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Abstract—Achievable error exponents for two-way parallel
discrete memoryless channels (DMC) using variable block length
coding (VLC) are presented. First, Forney’s erasure decoding
error exponent is shown to be achievable for both directions
simultaneously. Next, for some rate-pairs, it is shown that the
error exponent of the direction with a smaller capacity may be
further increased by allocating feedback resources to it in the
other direction, at the price of a decreased error exponent for the
other terminal. The presented two-way communication scheme
builds upon Draper-Sahai’s one-way DMC achievability scheme
with noisy feedback under VLC. Both achievable error exponent
regions demonstrate that the use of VLC and interaction between
the terminals may benefit both directions’ error exponents over
fixed block length and feedback free transmission.1

I. INTRODUCTION

In one-way communications with feedback, variable length

coding (VLC) techniques where decoding times are not deter-

mined before transmission have been shown to attain better

error exponents than those achieved by fixed block length

schemes, where decoding is done at pre-described times. The

error exponent, or reliability, of a discrete memoryless channel

(DMC) characterized by channel transition probabilities p(y|x)
under VLC for an average transmission rate R̄ is defined as:

E(R̄) = lim
E[∆]→∞

−
1

E[∆]
logPe

(

R̄,∆
)

(1)

where E[·] denotes expectation, ∆ the transmission time (a

random variable), and Pe

(

R̄,∆
)

the probability of error at

average rate R̄ when decoding at time ∆.

Burnashev [1] showed that the error exponent using VLC

coding over a DMC of capacity C with complete output

feedback for an average transmission rate R̄, denoted by

Evl(R̄) is upper bounded by:

Evl(R̄) ≤ EBurn(R̄) := C1

(

1− R̄/C
)

(2)

where, C1 = maxxi,xj

{

∑

y p(y | xi) log
p(y|xi)
p(y|xj)

}

corre-

sponds to the Kullback-Leibler divergence between the two

most distinguishable symbols. A scheme able to achieve this

bound was presented by Yamamoto and Itoh [2]. The relia-

bility of DMCs can still be improved over the non-feedback

reliability even if complete output feedback is not available,

but at least a single bit of noiseless feedback is, and erasure
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decoding is employed. Forney [3] used this bit to tell the

source whether decoding was successful (source sends a new

message) or resulted in an erasure (source re-transmits the

same message). Forney’s reliability (3) is larger than the sphere

packing upper bound (Esp(R) [4, Section 5.8]) for fixed block

length coding without feedback for rate R̄, given by

EForn(R̄) = Esp(R̄) + C − R̄. (3)

In VLC schemes in general, potential errors may be cor-

rected by retransmissions. Such retransmissions lead to higher

error exponents, at the expense of variable decoding times

and delays, which bring up the issue of synchronization – the

transmitter and receiver must agree upon which message is

currently being transmitted. If noiseless feedback is available

(as in Burnashev, Yamatoto-Itoh, or Forney’s models), then

both terminals may easily stay synchronized. This is not

the case if feedback is noisy: [5], [6] both address this and

show that even in the presence of noisy feedback, reliability

improvements over fixed block length coding are attainable in

the one-way setting.

Here, we consider the non-previously studied two-way sce-

nario where the destination is also interested in transmitting its

own messages to the source. The transmitter and receiver may

be referred to as Terminals 1 and 2. Error exponents for two-

way channels were first studied in [7], using fixed block length

coding over AWGN channels at zero-rate. Here we consider

positive rates, and a parallel two-way DMC, where the channel

transition probability breaks into the product of two one-way

channels. This is a class of two-way channels relevant in time

or frequency division systems, and is one of few classes of

channels for which the two-way capacity region is known. We

consider VLC and note that feedback is automatically noisy

and shares the same channel as the data. This model thus

pinpoints the tradeoff between allocating resources to feedback

to help the other direction’s error exponent versus using them

to transmit one’s own message. We show that interaction –

using feedback – does improve the error exponent regions

achievable, in contrast to the two-way parallel capacity region

which is not improved by interaction [8].

II. PROBLEM STATEMENT AND CONTRIBUTIONS

A two-way DMC (p(y1y2|x1x2),X1,X2,Y1,Y2) is charac-

terized by a set of channel transition probability mass functions

p(y1y2|x1x2), and finite sets of input and output alphabets Xi

and Yi for the i-th terminal, where i = {1, 2} [8].
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fixed block length and variable length zero-error capacity with

and without feedback equal to zero2. The reliability function

of the scheme is presented in [5, Section 4.2, Eq. (19)] and

depends upon a parameter γ, defined in [5, Eq. (15)], which

establishes “high-rate” and “low-rate” regimes split by the

critical rate R̄∗ defined in [5, Eq. (16)].

In the two-way scenario, we characterize error exponents for

two average rate-pair regimes. The small constant parameter

δ > 0 characterizes the length of a synchronization anytime

code, as explained soon, see Fig. 3.

