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Abstract—A one-way additive white Gaussian noise (AWGN)
channel with active feedback sent over another AWGN feedback
channel is considered. Achievable error exponents are presented
in the finite message / zero-rate regime for a variable length
coding (VLC) scheme. This coding scheme uses a form of round-
robin scheduling of messages, and a simplex-based feedback code
to obtain reliable feedback and remain synchronized, despite the
noise in the feedback link. Our results show that this new VLC
scheme under an almost-sure power constraint achieves an error
exponent similar to an achievable exponent attained using a fixed
block length scheme under a much more relaxed expected block
power constraint, and is larger than that achieved by schemes
without feedback. 1

I. INTRODUCTION

Variable length coding (VLC) techniques have been shown

to achieve larger error exponents than those achieved under

fixed block length coding. They use feedback to inform the

transmitter about tentative decoding decisions at the receiver,

allowing the source to determine whether a retransmission is

necessary to correct potential decoding errors.

VLC schemes have mainly been considered in the presence

of perfect output (or noiseless) feedback – including the

work of Burnashev [1] , Yamamoto and Itoh [2] and Forney

[3], among others. In the context of variable-length coding,

the literature on error exponents under noisy feedback has

been much more sparse. For discrete memoryless channels,

schemes able to achieve error exponents between Forney’s and

Burnashev’s noiseless feedback error exponent bounds have

been proposed by Draper and Sahai in [4], where an anytime

synchronization code and a round-robin message scheduling

technique were used for synchronization and reliable feedback.

Synchronization is an important issue in proposed VLC

achievability schemes under noisy feedback: such schemes rely

on re-transmissions to correct errors, and hence the transmitter

and receiver must agree on whether the message being trans-

mitted is a new one or a re-transmission. When the feedback

link is noiseless, terminals may be easily synchronized. When

the feedback is noisy, synchronization cannot be taken for

granted and is a topic explicitly addressed in [4] and [5].

All prior work on error exponents for VLC with noisy feed-

back has focussed on positive rates. As mentioned in [5], the

insertion of a few bits alongside the message to denote a sort of

message serial number may aid in synchronization. At positive
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rates, these bits do not decrease the rate considerably. One

question is what happens to the achievable error exponents

in the limit of zero-rate, where the number of such serial

numbered bits may be on the same order as the messages

themselves. Are new, more creative solutions available to

synchronize VLC schemes at zero-rate with noisy feedback?

Here, we consider an AWGN channel with AWGN feedback

and characterize an achievable error exponent for VLC for

a finite number of messages. We propose a communication

scheme that takes ideas proposed in the literature for both

DMC [3], [4] and discrete time AWGN channels [6], [7],

and uses them in a new VLC scheme able to achieve error

exponents higher than those attained under fixed block length

transmission (with or without feedback) under a similar power

constraint, and comparable to known results under a more

relaxed power constraint, briefly described next.

Fixed block length comparison points. Under fixed block

length coding, the reliability function attained at rate R is

defined as: E(R) = limN→∞ − 1
N
logP

(N)
e , where P

(N)
e is

the smallest probability of error achieved by a code of rate R

and block length N . Under the almost sure power constraint

(AS), where channel inputs satisfy
∑N

k=1 X
2
k ≤ NP , the error

exponent of the transmission of |W| messages over an AWGN

channel with signal to noise ratio P
σ2 without feedback is [8]:

AS power, no FB: E
(
|W|, P, σ2

)
=

|W|

4(|W| − 1)

P

σ2
, (1)

which for two messages becomes E
(
2, P, σ2

)
= P

2σ2 . Pinsker

[9] studied this problem assuming that perfect feedback (PFB)

is available. He demonstrated that under a similar power

constraint, noiseless feedback may improve the error exponent

of the transmission of |W| ≥ 2 messages up to

AS power, perfect FB: EPFB
(
|W|, P, σ2

)
=

P

2σ2
. (2)

