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Figure 1: A typology of operations and layouts used in multivariate network visualization. Layouts describe the fundamental choices for
encoding multivariate networks. View Operations capture how topology and attribute focused visualizations can be combined. Layout
Operations are applied to basic layouts to create specific visualization techniques. Data Operations are used to transform a network or
derive attributes before visualizations. The colors reflect node attributes (orange), edge attributes (purple), and topology (grey).

Abstract
Multivariate networks are made up of nodes and their relationships (links), but also data about those nodes and links as
attributes. Most real-world networks are associated with several attributes, and many analysis tasks depend on analyzing both,
relationships and attributes. Visualization of multivariate networks, however, is challenging, especially when both the topology
of the network and the attributes need to be considered concurrently. In this state-of-the-art report, we analyze current practices
and classify techniques along four axes: layouts, view operations, layout operations, and data operations. We also provide an
analysis of tasks specific to multivariate networks and give recommendations for which technique to use in which scenario.
Finally, we survey application areas and evaluation methodologies.

1. Introduction

Networks are ubiquitous in today’s society. A network, also called a
graph, consists of nodes (or vertices) and links (or edges) connect-
ing these nodes. Examples range from social networks, to physi-
cal networks such as power grids, to networks modeling cellular
processes in biology, to trees describing evolutionary relationships
between species. Nodes and links can represent people, locations,
genes, or ultimately any entity that has a connection with other
entities. Most real-world networks consist of nodes and links that

are also associated with attributes. Attributes can range from mini-
mal information, such as node labels, to complex attribute vectors,
such as the age, skills, and gender of a person, or the activity lev-
els of genes from hundreds of samples. Networks that also con-
tain attributes are commonly referred to as multivariate networks
(MVNs) [KPW14]. When the structure (the topology) of the net-
work needs to be analyzed together with these node or edge at-
tributes, we employ multivariate network visualization techniques,
which are the topic of this state-of-the-art report.
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Visualizing MVNs is particularly challenging, as both the topol-
ogy of the network (also called structure of the network), and at-
tributes associated with the nodes and links need to be shown.
When visualizing topology and attributes in the same view, choos-
ing efficient encodings for one aspect often interferes with the abil-
ity to effectively visualize the other. For example, when attempting
to encode multiple node attributes directly on the node in a node-
link diagram, a visualization designer has to make compromises
with regard to the node size, the network size, and the number of
attributes shown. Conversely, when visualizing attributes and topol-
ogy in separate views, an analyst’s ability to judge interactions be-
tween nodes/links and attributes is limited. Most of the published
techniques on multivariate networks attempt to mitigate the trade-
off between visualizing topology and visualizing attributes well by
introducing novel encodings for certain data types or analysis tasks.

In this paper, we introduce new typologies for multivariate net-
work tasks and multivariate network techniques. Our task typology
(Section 4) is based on two fundamental MVN tasks: identifying
a topological structure based on attributes or characterizing the at-
tributes of a topological structure. We apply these tasks to a series
of relevant topological structures, which results in ten MVN tasks.

The visualization technique typology (Section 5), shown in Fig-
ure 1, consists of four dimensions: layouts, view operations, lay-
out operations, and data operations. The layouts category includes
the eight unique multivariate network layouts. View operations de-
scribe how multiple views can be used for multivariate network vi-
sualization. Layout operations either combine multiple layouts or
multiply layouts based on attributes. Data operations describe pos-
sible network wrangling operations such as aggregation and com-
puting new attributes. We also provide explicit guidelines on rec-
ommended usage of each technique, as well as on how to select
an appropriate technique given a network type, attribute character-
istics, and a set of tasks the user aims to support. A companion
website, available at https://vdl.sci.utah.edu/mvnv/,
provides an overview of the taxonomy and a wizard to select a tech-
nique for a specific data and task combination.

Finally, we discuss our methodology (Section 6), common ap-
plication areas of MVNs (Section 7), and strategies for evaluating
multivariate networks (Section 8).

2. Related STAR Reports

The body of literature in the space of visualizing multivariate net-
works is consistently growing, but a comprehensive survey of the
techniques used has not yet been done. STARs exist on related top-
ics such as visualizing large graphs [vLKS∗11], trees [Sch11], im-
plicit hierarchies [SHS11], group structures in graphs [VBW15],
dynamic graphs [BBDW14], edge bundling techniques [LHT17],
among others. However, no survey paper introducing a typology of
multivariate network visualization techniques exists.

The survey on multifaceted graph visualization by Hadlak et
al. [HSS15] covers the visualization of four facets of graph visu-
alization, two of which are relevant to our work—partitions and
attributes. Their work distinguishes three overarching categories
of MVN visualizations—visualizations with a topology-driven lay-
out, an attribute-driven layout, and coordinated views—but is not

exhaustive in describing MVN techniques, including tabular tech-
niques and hybrid approaches. Most related to the proposed STAR
is a survey book edited by Kerren et al. based on a Dagstuhl Sem-
inar [KPW14] that reports on selected topics in the field but does
not introduce a taxonomy of existing techniques.

This review paper aims to fill that gap by describing the design
space of techniques used to encode multivariate networks, classify-
ing these techniques into a formal typology, and surveying existing
evaluation methods. We only briefly discuss application areas for
MVNs, as these are covered in depth in the survey book by Kerren
et al. [KPW14].

