z Rating for each alternative investment against criteria, 0 < zjx < 5,forj=1,...,mandk=1,...,n

A\ Scenarios considered for evaluating alternative investments V = (vy, ..., vp)

to Time of initial state

te Time of disruption

tq Time of final disruptive state

ty Time of resilience action

ty Time of recovery

t, Time of resilience computation R;

2016). It is also in agreement with broadly defined
complex adaptive systems as they evolve and adapt
to changes in circumstances (Holland, 1992). For
example, following the 2005 Hurricane Katrina,
there is evidence to suggest that the recovery and
rebuilding efforts led to more strengthened levee
systems and other features that improved the city’s
ability to withstand future storms (Kates, Colten,
Laska, & Leatherman, 2006). Thereby, this model
recognizes that target performance levels are a
function of the system’s current features, allowing
decisionmakers to consider the option to model
changes or uncertainties in target performance lev-
els. The function in Equation (2) does not improve
after the target is exceeded. Second, resilience is
measured for each of the p performance measure-
ments instead of using a single global measure.
This is also in agreement with recent literature
that supports resilience modeling using multiple
operational perspectives (Thekdi & Chatterjee,
2018). Third, this function considers a robustness
limit B; representing the minimum possible level
of performance such that recovery is still possible.
If system performance falls below this robustness
limit, resilience is assumed to be zero. Similar to
the formulation of specified performance target, G;
described above, the robustness limit B; is assumed
to be time dependent, such that this term may change
before and after a disruption. While decisionmakers
can define how this robustness limit metric changes
over time, they can only choose to do so when they
believe the system has intrinsically changed.

3.3. Decision Support for Investment

This section will describe the multicriteria
decision support method for identifying the most
appropriate alternative investments that can be
used to improve system resilience. The method
includes the selection of model inputs, consisting
of a set of alternative investments, performance
measurements, criteria, stakeholders, and rating
of alternative investments against the criteria. The
model input selection methodology may differ by
application and the needs of the various decision-
makers. However, common methodologies may
include the use of expert elicitation (Clemen &
Winkler, 1999). In cases where expert-elicited data
are unavailable or unreliable, brainstorming sessions
among relevant stakeholders (Lunenburg, 2011),
and group decision-making processes (Hwang & Lin,
2012) can be used. However, care should be taken
to ensure these values remain objective in order to
avoid any intentional or unintentional bias (Kynn,
2008). Decisionmakers should also recognize that
even expert opinions can have limited or varying
accuracy (Camerer & Johnson, 1997), and involve
uncertainties (Paté-Cornell, 1996).

Consider a set of n predefined alternative invest-
ments or policies, A = {a;, as,...a,}. These policies
are not specific to a particular event, and therefore
can be applicable to system recovery from all stud-
ied scenarios. Potential alternative investments of
policies could include investing in cyber-security
experts, increasing monitoring (e.g., surveillance
sensors and cameras), workforce awareness training,
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strengthening perimeter security, implementation of
backup plans, and others.

Let F represent the set of p predefined perfor-
mance measurements, such that F = {fi, 5, ..., f,}.
Relevant performance measurements include travel
time, accident rates, efficiency, and other attributes,
as given in Table I. We can visually represent the re-
lationship between performance measurements and
criteria as shown in Fig. 3. We recognize that the set
of criteria and performance measurements may also
influence each other.

To select among the alternative investments or
policies, a set of m predefined criteria are introduced,
C=(ci, 2, ..., Cm). Although the importance of cri-
teria may differ among stakeholders and may change
as a result of system reorganization, this set rep-
resents key aspects of performance, F, determined
in the previous step. Relevant criteria may include
elements such as sustainability, economic compet-
itiveness, security, and ease of implementation,
among others.

Next, we define a set of g predefined stake-
holders for the system, S = (s1, 52, ..., Sq}. These
stakeholders are carefully selected to avoid overlap
in stakeholder values. If stakeholder groups con-
tain overlapping values, the later decision-making
models may overprioritize alternative investments
that concurrently meet those stakeholder needs,
thereby promoting bias in the methods. For each
stakeholder, we elicit weights for all criteria, w;;, for
stakeholder i and criterion j, such that:

Next, we create a matrix Z, which allows us to rate n
alternative investments (columns) against relevant m
criteria (rows). This score represents how well each
alternative investment or policy will improve system
resilience compared to a target. While the case study
of this article assumes the ratings are consistent
across all studied disruptive event scenarios and
stakeholder perspectives, some applications may
require the rating to be a function of each disruptive
scenario. For example, a simple scoring system may
use a five-point scale, such that a value of —2 would
suggest that the alternative investment would have
a highly negative impact on resilience, a value of —1
suggests a slightly negative impact, a value 0 suggests
no impact, a value of 1 suggests slightly positive
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impact, and a value of 2 suggests a highly positive
impact. Such scale values and interpretations will
be revisited in the actual survey conducted in the
case study (see Section 4). Furthermore, such values
can be populated using detailed engineering data,
expert elicitation, voting among stakeholder groups,
or decided by the relevant decisionmakers. More
detailed discussion and study of refined data sourcing
strategies is a future research opportunity.