For |W| = 2, feedback does not result in any error exponent

gains. The use of noisy feedback with fixed block length codes

has been investigated in [6], [7], [10]–[13]. We highlight an

achievable error exponent for |W| = 2 under an expected

block power constraint (EXP) E
[
∑N

k=1 X
2
k

]

≤ NP [6]:

EXP power, noisy FB: EBB
(
2, P, σ2

)
≥

2P

σ2
. (3)

This error exponent can be achieved through a building block

(BB) scheme [6, Section VII-A, Equation (138)], which takes
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where k corresponds to the k-th transmission of a feedback
codeword including bit s1(tj). Then, from (26) and (27)

P(ES) ≤ P (ŝ1(tj) 6= s1(tj)) ≤ (28)
(
L− 1

L/2

)(
2L−2

2L−1 − 1

)L

2

exp

(

−NL

(
2L−4

2L−1 − 1

)
PFB

σ2

FB

)

D. Expected transmission time

The expected transmission time must satisfy E[∆] ≤ N ,

and can be computed from the probability of occurrence of

event EX , shown in Figure 2, which denotes a successful re-

transmission request detected at both, transmitter and receiver:

P(EX) = P (“Erasure” ∩ Erasure)

= P (“Erasure” | Erasure)P (Erasure)

= (1− P (ŝ1(tj) 6= s1(tj)))P(M̂ = 0 | M = 1)

≤ P(Erasure) < β, (29)

where the last inequality is for ease of notation, and comes

from (23) as the probability of an erasure is exponentially

small with N , so, we upper bound it by a (decaying in N ) β.

Note that the first transmission of a message ml(tj) has a

transmission time of N . If a retransmission is necessary, the

transmission duration is (L+1)N . If two retransmissions are

necessary, then this duration becomes (2L+ 1)N , and so

E[∆] = N + βLN + β2LN + β3LN + ...

= N + LN

∞∑

i=1

βi = N + LN
β

1− β
(30)

Note that since limN→∞ LN β
1−β

= 0, the expected transmis-

sion time is E[∆] = N , as β → 0 exponentially fast in N .

E. Proof of Theorem 1

Equation (12) results from the expected transmission time
in (30), and using (24) and (28) in (17)

Evl

(
|W|, P, σ2, PFB, σ

2

FB,∆
)

≥ min







L

(
2L−4

2L−1 − 1

)
PFB

σ2

FB
︸ ︷︷ ︸

from (28)

,
2P

σ2

︸︷︷︸

from (24)







. (31)

Note in Equation (31) that the following relation must hold

so that the error exponent is dominated by the decoding error

event EE rather than the synchronization error:

L

(
2L−4

2L−1 − 1

)
PFB

σ2
FB

>
2P

σ2
(32)

The above condition yields (12) in Theorem 1, and may be

used to obtain a lower bound on the choice of L for given

forward and backward channel SNRs. For example, for P
σ2 = 1

and PFB

σ2

FB

= 2, it may be verified numerically that selecting

L ≥ 8 will satisfy (32).

IV. CONCLUSION

The error exponent achieved by the VLC scheme presented

here for the one-way AWGN channel with active AWGN

feedback with a more restricted AS power constraint turns out

to be equivalent to a known result achieved under fixed block

length coding using the more relaxed EXP power constraint,

which is four times that achieved without feedback for |W| =
2. Interestingly, we have shown that synchronization even

over the noisy channel can be handled using a round-robin

and anytime-like coding scheme that depends on a parameter

L, the number of message stacks that are interleaved. Our

results demonstrate that an appropriate choice of L guarantees

that the probability of error is dominated by the event of

incorrect messages decoding in the forward channel. We note

that our scheme does not require a better feedback channel

than forward channel – any noisy feedback channel may be

accommodated by a larger choice of L so as to satisfy (32). We

also note that the generalization on the probability of erasure

decoding provided in [7] may be used to extend Theorem 1

to any finite |W| as follows:

Evl

(
|W|, P, σ2, PFB, σ

2
FB,∆

)
≥

(
|W|

|W| − 1

)
P

σ2
. (33)
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