3. Network and Attribute Characteristics

Here we introduce definitions and describe different types of net-
works. We consider multivariate networks with nodes and edges
where either the nodes, the edges, or both, have attributes associ-
ated with them. We refer to the nodes and edges as the network’s
topology. Attributes can be of varying data types, such as textual,
quantitative, ordinal, nominal, or set data. Attributes can also be
computed based on topological properties. For example, the degree
of a node, or its centrality, are common derived attributes. Anal-
ogously, topological structures can be derived from attributes. For
example, two nodes can be connected if they share an attribute.

Both nodes and edges can be of different types. We consider
nodes and edges of a type to be of a semantic unit that has a dif-
ferent set of attributes associated with it. For example, a node type
actor could have a name, current residence, age, etc. associated
with it. Another node type in the same network could be movies,
with attributes such as movie title, budget, revenue, genres, etc.

In this survey, we discuss the properties of a visualization tech-
nique on a number of dimensions, including network size, network
type, node and edge attribute size and type, and their suitability
for tasks. Here we discuss the data properties, while the tasks are
described in Section 4.

For size, we distinguish between three categories of networks:
small (less than 100 nodes), medium (100-1,000 nodes), and large
(more than 1,000 nodes). For our evaluation, we consider the num-
ber of nodes simultaneously displayed, not the number of nodes a
technique can handle through querying or filtering.

We distinguish between the following network types:

• Complex networks, i.e., networks with nontrivial topological
features, such as a diverse degree distribution (the distribution
of the number of links per node), clusters, hubs, etc. [WC03].
Among the complex networks are scale-free networks, with a de-
gree distribution that follows the power law distribution. These
networks are characterized by a small number of nodes with a
very high degree that exhibit preferential attachment, i.e., that
nodes added to the network are likely to attach to these central
hubs. An example is the world wide web, where major websites
are linked to much more frequently than others. Another type of
complex network is a small world network, with a degree dis-
tribution that peaks around the average value. These networks
exhibit significant clustering and are characterized by a short av-
erage path distance (hence small world). Social networks are a
typical example.
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• Layered and K-Partite networks are networks where the nodes
can be partitioned into discrete sets and where links are mostly
(in the case of layered networks) or exclusively (in the case of
k-partite networks) between the different sets. Layered networks
are ordered (e.g., as in genealogies, where there is an order of
generations that is represented as layers) and have links only
between successive layers, whereas k-partite networks can have
links between multiple partitions and are not necessarily ordered.

• Trees are acyclic networks, commonly with a defined root,
where each node is either a leaf or the root of a subtree. Trees
have exactly one path between two nodes and have a low aver-
age degree.

For complex networks, we also distinguish between sparse net-
works, with a low average degree, and dense networks, with a high
average node degree. Layered networks, k-partite networks, and
trees are sparse by their nature.

For node attributes, we distinguish between few (less than five)
and many (more than five), but also give more detailed ranges when
discussing a specific technique. We considered a category for a high
number of attributes (e.g., hundreds), but realized that the same set
of techniques that support five or more attributes well also support
larger numbers of attributes. We also discuss data type properties
when appropriate. We further distinguish between homogeneous
networks with respect to node types, i.e., all nodes are of the same
type (e.g., only actors), and heterogeneous networks, i.e., the net-
work has more than one node type (e.g., actors and movies).

We categorize analogously for edge attributes, albeit we consider
few to be less than three and many to be three or more attributes.
Finally, we distinguish between homogeneous and heterogeneous
edges.

4. Multivariate Network Analysis Tasks

Here we introduce a taxonomy of tasks focusing specifically on
multivariate network analysis. Our taxonomy is designed to eval-
uate MVN techniques for their suitability to address a task and
is complementary to general network task taxonomies. This task
analysis, combined with considerations of network type and net-
work scale described in the previous section, form the basis of our
assessment of individual visualization techniques and of our guide-
lines for MVN visualization (Section 5.1).

There are various data-type independent visualization task tax-
onomies. The works by Brehmer and Munzner [BM13] and Schulz
et al. [SNHS13] are examples of recent, generic visualization task
taxonomies. An example of a data-type-specific task taxonomy is
the work by Valiati et al. [VPF06] which covers multidimensional
visualization techniques.

Specialized task taxonomies for networks also exist. The well-
known taxonomy of network tasks by Lee et al. [LPP∗06] does not
cover MVN tasks in detail. In addition to topology-focused tasks,
the taxonomy includes selected attribute-based tasks. For node at-
tributes, these tasks are finding nodes having a specific attribute
value and reviewing the set of nodes. For edges, the two tasks are
about identifying neighbors of a node connected by an edge with
a specific property (edge type, specific edge value). Shneiderman

and Aris [SA06] also discuss examples of MVN tasks but do not
take a systematic approach to the topic.

The most comprehensive analysis of tasks for multivariate net-
works was done by Pretorius et al. [PPS14]. The authors generalize
the tasks proposed by Lee et al. to cater to cases where the net-
work’s attributes are of interest to the user. This approach is use-
ful in that it provides a systematic and comprehensive approach to
MVN tasks. They list 25 tasks in the categories of structure-based
(topology-based), attribute-based, browsing, and estimation tasks.
They also discuss how these tasks are composed of lower level ana-
lytical tasks proposed by Valiati et al. (identify, determine, relocate,
compare) [VPF06].