211 * Zn
7 =

Zml " Zmn

Next, we define a relative scoring for each stake-
holder i = 1...q and each alternative investment
k=1...n as follows:

m
Ratingik = Z WijZjk-
j=1

Finally, we define a relative scoring for each of the
k alternative investments by summarizing the
Rating;, score across the studied stakeholders. A
straightforward summarization method involves
applying equal weight to each stakeholder, thereby
computing the average rating across the g stakehold-
ers as follows:

q
i=1 Z;n=1 WijZjk

q

However, in some situations the average rating
across stakeholders may be too sensitive to outlier
stakeholder perspectives. Instead, the Rating, could
be computed using the median Rating;; score across
stakeholders. If there is reason to believe that some
stakeholders are more influential than others, the
Rating;, score can be weighted by the credibility and
relevant experience of the stakeholders, as well as the
quality of their provided information (Kaplan, 1992).
The ratings can then be used to compare the ef-
fectiveness of alternative investments in enhancing
system resilience. Although this rating can be cali-
brated to a 100-point scale, a calibration would be
unnecessary for ordinal prioritization purposes.

Rating, =

3.4. Modeling of Sensitivity to Assumptions and
Disruptive Scenarios

This section will study model sensitivity to
assumptions and disruptive scenarios. The resilience
function presented earlier includes critical assump-
tions regarding the value of targets, which may be
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Fig. 4. Resilience to target (G;) with each line holding F(z;) constant.

uncertain (see Section 3.2). Suppose for event e;,
the target resilience value will change according to
some function. Fig. 4 shows a contour of resilience
to target modeled for a test scenario holding F(t,)
constant at a value of 70, signifying 70% relative to
an ideal 100% performance level. Each curve on the
chart assumes the performance at the final disruptive
state F(z;) is constant, while the target G; changes.
The figure shows that as the target G; increases,
the resilience curve slopes downward. Conversely,
resilience increases as the target decreases.

There is a need to understand sensitivity of the
resilience model to various disruptive events. Follow-
ing the tradition of risk and safety analysis, we can
assume a worst-case scenario and assume that a sys-
tem protected from a worst case is by definition also
protected from less catastrophic events. Survey infor-
mation presented in Section 4 will be used to measure
how system recovery and system target performance
will change under specific disruptive events.

There is also a need to understand sensitivity
of the resilience model to various stakeholders.
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Although established methods identify the most
critical criterion and ratings within multicriteria
models (Triantaphyllou & Sanchez, 1997), we aim to
understand empirically how model assumptions are
expected to change. Expert elicitation data presented
in Section 4 will measure how criteria importance
varies among studied stakeholder perspectives.

When the sensitivity analysis is complete, there
is need for decisionmakers to consider an additional
iteration of the methods. This additional iteration
may involve the following changes. First, there is
opportunity to discard infeasible or poorly rated
alternative investments. Conversely, alternative
investments that are more applicable to the criteria
may be added to the model. Second, decisionmakers
may choose to adjust model parameters, such as the
relevant performance indicators, target performance
levels, and criteria. Third, there may be need for a
more detailed analysis that includes more granular
rating scales, such as when evaluating the effective-
ness of alternative investments. Additionally, this
could involve eliciting scenario-dependent rating
scales for populating model parameters.

4. CASE STUDY

4.1. Description of Case Study and Data

For the application of methods described above,
consider a case study involving risk and resilience
modeling for the movement of goods and services
in an expansive region. As an example, consider
the supply chain system of the U.S. Washington
metropolitan area, including Washington, DC, parts
of Maryland, Virginia, and West Virginia. With a
population of over 6 million, this is the sixth largest
metropolitan area in the country (U.S. Census
Bureau, 2016). This network is notable as it con-
tains several subsystems with unique valuations of
performance. This region contains headquarters for
several Fortune 500 companies, contains multiple
major airports, is home to several public trans-
portation systems, and is a hub for national political
activities. The first challenge of this case study
is to understand what attributes of performance
most appropriately model the characteristics of this
region, then translate those attributes into possibly
competing measures of resilience. The second chal-
lenge is to identify the most appropriate protective
investments while considering the variety of criteria
and stakeholder values within the region. The third
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challenge is to understand how uncertainties, as
modeled using scenarios, influence decisions for
the most appropriate protective investments in the
region.