Rate pair regime (i): the complete capacity region

0 ≤ R̄12 ≤ (1− δ)C12 (15)

0 ≤ R̄21 ≤ (1− δ)C21 (16)

where terminals cooperate to achieve Forney’s error exponent

in each direction, as the rate of the anytime code used in

Draper and Sahai’s scheme that achieves the Forney error

exponent for noisy feedback may be made arbitrarily small;

Rate-pair regime (ii): the shaded area in Fig. 2, where the

(assumed to be weaker) 1→ 2 direction attains the BE scheme

error exponent, while the (assumed to be stronger) 1 ← 2
direction is able to send its own messages using Forney’s

technique with a decreased error exponent. This region is

R̄21 ≤ C21

(

1− δ −
R̄12

R∗
data12

+ (1− γ)
R̄12

R∗
data12

)

,

for 0 ≤ R̄∗
12 ≤ (1− δ)C12, (17)

where γ is adapted from [5, Eq. (15)] and is given by

γ = min

{

1,

(

(1− δ)
R∗

data12

R̄12
− 1

)

C1

C21

}

, (18)

R̄∗
12 is adapted from [5, Eq. (16)] and given by R̄∗

12 =
C12(1−δ)

1+
C21

C1

and R∗
data12

, as we will show later, is optimized for

each operation regime of the BE scheme (low and high rate

in the 1→ 2 direction) and given by

R∗
data12

=

{

Eq. (25), 0 ≤ R̄12 ≤ R̄∗
12

C12, R̄∗
12 < R̄12 ≤ (1− δ)C12

. (19)

This leads to our main contribution:

Proposition 3: An achievable error exponent pair for the

two-way parallel DMC under VLC for an average rate-pair

(R̄12, R̄21) is:

Under rate-pair regime (i):

Evl12 ≥ EForn

(

R̄12

1− δ

)

(20)

Evl21 ≥ EForn

(

R̄21

1− δ

)

(21)

2The VLC zero-error capacity region of the two-way parallel is open to the
best of our knowledge. For rates inside this region the error exponents are
infinite. From [9, Theorem 3] note that the variable-length zero-error capacity

of a forward DMC with noisy feedback, CV L−NF
0 , is lower bounded by the

zero-undetected-error capacity [3] of the forward channel if both the forward
and backward channels have positive zero-undetected-error capacities.

Fig. 2. Two-way parallel DMC error exponent regimes, for C21 = 4C12.

Points Si for i = 0, ..., 10, denote rate pairs (R̄12, R̄21) along the diagonal
of the capacity region which are used in the numerical simulation of Fig. 4.

Under rate-pair regime (ii):

Evl12 ≥

Eforn

(

R∗

data12

)

+min

{(

1− δ − R̄12

R∗

data12

)

C1, γ
R̄12

R∗

data12

C21

}

1 + γ R̄12

R∗

data12

+

(

1− δ − R̄12

R∗

data12

)

(22)

Evl21 ≥

Eforn





R̄21

1−δ−
R̄12

R∗

data12

+(1−γ)
R̄12

R∗

data12





1 + γ R̄12

R∗

data12

+

(

1− δ − R̄12

R∗

data12

) . (23)

The error exponent in the weaker (1 → 2) direction

corresponds to that attained by the BE scheme for the one-

way channel in [5] and is thus greater than the sphere packing

upper bound determined by fixed block length coding. This

improvement comes at the price of a reduction in the error

exponent of the stronger direction (1 ← 2). This decrease

originates from 1) a large delay imposed by the other direction,

see Eq. (6); and 2) a reduced number of channel uses destined

for message transmission in the 1← 2 direction (as feedback

uses the rest). Thus, the instantaneous data rate Rdata21 is

higher than the average rate R̄21 yielding a smaller value when

(3) is evaluated.

III. TWO-WAY ACHIEVABILITY SCHEME CONSTRUCTION

We now present the scheme that achieves Proposition 3. Our

scheme extends Draper-Sahai’s one-way, with noisy feedback

scheme to support two-way communication. This involves

resolving two-way synchronization issues and how forward

and feedback resources may be effectively shared.

To address synchronization, we replicate their approach and

use anytime codes in both directions. Each terminal has a finite

number L distinct stacks of messages, which are sent from

one at a time in round-robin scheme using slots of N channel

uses. A round-robin scheduling of time slots of length N as

in [5, Fig. 3] is depicted in Fig. 3. A new transmission or

retransmission of the message may happen only after (L−1)N
channel uses. An anytime code is fed back to each terminal

during each message transmission, carrying an L bit message

of decoding decisions of the L stacks [5].

This code allows transmitters to receive an updated deci-

sions vector of all L stacks every time a message is trans-

mitted, and hence the reliability increases with L. Draper and
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