We believe that the task taxonomy by Pretorious et al. is com-
prehensive and refer to it for a detailed review. Pretorius et al. also
discuss that in the abstract, a task is an analytical activity performed
on an entity and a property of an entity, which is called “actions”
applied to “targets” by Brehmer and Munzner [BM13]. For the pur-
pose of this STAR, we believe that a slightly simplified approach is
useful for both characterizing existing techniques and recommend-
ing techniques based on tasks specified by analysts.

In our taxonomy, any task can be expressed as a combination of
two fundamental tasks, as applied to different topological structures
of a network. These two basic tasks are:

• analyzing topology for given attributes (TgA), which are aimed
at identifying, characterizing, or comparing topological struc-
tures that have certain attributes, and

• analyzing attributes for a given topological structure (AgT),
which are aimed at identifying, characterizing, or comparing the
attributes of a given topological structure.

We do not further distinguish between more detailed tasks, such
as identifying, summarizing, or searching, because we believe that
in most practical scenarios these go hand in hand, and because
most visualization techniques that support one of these also support
the others. A notable exception is comparison, which can often be
achieved without special considerations, but can benefit from dedi-
cated support by a visualization technique in certain situations.

The targets in the context of network tasks are the topologi-
cal structures. We consider major types of topological structures,
shown in Figure 2, but recognize that others, such as cliques or
spanning trees, could be relevant for specific analysis questions.

Single Node/Edge

Node Neighbors Path

Cluster

Network/Subnetwork

Figure 2: Topological structures we consider as targets for tasks.
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The structures include individual nodes and edges, paths of sequen-
tial nodes and edges, neighborhoods of a particular node or edge,
clusters of nodes and edges, and larger networks or subnetworks
that can be considered as complex networks by themselves. We use
the term “cluster” to refer to a set of nodes that are well-connected
to each other, but less so with other nodes with regards to the topol-
ogy of the network. A cluster is also often called a community,
especially in the context of social networks. Conversely, a “sub-
network” is a subset of a network that is not limited to a specific
structure.

We selected these specific structures based on our literature anal-
ysis of MVN visualization techniques, where we identified many
published techniques that are optimized for performing MVN tasks
on specific topological structures. For example, approaches such
as Pathfinder [PGS∗16] and Entourage [LPK∗13] are explicitly de-
veloped for path-based MVN tasks. GraphCharter [TS13], on the
other hand, is optimized for analysis on node neighbors.

A comprehensive analysis of multivariate network tasks can thus
be described as a combination of general network tasks (e.g., as
described by Lee et al. [LPP∗06]) and our MVN tasks. By reduc-
ing MVN tasks to a combination of two basic tasks and a topo-
logical structure, we are able to decompose complex tasks into a
simple combination of tasks and targets. The task “Estimate the
average value of a specific attribute of all nodes connected to a
specific node” (a concrete example: what’s the average income of
University of Utah graduates in a social network) can be decon-
structed into three basic tasks: (1) find the node with label “Uni-
versity of Utah” (analyzing topology for given attributes, on target
“network”), followed by (2) Lee et al.’s adjacency task (find the set
of nodes adjacent to a node), followed by (3) estimate the average
value of an attribute of a node neighborhood (analyzing attributes
for a given topolgy on target “neighbors”).

Table 1 gives examples of the two basic MVN analysis tasks as
applied to the set of topological structures listed in Figure 2. For
each task, we also provide an example for a domain-specific task
from the literature.

Although we observed both TgA and AgT tasks in our corpus,
we saw a preference for one of the task types in certain application
areas. Techniques developed for social network analysis, for exam-

ple, tend to first focus on topology-only tasks, followed by attribute
tasks on the selected topological structures (AgT). For example, a
commonly described task is to identify particular structures, such
as communities, followed by an analysis of the attributes in these
structures [HF07].

We also observed that identifying a topological structure for
given attributes (TgA) is frequently supported by query or filter
operations, instead of being a purely visual task. For example, an
analyst may want to identify a fraudulent bank account by query-
ing for patterns of transactions, and then expand a network of in-
teractions between that account and others [vHP09]. Similarly, Ju-
niper [NSL19], Pathfinder [PGS∗16], and Enroute [PLS∗12] use
queries or filters to isolate a subnetwork or path of interest, fol-
lowed by inspection of the attributes in that structure.

5. Multivariate Network Visualization Typology

The primary contribution of this paper is a typology of multivariate
network visualization techniques, illustrated in Figure 1. The typol-
ogy is made up of four components: a taxonomy of MVN layouts,
and three types of operations that can be applied to these layouts.
Every technique and tool discussed in this paper can be described
by selecting (at least) one layout, and optionally applying opera-
tions to it.

The layout taxonomy encompasses core approaches to encoding
the topology and attributes of multivariate networks and trees. The
taxonomy of layouts contains three classes: node-link, tabular, and
implicit layouts, with various layouts within these classes.

The view operations capture different ways of combining mul-
tiple views with each other. For example, view operations include
juxtaposition for placing an attribute and a topology visualization
side-by-side.

The layout operations allow for different combinations of the
layouts to produce hybrids and small multiples.

The data operations category contains methods that can be ap-
plied to the data either as a preprocessing step or during the analy-
sis. Example data operations are aggregating nodes into supernodes
or filtering parts of a network.