Expert elicitation was conducted to understand
the system response to disruptive events, including
natural disasters and health emergencies. The elic-
itation was conducted using a survey that was cre-
ated using the Qualtrics survey hosting service, and
distributed via e-mail in October 2016. The distri-
bution list was selected to include eight researchers
and industry professionals with five or more years
of experience related to transportation and supply
chain systems. The elicitation process collected data
for five performance indicators (p = 5), as shown in
Table III, five (m = 5) criteria, shown in Table IV,
five (¢ = 5) stakeholders, shown in Table V, four
(n = 4) alternative investments, shown in Table VI,
and four (b = 4) scenarios, shown in Table VII.

The studied scenarios have varying temporal
characteristics. The scenario V; (Pandemic) time
scale could range from months to years (Potter,
2001); scenario V, (Hurricane) may transpire over
the course of days (Evans & Hart, 2003); scenario V3
(Cyber Attack) may involve a timescale of hours or
months (U.S. House of Representatives, 2017); while
scenario V4 (Climate Change) may transpire over the
course of decades (Moss et al., 2010). While the set of
scenarios encompass a collection of both rapid-onset
and slow-onset events, there are some commonali-
ties and differences in the potential investments for
preparedness, mitigation, and response among those
scenarios. The decision-support component of this
article aims to exploit these differences in scenarios
to understand the sensitivity of those investments
among studied stakeholders and scenarios. There-
fore, this variety in scenarios is intended to demon-
strate the methods and contribution of this article.

The questions were designed to provide struc-
tured data inputs to the resilience models of this
article. Respondents were primarily asked to charac-
terize the relationship between disruptive scenarios
and the supply chain infrastructure. For example,
a respondent may view a hurricane as having a
direct impact on all elements of the supply chain
infrastructure, such as roads, production facilities,
and consuming sectors, among others. In contrast, a
respondent may view a disease pandemic as having
a minimal impact on the supply chain infrastructure,
resulting in the indirect impact to not be portrayed in
the survey response. The expert elicitation questions
are as follows.
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Table III. Relevant Performance Indicators (p = 5) Used in the Case Example

Performance Indicator

Description

Absence of major obstacles that could impede workers to access their

workplace and/or perform their duties

Minimal unexpected delay for the movement of goods and services
Volume of people, goods, and services that can be transported at an

acceptable quality level

Availability of raw materials, supplies, and inventory used to support

operations

F; Workforce availability/mobility

/) Commodity travel time efficiency

F3 Transportation infrastructure capacity
Fy Availability of production inputs

Fs Ideal level of consumption

Optimal level of goods and services purchased by consumers

Table I'V. Relevant Criteria (m = 5) Used in the Case Example

Criteria Description
Cy Safety of people and commodities Safety of people, production inputs, and production outputs during transport
G Environmental sustainability Promotion of sustainability for land, air, and water
C3 Supply chain “user” satisfaction People, goods, and services that arrive at an acceptable time and quality level
Cy Transportation network efficiency Movement of people, goods, and services at an acceptable time and cost
Cs Balanced supply and demand Optimal level of goods and services available

Table V. Relevant Stakeholders (¢ = 5) Considered in the Case Example

Stakeholder Description
S1 Economic development officials Responsible for promoting community revenue growth
S> Suppliers Responsible for supplying production inputs
S3 Customers Consumers of production outputs
Sy Emergency managers Responsible for ensuring community safety in the aftermath of a disruptive event
Ss Community members Citizens in the studied community

Table VI. Alternative Investments (n = 4) Considered in the Case Example

Alternative Investments

Description

Tools for tracking the health and performance of the system (e.g., surveillance

tools such as cameras or sensors)

Identification, collection, and analysis of near real-time data sources (e.g., social

media posts or tweets)

Strategies for improving mobility and efficiency in transportation networks

(e.g., alternative routes or future capacity increase)

Aq System monitoring

A Data mining

A3 Transportation management
Ay Human resource management

Strategies for enhancing availability of workers (e.g., telework)

Survey Question #1: Mapping of relevant per-
formance metrics with relevant criteria. This ques-
tion allows each expert to rate the importance of
each criterion on each performance indicator. For
each performance indicator given in Table III, ex-
perts rated the importance of safety of people and
commodities; environmental sustainability; supply
chain “user” satisfaction; transportation network ef-
ficiency; and balanced supply and demand. The rat-
ing scale contained the following options: not im-

portant (0), somewhat important (1), important (2),
and very important (3). The task is done with under-
standing that particular criteria may be more relevant
to some performance indicators versus others. The
model assumed that criteria assigned to be not im-
portant (0) on average would have zero weight in the
multicriteria decision-support model. Conversely,
the quantitative results allow more relevant criteria
to have a larger weight of importance in the multicri-
teria decision-support model. The survey provided a
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Table VII. Scenarios (b = 4) Considered in the Case Example