Toplogical
Structure

Task
Type

Example Domain-Specific Example

Node/Edge TgA Which node/edge has the given attribute value? Who is the oldest person in a social network? [HB05]
AgT What is the attribute value of a given node/edge? What house is Jon Snow in? [NSL19]

Neighbors TgA Which neighbors have a given attribute value? Who is Mary’s tallest friend? [LPB∗06]
AgT What are the attribute values of a node’s neighbors? What are the zodiacs of Joe’s friends? [TS13]

Paths TgA Which path between two nodes has the lowest cost? Which path between two genes is most frequently cited in pathway
databases? [PGS∗16]

AgT What are the attribute values along a path? How does a metabolite increase along a pathway? [MWS∗10]

Clusters TgA Which cluster has certain attribute characteristics? Which cluster has the most educated people? [HF06]
AgT What are the attribute characteristics within a cluster? What is the average education level in Mary’s cluster? [HF06]

Network TgA Find the subnetwork of nodes with a specific attribute. Which subnetwork contains only people with a PhD? [HF06]
AgT What are the attribute values in this network? What is the average age in this network? [vHSD∗09]

Table 1: List of generic and domain-specific examples of MVN analysis tasks composed of our two basic tasks and the described topological
structures. Each domain-specific example references a paper that describes that task.
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Table 2: Scores for how well each technique performs on different network types and different multivariate network tasks. 0 means does not
support at all, 1 is supports poorly, 2 encodes supported but with limitations / may require interaction, and 3 means well supported.

In describing MVN visualization techniques along these four or-
thogonal dimensions, we not only cover the techniques observed in
the set of papers surveyed, but also provide a design space in which
to decompose and analyze any MVN visualization technique.

When describing and discussing these approaches, e.g., with re-
spect to scalability, we assume a static visualization technique.
However, we call out opportunities for interaction where appro-
priate. Certain types of interactions, such as zooming and panning,
or visualizing attributes such as labels in tool tips, can be applied
to most techniques. Other, more sophisticated interactions, such as
linking and brushing, sorting, changing the layout algorithms, or
manually adjusting a layout, depend on the visualization technique
used. The data operations we describe can frequently be invoked
interactively, and especially operations such as filtering or aggre-
gating can drastically change how much and what types of raw data
can be visualized with a basic layout technique.

We scored each of the layouts and view operations along 20 di-
mensions, which include network characteristics such as size and

number of attributes, as well as different types of MVN analysis
tasks. Table 2 shows the scores for each type. Our methodology
for developing these scores is described in Section 6.4. We use the
following scores:

0 This technique cannot support this data type or task.
1 This technique supports this data type or task very poorly.
2 This technique can support this data type or task, but is not

ideal and may require interaction to achieve it.
3 This technique supports this data type or task very well.

5.1. Layouts

We distinguish between three approaches to network visualization:
Node-link layouts, tabular layouts, and implicit tree layouts. The
class of tabular layouts contains the widely used matrix layout and
two variants: quilts and biofabric. Implicit tree layouts encode the
relationships between nodes only by their relative positions, hence

c© 2019 The Author(s)
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edges are only implicitly represented. In practice, the lack of ex-
plicit edges means that implicit layouts are useful only for trees.

5.1.1. Node-Link Layouts

Node-link diagrams are the most common graphical representa-
tion of networks. In a node-link diagram, the nodes are drawn as
point marks and the links as line/curve marks connecting the nodes.
Node link layouts are the subject of their own field of study—graph
drawing—and countless algorithms for node-link layouts have been
developed [BETT98]. Schulz and Schumann [SS06] distinguish be-
tween free layouts, where the node layout is not restricted, an exam-
ple of which is the force-directed placement; styled layouts, where
the node positions are determined by a predefined scheme, such as
a grid, or a radial layout; and fixed layouts where the position of the
node is determined by an attribute, such as latitude and longitude
on a map. In fixed layouts, the only degree of freedom is conferred
to the drawing of the edges connecting the fixed nodes.

We use this distinction, but for the purposes of multivariate net-
work visualization, we group free and styled layouts into one larger
category of topology-driven layouts and take a slightly relaxed view
on fixed layouts and describe it as attribute-driven layouts.

Topology-driven layouts prioritize the topology of the network
over the attributes of the nodes and edges. The most common node-
link layouts, such as force-directed layouts, spectral layouts, or or-
thogonal layouts, fall into this class, or more specifically into the
free layouts as described by Schulz and Schumann. Trees are also
commonly drawn as topology-driven node-link layouts. Styled lay-
outs position nodes based on a pattern, such as along a circle or in a
grid, and then connect them with edges. Styled layouts quickly lead
to clutter, which can be partially mitigated by optimizing the order-
ing of nodes, e.g., by placing connected nodes close to each other.
As topology-driven layouts are optimized to visualize the network
structure, position, the most powerful visual channel, is not avail-
able to encode attributes of the network. Hence, the only layout
strategy to visualize attributes is to alter the appearance of the nodes
and links through on-node or on-edge encoding.

Attribute-Driven Layouts use node position to encode at-
tributes. We distinguish two cases: attribute-driven faceting, which
places the nodes in regions corresponding to a categorical attribute,
but the exact node position within that region is determined in an-
other way, or attribute-driven positioning, which places the nodes
exactly by an (often numerical) attribute value.