Scenario Description
Vi Pandemic impacting workforce Pandemic such as a public health emergency, influenza (for example,
HIN1), zika, ebola, malaria, etc.
Vs Hurricane Hurricane of various categories
V3 Cyber attack on monitoring Cyber attacks such as identity theft, denial of service, unauthorized access,
system and malwares
Vs Climate change Increased frequencies and intensities of hurricanes, floods, ocean level rise,

diseases, droughts, among others

description of each performance indicator and crite-
ria to address the challenges of this survey process.

Survey Question #2: Understanding stakeholder
weights. This question allows experts to suggest the
importance of criteria (given in Survey Question #1)
for preidentified stakeholders of the system. The
considered stakeholders are economic development
officials, suppliers, customers, emergency managers,
and community members. For each stakeholder
perspective, experts provide a rating (scale 0-100) to
represent the relative importance of each criterion.
For each stakeholder perspective, the sum of all
criteria weights must be 100. The web-based survey
included a function that allowed the experts to check
if the weights indeed add up to 100%.

Survey Question #3: Understanding the expected
impact of alternative investments on system resilience.
This question allows experts to understand four alter-
native investments and rate the effectiveness of these
investments for system resilience using a five-point
scale. A rating of “—2” implies a highly negative
impact; a rating of “—1” implies a slightly negative
impact; a rating of “0” implies no impact, a rating of
“1” implies a slightly positive impact; and a rating of
“2” implies a highly positive impact. The four alter-
native investments are (1) system monitoring (e.g.,
surveillance tools such as cameras or sensors), (2)
data mining (e.g., analysis of social media posts
or tweets), (3) transportation management (e.g.,
alternative routes or future capacity increase), and
(4) human resource management (e.g., telework).
While this demonstration of methods assumed that
each score was consistent across all studied scenar-
ios, this assumption may not be practical in more
detailed applications. For a more detailed analysis,
the analyst may choose to collect data on the rating
of each alternative investment on resilience for each
studied disruptive scenario.

Survey Question #4: Understanding how targets
are expected to change after a disruptive scenario.

This question allows experts to use a sliding bar
to indicate how the performance targets (given in
Survey Question #1) increase or decrease after a
disruptive scenario. For example, a survey taker
may suggest that the importance of cyber-security
performance increases following a disruptive event.
A response of “—2” implies a major decrease (val-
ued as a 20% decrease), a response of “—1” implies
a minor decrease (valued as a 10% decrease), a
response of “0” implies no change, a response of “1”
implies a minor increase (valued as a 10% increase),
and a response of “2” implies a major increase
(valued as a 20% increase). Limited discrete survey
response choices were offered for two reasons. First,
limited choices may help survey respondents choose
among the options, as too many choices may hinder
decision-making abilities (Iyengar & Lepper, 2000).
Second, providing a simplified structure aids in pro-
viding a clear and concise demonstration of methods.
Providing too few choices may promote biases in
the research conclusions, particularly in cases when
a respondent does not have the appropriate knowl-
edge to answer the question, or when his or her true
beliefs differ drastically from the available choices.
It is also worth noting that literature supports the
use of a Likert scale with discrete and odd number of
choices in survey questionnaires to explicitly identify
a neutral value (i.e., the midpoint value of the scale)
that the expert can use as an anchor to make more
refined assessments (Garland, 1991). Nonetheless, if
the methods of this article are conducted in practice,
it may be necessary for the survey to include addi-
tional response choices, such that a respondent is not
forced to choose among limited discrete choices.

This model assumes that performance measures
are system specific, while criteria that are supplied
by the stakeholders are generalizable. Performance
evaluations are assumed to be measurable using
available data, while criteria are represented using
elicited ratings.
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Table VIII. Summary of Baseline Assumptions Used to Model the Case Study for Resilience Measurement

Performance Indicator Recovery Rate F(t,) F(ty) F(t) Gi B;

Fj(t): Workforce availability/mobility 0.2 80 20% reduction 1.05%Fy(t,) 1.1%Fy (1) 0.1%F(ty)
F>(t): Commodity travel time efficiency 0.05 75 20% reduction Fa(t,) 1.1%Fy(1,) 0.1* F>(tp)
F3(t): Transportation infrastructure capacity 0.01 90 20% reduction F5(t,) 1.1% F5(t,) 0.5% F3(tp)
F4(t): Availability of production inputs 0.2 95 20% reduction Fu(ty) 1.1% Fa(ty) 0.1% Fy(tp)
Fs(t): Ideal level of consumption 0.05 95 20% reduction 0.9%F5(t,) 1.1%Fs(t,) 0.1* Fs5(tp)

4.2. Modeling for Resilience Measurement

To demonstrate the methods of this article, we
consider assumed data for the parameters given
in Table VIII. The recovery rate represents the
recovery process for each performance indicator,
measured as % per time step; F(¢,) represents the
performance function of the system at the initial
state; T(t;) represents the performance function
for the system at the time of the final disruptive
state, measured as a reduction from F(t,); F(t)
represents the performance function at the time of
recovery; G; represents the target performance level;
and B; represents the robustness limit representing
the minimum possible level of performance such
that recovery is still possible. As the contribution
of this article is founded in methodological study
of resilience, data sourcing via expert elicitation is
used to populate the model parameters. In other
applications outside of this case study, engineer-
ing estimates, surveys, voting among stakeholder
groups, and other elicitation methods would be
necessary.

All performance metrics are measured on a
scale from 0 to 100, such that a value of 100 repre-
sents the maximum or highest possible achievable
performance level. A baseline scenario is created to
identify a reference point for the decision support
described in the next section. This baseline scenario
is populated using a common or plausible set of
assumptions for performance targets, robustness lim-
its. While these quantitative parameters are founded
on the experts’ past experiences with disasters,
there may be limitations associated with applying
quantitative metrics to experiences that have not
been thoroughly quantified. However, the broader
contribution of this article is to address how the
sensitivity of resilience metrics influences decision
making, therefore deemphasizing the quantitative
assumptions in this baseline scenario, and rather
emphasizing how these metrics change with varying
scenarios and stakeholder valuations.

We assume a common disruption that reduces
all performance indicators by 20%. The performance
targets are set to be 10% above the starting condi-
tions. The robustness limit, B;, is set at 90% below
starting conditions for most performance indicators.
However, for Transportation Infrastructure Capac-
ity (F3(1)), the robustness limit is set to 50% below
starting conditions, as network connectivity of trans-
portation infrastructure causes the system to quickly
degrade when key nodes are damaged. We assume
a relatively quick recovery rate (20% per time step)
for Workforce Availability/Mobility and Availabil-
ity of Production Inputs, as these historically are
shown to quickly adapt to disruptions. We assume a
relatively slow recovery rate (5% per time step) for
Commodity Travel Time Efficiency and Ideal Level
of Consumption as these have historically shown to
be slow to recover. We assume a recovery rate of
1% per time step for Transportation Infrastructure
Capacity as this can involve large projects, such as
rebuilding bridges and repaving roadways.

Fig. 5 shows a plot of F(t,) with the five stud-
ied performance metrics for 30 time-steps. The
disruption occurs as a sudden onset in time-step
3. The results show a relatively rapid recovery for
Fi(t): Workforce Availability/Mobility and Fu(¢):
Availability of Production Inputs. In contrast, F3(¢):
Transportation Infrastructure Capacity is relatively
slow to recover. While these studied performance
indicators all recovered within a relatively similar
timeframe, it is possible that the performance indica-
tors could recover over vastly different time periods.
In that case, the differences in recovery behavior
would be reflected in the subsequent analysis.

4.3. Decision Support for Investment

The decision-support component of this analysis
allows for understanding the relative importance of
alternative investments using a multicriteria model.
Table IX provides the mapping of criteria to perfor-
mance indicators. Higher average ratings (closest to
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Fig. 5. Plot of resilience for each performance indicator in the case study.
Table IX. Average Importance of Criteria on a Scale from 0 (Not Important) to 3 (Very Important), Based on Survey Responses
Criteria
Supply Chain Transportation
Performance Safety of People Environmental “User” Network Balanced Supply
Indicator and Commodities Sustainability Satisfaction Efficiency and Demand
Fi Workforce avail- 2.8 1.0 1.6 2.2 1.8
ability/mobility
P Commodity travel 1.8 1.0 1.8 2.8 22
time efficiency
s Transportation 1.6 0.8 24 2.8 2.6
infrastructure
capacity
Fy Availability of 1.0 1.4 1.8 2.0 2.8
production inputs
Fs Ideal level of 1.2 1.2 2.4 22 2.6
consumption

“3”) suggest that the criteria are of relatively high
importance for assessing performance indicators.
Conversely, lower average ratings (closest to “0”)
suggest that the criteria have little to no importance
for assessing performance indicators. For example,
the results show that aspects of safety were highly
relevant to performance indicators related to mo-
bility, but less relevant to economic performance
indicators, such as Fy: Availability of Production
Inputs.