5.1.1.1. On-Node/On-Edge Encoding. On-node and
on-edge encoding refers to modifying the visual appear-
ance (size, color) of a node or an edge or embedding
marks (bar charts, line charts, etc.) in a node or an edge
in a node-link diagram.

For nodes, labels are often shown as text, whereas color coding
is a common choice to encode numerical or categorical data val-
ues. Other common encodings for node types are shapes or icons.
Gehlenborg et al. [GOB∗10] review techniques used in systems bi-
ology for visualizing multivariate networks, many of which make
use of on-node encoding by means of embedded charts, such as
line charts, box plots, etc. An example of a systems biology use

(a) (b)

Figure 3: On-node encoding. (a) Multiple attributes (metabo-
lite concentrations) are encoded directly on the nodes using
color [NPA∗09]. Figure licensed under CC BY 2.0. (b) Photos
and labels are encoded on the nodes of a social network [HB05].
c© 2005 IEEE, reprinted with permission.

(a) (b)

Figure 4: Complex on-node encodings. (a) A protein interaction
network where nodes contain visualizations of protein configura-
tions [JM03]. c© 2003 IEEE, reprinted with permission. (b) Line
charts show metabolite concentrations over time in a pathway net-
work [JKS06]. Figure licensed under CC BY 2.0.

of on-node encoding is shown in Figure 3(a), where metabolic
pathways are overlaid with node attributes on metabolite concen-
tration [NPA∗09]. Auber et al. [ACJM03] use on-node encoding
on social networks, displaying small network representations for
previously computed topological features of interest. Also in the
realm of social media, Vizster [HB05] uses photo and labels on the
nodes. Dunne and Shneiderman [DS13] use glyphs to encode ag-
gregate nodes representing topological patterns in the network such
as cliques and fans. On-node encoding is also widely supported by
common network visualization tools such as Cytoscape [SOR∗11]
and Gephi [BHJ09].

Ghani and Elmqvist [GE11] study the efficiency of different
channels for on-node encoding for revisitation tasks. The authors
compare the use of color, size, and color combined with size, but
did not find significant difference in the performance of their tasks.

On-node encoding can also be realized using more complex vi-
sualizations within the nodes. Examples of these encodings include
line-charts, or a “business card” layout for a person, with name, pic-
ture, age, etc.

c© 2019 The Author(s)
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(a)

(b) (c)

Figure 5: On-edge encoding. (a) A numerical attribute is encoded
by the overall length of the edge curve. To make the distance
between connected nodes of approximately uniform length, wig-
gles are used [NJBJec]. c© 2009 IEEE, reprinted with permission.
(b) Several numerical attributes are encoded by the thickness of
the colored segments [KAW∗14]. c© 2014 IEEE, reprinted with
permission. (c) Colored bars encoding four quantitative edge at-
tributes [SSE16]. c© 2016 IEEE, reprinted with permission.

Examples for techniques using complex on-node encodings are
MoireGraphs [JM03] (see Figure 4(a)) and Network Lens [JDK10].
Network Lens allows the users to enlarge nodes and encodes
their attributes with approaches such as bar charts and parallel
coordinates plots. Other examples from the biology domain in-
clude embedded bar charts with error bars [WvHKR08] and line
charts [JKS06].

On-edge encoding shows edge attributes by modifying the
channel of the line mark used for the edge. Common approaches
are modifying line width [KWS∗13, Guo09], line color [Guo09],
stippling and dashes [JKS06], curvature [XRP∗12], or blur-
ring [SSSE16]. Multiple attributes are occasionally encoded with
bar charts overlaid on the edges [SSE16] (Figure 5(c)) or with
multicolored segments with different line width [KAW∗14] (Fig-
ure 5(b)).

Abyss Explorer [NJBJec], shown in Figure 5(a), encodes edge
attributes by edge length. However, as modifying edge length has
a negative impact on the freedom to place nodes, the authors “wig-
gle” the edges, so that the attribute is also encoded by the frequency
of the wiggles.

Edge directionality is commonly visualized with arrows at the
ends but tapering or gradients are other approaches [HIvWF11].

Recommended Usage. On-ode/on-edge encoding supports the in-
tegration of topology- and attribute-based tasks well and supports

all kinds of MVN tasks on all structures (see Table 2). On-node/on-
edge encoding is easily understood by most users, and works well
for sparse complex networks, layered networks, and trees. How-
ever, it comes with scalability trade-offs. Even for a modest num-
ber of nodes in a node-link layout, node size has to be limited;
hence little space is available to encode attributes. When details
about nodes are shown, as for example in MoireGraphs [JM03],
the number of nodes that can be displayed simultaneously is lim-
ited. We recommend on-node layouts when only a few (usually
under five) attributes on the nodes are shown, or in combination
with a zooming/filtering strategy. Complex on-node encodings can
also be embedded on top of aggregated nodes, to summarize the
content of the aggregates, in which case their larger size is often
justified [vdEvW14]. On-node encoding generally works well for
networks with different node types. On-edge encoding is even more
limited than on-node encoding. First, most node-link layouts guar-
antee that nodes do not overlap, however, edges commonly cross
even in sparse networks, interfering with on-edge encoding. Sec-
ond, the nature of the link mark as a slim line limits the discrim-
inability of any modulation of the visual channel. We recommend
on-edge encoding for a single numerical or categorical attribute.