Table X provides the criteria weights for each
studied stakeholder, measured as the average across
survey respondents. All criteria weights are given
on a scale from 0 to 100, with higher criteria weights
associated with greater importance to a given
stakeholder. For a given stakeholder, the sum of all
criteria weights is 100. For example, the results show
the S5: Community Members place high importance
on aspects of safety and sustainability. Conversely,
S1: Economic Development Officials place high
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Table X. Criteria Weights for Each Studied Stakeholder Based on Survey Responses
Criteria
Supply Chain Transportation
Safety of People Environmental “User” Network Balanced Supply
Stakeholder and Commodities Sustainability Satisfaction Efficiency and Demand Total
S1 Economic 10 12 22 29 27 100
development
officials
AY) Suppliers 9 8 32 30 21 100
S3 Customers 18 14 23 22 23 100
Sy Emergency 58 4 4 22 12 100
managers
Ss Community 34 30 12 16 8 100
members
Table XI. Average Effectiveness of Investments on Resilience Using a Scale from —2 to 2, Based on Survey Responses
Alternative Investment Effectiveness
Ay System monitoring (e.g., surveillance tools such as 1.6
cameras Or Sensors)
A Data mining (e.g., analysis of social media posts or 1.2
tweets)
Az Transportation management (e.g., alternative 1.8
routes of future capacity increase)
Ay Human resource management (e.g., telework) 1.2

importance on transportation network efficiency and
other aspects that promote economic activity.

Table XI provides the average effectiveness of
alternative investments measured on a scale from —2
to +2. Higher values (closer to +2) indicate that the
alternative investment is relatively more effective
toward improving system resilience. The results
show that all studied alternative investments showed
a positive impact on system resilience. However,
the use of alternative investment A3: Transportation
Management was the most effective option based on
survey results.

Table XII shows the relative scoring for each
alternative investment for each stakeholder, with the
average across all stakeholders shown in the bottom
row of the table. These were computed using the
Rating;;, and Rating; formulations discussed in Sec-
tion 3.3. To ease readability and facilitate a clear in-
terpretation of this scoring system, this relative scor-
ing is multiplied by 100. Fig. 6 shows a comparison
of alternative investments in a graphical format. The
results show that Alternative Investment 3: Trans-
portation Management (e.g., alternative routes of fu-
ture capacity increase) is highly rated across all stake-

holders. Alternative Investment 4: Human Resource
Management (e.g., telework) received low ratings,
with high variability across stakeholders. This high
variability may be explained by the wording used
to define the alternative. Survey respondents may
have interpreted this alternative as being directed
toward disasters, while the other alternatives were
applicable to a wider variety of system disruptions.
Decisionmakers can potentially use the decision
support described above in several ways. First, they
may need to perform an additional iteration of this
approach to focus on a more refined list of alternative
investments. For example, because the transporta-
tion management alternative investment was highly
rated across stakeholders, decisionmakers may want
to consider a more specific set of transportation al-
ternative investments. Second, decisionmakers may
need to consider eliminating some types of alterna-
tive investments from further study. For example, al-
ternative investments that received relatively low rat-
ings, such as human resource management, could be
given less priority or removed from a list of poten-
tial options. Third, decisionmakers may supplement
the alternative investment scores from Fig. 5 and
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Table XII. Rating of Alternative Investments for Each Stakeholder for the Case Study Example

Alternative Investment

Ajq: System Ajp:Data Aj: Transportation Ay: Human Resource
Stakeholder Monitoring Mining Management Management
S1: Economic development officials 100 130 170 50
S>: Suppliers 110 130 180 60
S3: Customers 100 120 180 70
S4: Emergency managers 160 120 190 120
S5: Community members 110 120 190 110
Average across stakeholders 120 120 180 80
Alternative Stakeholder describes sensitivity of system recovery following
200 o s1 a disruptive event or scenario. In particular, this
B o sz shows the quantitative change in recovery time, as
180 8 :;Si compared to the baseline scenario recovery rate
S b :5 given in Table VIII. Table XIV describes sensitivity
160 of system target performance level, G;j, following
each disruptive event, as compared to the baseline
140 target system performance (G; column) given in
g o Table VIII. Table XV describes sensitivity of the
120 > minimum allowable performance level, B;, also
< B > known as the robustness limit, representing the low-
S 100 Q) est performance level such that recovery is possible
following each disruptive event. This robustness
80 + limit sensitivity is compared to the baseline scenario
robustness limit (B; column) given in Table VIII. For
60 H each of Tables XIII-XV, the data in each column
signify the percentage of survey respondents who
40 chose the specified percentage change in the studied
- metric, as specified in the column title.

Al A2 A3 A4

Fig. 6. Rating of alternative investments across stakeholders for
the case study example. Note that the ratings have been multiplied
by 100.

Table XII with scores that are weighted toward
the most influential stakeholders. However, care
should be taken when interpreting scores that are
weighted by stakeholder influence because the vari-
ability among stakeholder scores may be an impor-
tant decision-making factor.

4.4. Modeling of Sensitivity to Assumptions and
Disruptive Scenarios

This section describes the sensitivity to model
assumptions and disruptive scenarios. Table XIII

The sensitivity analysis is populated using the ex-
pert elicitation described earlier in this article. The
system sensitivity for each scenario is described by
five categories: decrease by 20% (20% value), de-
crease by 10% (10% value), no change (0 value), in-
crease by 10% (10% value), increase by 20% (20%
value). To summarize each type of sensitivity, we
compute a factor of effectiveness. For each scenario
i(i=1...,b)and categoryj(j=1...,5), the factor
of effectiveness is computed as follows:

Factor of effectiveness;

5
= Z Percent response;j = Category value;;.
j=1

For example, for the Pandemic impacting work-
force scenario, the expected change in recovery time
factor of effectiveness for each scenario is:
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Table XIII. Percentage of Survey Respondents Who Selected Each Specified Change in Recovery Time
Following Each Disruptive Event Scenario

Factor of
Scenario Decrease by 20%  Decrease by 10%  No Change  Increase by 10%  Increase by 20%  Effectiveness
Pandemic impacting 20% 20% 20% 20% 20% 0%
workforce
Hurricane 40% 20% 0% 20% 20% —4%
Cyber attack on 0% 60% 0% 40% 0% —2%
monitoring systems
Climate change 20% 20% 20% 40% 0% —2%

Table XIV. Percentage of Survey Respondents Who Selected Each Specified Change in System Target Performance Level Following
Each Disruptive Event Scenario

Factor of
Scenario Decrease by 20%  Decrease by 10%  No Change  Increase by 10% Increase by 20% Effectiveness
Pandemic impacting 40% 0% 20% 40% 0% —4%
workforce
Hurricane 60% 20% 0% 20% 0% —12%
Cyber attack on 0% 60% 20% 0% 20% —2%
monitoring systems
Climate change 20% 40% 20% 20% 0% —6%

Table XV. Percentage of Survey Respondents Who Selected Each Specified Change in Minimum Allowable Performance Level,
Representing the Lowest Level Such that Recovery Is Possible, Following Each Disruptive Event Scenario

Factor of
Scenario Decrease by 20%  Decrease by 10%  No Change  Increase by 10% Increase by 20% Effectiveness
Pandemic impacting 20% 20% 60% 0% 0% —6%
workforce
Hurricane 20% 60% 20% 0% 0% —-10%
Cyber attack on 0% 60% 40% 0% 0% —6%
monitoring systems
Climate change 20% 40% 40% 0% 0% —8%

—20%%20% —10%*20%+0% *20%+10%*20%
+20%*20% = 0%.

Because the survey responses were given with-
out reference to any particular system intervention,
the factor of effectiveness calculations are also in-
terpreted to be without reference to any given in-
tervention. Therefore, the assumptions on the fac-
tor of effectiveness are applied across all alternative
investments.

The results show that the expected recovery
factor of effectiveness for the Pandemic impacting
workforce scenario is 0%. This can be explained by
the fact that stakeholders have not witnessed a mass
pandemic in recent times. The closest comparison
is the 2009 HIN1 outbreak, which is considered by
public health officials as a relatively mild pandemic

(Santos et al., 2013). In contrast, the expected re-
covery time factor of effectiveness for the Hurricane
scenario is —4%. Recent memory of Hurricane
Katrina may impact these findings.

The results show that the expected change in
system target performance level factor of effec-
tiveness for the cyber attack on monitoring systems
scenario is —2%. This can be explained by historical
evidence of cyber attacks not directly impacting
physical structures. However, as technologies ad-
vance in “Internet of things” networking, there is
potential for this sensitivity estimation to change.
Furthermore, there have been recent indications of
the rising trends in “state-sponsored” hacks and data
leaks that could put cyber security at the forefront
of the national security agenda. In contrast, the
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expected change in target performance level factor
of effectiveness for a hurricane is —12%, reflecting
recent history of Hurricane Katrina, Hurricane
Sandy, and Hurricane Florence causing significant
damage to transportation infrastructure.