5.1.1.2. Attribute-Driven Faceting. Attribute-
driven faceting groups nodes according to one or
more attributes and places the elements of a group
in a shared region. A prominent example is Seman-
tic Substrates [SA06], Figure 6(a), which facet a
network based on a categorical attribute and let analysts choose
whether to show links between or within facets, or both. This ap-
proach is also commonly used in biological networks to visualize
nodes within spatially segregated cell compartments [BMGK08],
or to lay out k-partite or multityped graphs [SJUS08, PLS∗14,
PvW08, GKL∗13, ABF∗07]. There are alternatives to faceting by
sets or node types: Figure 6(b) shows faceting based on a hier-
archical clustering algorithm where the clusters are laid out in a
treemap [RMS∗11] and nodes are shown within the treemap cells.
A key choice after faceting is how to place the nodes within the
assigned region, which can be done using any network layout tech-
nique. Semantic Substrates [SA06,AS07], for example, place nodes
according to other attribute values, whereas Cerebral [BMGK08]

(a) (b)

Figure 6: Attribute faceting. (a) Nodes are faceted by node type or
a set attribute and placed in corresponding regions. The horizontal
position within the facets is driven by an attribute [SA06]. c© 2006
IEEE, reprinted with permission. (b) Nodes are faceted based on
a clustering algorithm. The clusters are arranged using a treemap
layout [RMS∗11]. c© 2011 IEEE, reprinted with permission.
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uses a layout optimized for topology. A series of other technique
use a linear layout [PvW08, SJUS08, PLS∗14], which is amenable
to attribute visualization.

Recommended Usage. Attribute-driven faceting is well suited for
networks with different node types or with an important categori-
cal or set-like attribute. Such faceting is especially useful when the
separation into groups and the study of the interaction within and
between the groups are the subject of the analysis, which is com-
monly the case in k-partite and layered networks (see Table 2). Due
to restrictions on the layout, it is slightly less scalable with respect
to the number of nodes and network density than node-link lay-
outs. Other attributes can be visualized independently of the basic
principle of faceting, so that the scalability with respect to other at-
tributes depends on these choices. Edge attributes are not supported
by faceting and have to rely on a secondary encoding. Neighbor-
hoods, paths, and clusters are not easily visible if they span different
facets. We recommend attribute faceting for cases where nodes can
be separated into groups easily and where these groups are central
to the analysis.

5.1.1.3. Attribute-Driven Positioning. Attribute-
driven positioning (fixed layouts) assigns node or
edge positions according to one or more attribute
values. Spatial networks, such as networks over-
laid on maps [vdEvW14, Guo09] (Figure 7(a)), are
the most common example of attribute-based node positioning.
However, attributes other than geographic coordinates have also
been used. In 1D, genomic coordinates are a common exam-
ple [KSB∗09, MMP09], as are networks with a time compo-
nent [DCW11], shown in Figure 7(c). Multiple nonspatial attributes
can be encoded in two dimensions [SA06, BCD∗10, VMCJ10]

(a) (b)

(c)

Figure 7: Attribute-driven node positioning. (a) Nodes are posi-
tioned according to their latitude and longitude on a map [Guo09].
c© 2009 IEEE, reprinted with permission. (b) Nodes are positioned

according to nonspatial attributes [BCD∗10]. c© 2010 John Wiley
and Sons, reprinted with permission. (c) Nodes are positioned in
1D, time in this case [DCW11]. Image courtesy of the authors.

(Figure 7(b)). This principle has also been extended to visual-
ize multiple attribute pairs [BCD∗10, VMCJ10] in a small mul-
tiple/scatterplot matrix display. The attributes used for position-
ing can also be derived from a larger attribute vector. For exam-
ple, Bonabeau [Bon02] uses self-organizing maps, and Doerk et
al. [DCW11] use dimensionality reduction based on attributes to
compute placement of the nodes in space.

Spatial positioning is also sometimes combined with an aggrega-
tion operation (see Section 5.4). For example, Wattenberg [Wat06]
leverages attribute-based positioning to generate an overview of an
aggregated network along two user-defined attributes.

Using spatial positioning for edges is less straightforward, as
they need to connect nodes at different positions. One approach
is edge bundling, which routes edges that are related according to
some metric of similarity in close proximity [Hol06, HvW09] (see
the recent survey by Llhuillier et al [LHT17] for details on edge
bundling). The similarity metric is frequently based on the topol-
ogy of the network [KRM∗17], so that edges that have a similar re-
gion of origin and destination are bundled together. Edge bundling
reduces clutter and makes it easier to detect connectivity patterns
in the network [PHT15]. A similarity metric can also consider at-
tributes of the edges [PHT15]. Similar edges are then bundled only
if they share directionality or specific attributes. Edge bundling
methods do not alter the endpoints of an edge, they only alter the
routing of the edge between source and target nodes [LHT17].

Figure 8 illustrates the usage of edge bundling in a dataset of
flight paths (edges) between hubs (nodes) in France [PHT15]. The
routing of similar edges based on their source and target, as well as
their direction attribute, simplifies the interpretation of flight paths
across the country.

Recommended Usage. Attribute-driven positioning is well suited
for cases where the value of a single node attribute or the relation-
ships between two node attributes are the most important feature
in a network dataset, but it does not lend itself well to visualiz-
ing the topology of the network. Even simple structures such as
neighborhoods can be difficult to spot. Complex structures such as
paths or clusters can be hidden completely (see Table 2). Unlike
attribute-driven faceting, the technique is well suited for quantita-
tive attributes. The technique works mostly for homogeneous net-

Figure 8: Attribute-driven edge positioning via edge bundling
[PHT15]. (a) Raw edges, colored according to directionality. (b)
Edges bundled while taking direction into account. c© 2015 IEEE,
reprinted with permission.
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works since it relies on common node attributes for positioning.
Due to the placement driven by attributes, nodes can occlude each
other (although jitter was suggested to address that [BCD∗10]), and
edge crossings are much more likely than, e.g., in a force-directed
layout. Hence, attribute-driven positioning is not well suited for
dense networks or for visualizing edge attributes. We recommend
attribute-driven positioning for smaller, sparse networks where re-
lationships between node attributes are paramount to the analysis
task, and topological features only provide context.

5.1.2. Tabular Layouts

Tabular layouts encompass approaches where nodes and/or links
are represented as columns and/or rows of a table. The most well-
known of these approaches is the adjacency matrix, but this cat-
egory also includes Quilts [BDF∗10] and BioFabric [Lon12]. A
beneficial property of all tabular layouts with respect to multivari-
ate networks analysis is that nodes, and in some cases edges, are
in dedicated rows or columns, which can also be used to visualize
attributes.

A
B

C

D

E

A B C D E5.1.2.1. Adjacency Matrices. Adjacency
matrices encode nodes as rows and columns,
whereas the presence/absence of an edge be-
tween two nodes is encoded in the cell where
the nodes rows and columns intersect. Matri-
ces work for both directed networks, in which
case the rows are the source of the edge and the columns the
targets (or vice versa), and undirected networks, in which case
the encoding is redundant above and below the diagonal of the
matrix. Matrices have both favorable and unfavorable properties
compared to node-link layouts when analyzing topological fea-
tures [GFC05, OJK18, OJK17]: matrices are widely acknowledged
to be well suited to analyze neighborhoods and clusters (given a
suitable matrix seriation) but perform poorly when analyzing paths.
For attribute visualization, adjacency matrices have favorable prop-
erties for both node and edge attribute visualization.

For node attributes, it is easy to juxtapose attribute visualiza-
tions with the rows or columns of the matrix [KLS∗17,YDGM17],
as shown in Figure 9(a). Attribute visualizations can be aligned in
a tabular layout so that comparisons between nodes on the same
scale are possible. Operations, such as sorting or filtering based on
attributes can also be integrated conveniently.

Edge attributes can be encoded in the matrix cells, with a wide
range of choices, similar in complexity and expressiveness to on-
node encoding in node-link diagrams. The simplest form, beyond
a presence/absence mark, is to use color saturation/luminance to
show a numerical attribute, such as an edge weight, or to use color
hue for a categorical value, such as an edge type [RMF12]. Al-
ternatives encodings include the size of a glyph such as a bar
or a circle [DHRL∗12]. Multiple attributes can be encoded with
more complicated glyphs [EDG∗08, ABHR∗13], as shown in Fig-
ures 9(b) and 9(c). However, the small space available for matrix
cells limits how much can be encoded.

One of the key factors influencing the efficacy of understanding
the topology of a network is its seriation, i.e., the ordering of the
rows and columns. There has been a lot of research on reordering

(a) (b)

(c)

Figure 9: Adjacency matrix approaches. (a) Connectivity Matrix
approach where cells represent total path counts between nodes
[KLS∗17]. Image courtesy of Ethan Kerzner. (b) Aggregated ma-
trix represented by an adjacency matrix where aggregated edge
attributes are displayed in the cells [EDG∗08]. c© 2008 IEEE,
reprinted with permission. (c) Comparison of on-edge encoding to
adjacency matrix edge attribute encodings [ABHR∗13]. c© 2013
ACM, reprinted with permission.

algorithms [BGJ01, DPS02, Lii10, DPS02, MML07, HF06, Fek15].
Different algorithms vary in terms of runtime performance and the
types of patterns emphasized [BBHR∗16]. Edge and node attributes
could conceivably be considered when calculating the distance ma-
trix underlying the seriation algorithms.

Recommended Usage. Adjacency matrices are one of the most
versatile approaches with regard to visualizing multiple attributes
for nodes and edges (see Table 2). Alper et al. [ABHR∗13] studied
the efficacy of edge-attribute encodings by comparing edge-weight
encodings on node-link diagrams to different edge-weight encod-
ings in the cells of adjacency matrices. They conclude that in-cell
encoding in adjacency matrices outperformed on-edge encoding on
node-link diagrams for effectively displaying edge weights for their
study subjects.