The results show that the expected change in
minimum allowable performance level factor of
effectiveness for a pandemic impacting workforce
scenario is —6%. Similar to the sensitivity in re-
covery shown in Table XIII, the relatively small
expected change in minimum allowable performance
level may be due to no relatable pandemics in recent
history. In contrast, the expected change in minimum
allowable performance level factor of effectiveness
for climate change is —8%. This can be explained
by experts considering a variety of indirect impacts
of climate change, such as propensity for natural
disasters and disease.

5. CONCLUSIONS

This article presented a data-driven risk-analytic
approach to managing infrastructure resilience. This
approach allows for system managers to measure
a system’s ability to recover, adapt, and reorganize
after a system disruption. The approach consisted
of: (1) modeling resilience for complex systems with
several competing measures of performance, such
as workforce, infrastructure capacities, sustainability
initiatives, and others, and (2) including plural
resilience measures for multicriteria and multistake-
holder decisions for protection of the system.

The approach was demonstrated on a hypo-
thetical case study populated by baseline data and
expert-elicited information gathered via a web-based
survey questionnaire. Assumptions were based on
a large metropolitan supply chain network of the
United States containing several subsystems with
unique valuations of performance. The case study
parameters associated with the plural dimension
of resilience were quantified using a series of sur-
vey questions that were used to characterize the
relationship between disruptive scenarios and the
supply chain infrastructure. The results demonstrate
that a wide variety of relevant system perspectives,
as characterized by the diverse set of performance
indicators, translate into widely varying resilience
behavior. For example, the case study showed a rapid
recovery for Fi(¢): Workforce Availability/Mobility
and a slower-paced recovery for F5(¢): Transporta-
tion Infrastructure Capacity. The results also showed
how diversity of stakeholder perspectives can highly
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influence the relevance of potential alternative
investments. For example, Fig. 5 showed that some
alternative investments were highly rated across all
stakeholders, while others exhibited high variability
across stakeholders.

The case study demonstration contributed to the
study of risk for complex systems in several ways.
First, this case study characterized the scope of the
system by recognizing the broad array of included
subsystems. In addition to the movement and avail-
ability of commodities, the case study also included
the movement and availability of workforce; the
related transportation infrastructure; and both
producing (origins) and consuming (destinations)
sectors. Second, this case study improved risk mod-
eling for a complex system through a systematic and
tractable series of steps. Although related literature
typically models risk using a single (or aggregated)
measure of performance, this case study considered
the wider variety of system functions that are the re-
sult of diversified ownership, broadened definitions
of system stakeholders, or evolving legislative ram-
ifications of system decisions. Third, the case study
addressed system adaptability, such that the goal
of future system performance may not necessarily
match predisruption status quo operations. Fourth,
this case study complemented scenario-specific
risk studies with initiatives for building system
resilience. Fifth, the proposed framework and the
associated case study explicitly included sensitivity
analysis to determine the extent to which variations
in model parameter values could impact decision
making.

This work has contributed to the subject of risk
and resilience literature in several ways. To our
knowledge, the approach presented in this article
is the first to model plural competing performance
metrics into resilience measurement, such as work-
force availability, health, capacities, efficiency, and
safety. This work is also the first to include resilience
in multicriteria multistakeholder decision models
for identifying the most appropriate protective
strategies and policies. Although the application
of this article was directed towards supply chain
infrastructure, the generalized approach is applica-
ble to any complex system. For example, this can be
applied to the study of cyber systems, transportation
systems, electric power grids, and others.

Future work will expand on the findings as
follows. First, there is opportunity to use expert
elicitation to understand how decisionmakers value
multiple measures of performance for complex
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systems. For example, there is need to study whether
linear/additive models for weighting multiple criteria
are appropriate in this setting. Second, there is need
to understand which system performance indica-
tors are most important for large-scale decision
models, which are highly relevant to a variety of
applications such as infrastructure management and
supply chain management. When performing the
expert elicitation survey discussed in the case study,
survey respondents may have been challenged by
the process of commenting on the predefined set
of performance indicators and criteria. Additional
surveys may be necessary to further refine and
understand the relationships among these model
inputs. Third, future work will study how to include
plural resilience metrics into decision models for
spatially distributed networks. Fourth, opportunities
also exist to analyze the extent to which heuristics
and biases inherent in expert elicitation methods
could impact the evaluation of disaster consequences
and efficacy of resilience enhancement strategies.
Finally, there is opportunity to apply the strategic
principles of this article to tactical and operational
resilience modeling. For example, this could involve
integrating the methods with simulation analysis,
data-driven learning, and other artificial intelligence
models that are able to adapt to new information and
technologies.
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