Adjacency matrices require quadratic screen space with respect
to the number of nodes; hence, the size of the network that can be
visualized without aggregation is limited. Matrices reserve space
for every possible edge, and, thus, dense and even completely con-
nected networks are an ideal fit for matrices. Another challenge of
matrices is the complexity of choosing the right reordering algo-
rithm, as different algorithms are best suited for revealing different
types of patterns. Matrices are well suited for tasks involving all
the topological structures we discuss, except for paths, assuming an
appropriate seriation method was applied. Overloaded approaches
such as visually superimposing the paths directly on the adjacency
matrix can aid in path-related tasks [SM07]. Trees and layered net-
works can technically be visualized with an adjacency matrix, but
the sparsity of these networks suggests that they are not a good fit.
Overall, we recommend adjacency matrices for smaller, complex
and dense networks with rich node and/or edge attributes, for all
tasks except for those involving paths.
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5.1.2.2. Quilts. A quilt is a tabular lay-
out optimized for layered networks [BW11].
Quilts are similar to an adjacency matrix in
that nodes are represented as either rows or
columns, and edges are shown in the cells
at the intersection of the source and target
nodes. The main difference between quilts and adjacency matrices
is that nodes are assumed to be partitioned into layers, and no links
exist within a given layer. Hence, nodes are not duplicated between
rows and columns. Figure 10(a) shows an illustration of quilts.
Quilts alternate rows and column-wise arrangement for nodes for
successive layers to optimize the use of space. This design works
for strictly layered networks, yet in practice, layered datasets of-
ten contain some links to nonadjacent layers, known as skip-links,
which are difficult to encode for layers separated by an odd number
of intermediate layers, as these layers have the same orientation.
Watson et al. [WBS∗08] address skip links by encoding the targets
of skip links using color and labels. An area of application where
quilts have been used is genealogies. GeneaQuilts [BDF∗10] treats
each generation as one layer, and the families founded by that gen-
eration as the successive layer.

Quilts have properties similar to matrices with respect to node
and edge attribute visualization. Node attribute visualizations can
be easily juxtaposed with nodes. For example, GeneaQuilts juxta-
poses labels and attributes for the sex of the nodes. Unlike in ma-
trices, nodes are either in rows or columns, and hence comparison
between node attributes cannot rely on an aligned scale. Edge at-
tributes in quilts can be visualized using the same methods as for
adjacency matrices.

Recommended Usage. Quilts are well suited for layered networks

(a)

(b)
Figure 10: The quilts technique. (a) Showing how a small layered
network (left) is represented using quilts (right). Links that connect
nodes in nonconsecutive layers are represented by colored cells
with black dots in them. (b) Simpson family as represented by a
quilt [BDF∗10]. c© 2010 IEEE, reprinted with permission.

or k-partite networks where all partitions have connections to at
most two layers. For these kinds of networks, quilts require less
screen-space than matrices and have similar favorable properties
in terms of attributes (see Table 2). Links between nonconsecutive
layers, however, can be problematic to integrate. Albeit the class of
networks suitable for quilts is small, they support all relevant tasks
on these well.

5.1.2.3. BioFabric. Biofabric is a tabular
layout that places each node in a row of the
table and draws edges between the nodes
in columns [Lon12]. BioFabric has, to our
knowledge, not been used to encode attributes, yet the layout of
both nodes and edges in unique rows or columns makes it suitable
to visualize both node and edge attributes by juxtapositoning at-
tribute visualizations, as for adjacency matrices, but in this case for
both edges and nodes.

Figure 11: BioFabric places nodes in rows and edges in
columns [Lon12]. Image courtesy of the author.

Recommended Usage. Biofabric is unique in that it can be used to
visualize rich edge attributes and node attributes at the same time,
while also making it possible to align these attribute visualizations
on the same scale. It therefore has the potential to visualize large
attribute datasets and also heterogeneous node types. Biofabric is
about as scalable as an adjacency matrix in terms of the number of
nodes, but less scalable with respect to the density of the network.
Biofabric is not well studied with respect to users’ ability to detect
topological features, but it is likely slightly more difficult to dis-
covering neighbors and clusters in Biofabric compared to matrices.
Overall, we recommend BioFabric for small, sparse networks with
many nodes and rich edge attributes.

5.1.3. Implicit Tree Layouts

Implicit hierarchical layouts are techniques for visualizing trees
that rely on node positioning to encode edges. Well-known exam-
ples are TreeMaps [JS91, vWvdW99], SunBursts [AH98, SZ00],
or Icicle Plots [KL83], but many variations are possible [SHS11].
These layouts excel at visualizing a numerical node attribute as
node size, and an additional node attribute as color, but are usually
not amenable to encode multiple attributes simultaneously. Since
edges are only implicitly encoded, edge attributes cannot be shown.

We distinguish between two types of implicit hierarchical lay-
outs: those that show the whole tree, i.e., the inner nodes and the
leaves, and those that show only the leaves of the tree.

c© 2019 The Author(s)
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5.1.3.1. Implicit Tree Layouts for Inner Nodes
and Leaves. Implicit layouts such as Sun-
burst [AH98, SZ00] and Icicle Plots [KL83,
BWB∗14] show both the backbone of the tree
and the leaves. The hierarchy is encoded by adja-
cency [SHS11]: a child node is adjacent to its root. The root-child
relationship is encoded by the order (inner-to-outer for Sunburst,
for example). One numerical attribute is used to encode a size pa-
rameter, such as the angle in Sunburst, and the width in Icicle Plots.
A typical example used to demonstrate implicit layouts are file sys-
tems, where a root folder contains (sub)folders and (nested) files.
Files, the leaves, are assigned a width or angle corresponding to
their size. Folders are sized according to the sum of the sizes of
their subfolders and files. These techniques assume that the size of
the primary attribute in the intermediate nodes corresponds to the
sum of the size of their leaves, as this is necessary to ensure proper
nesting in the layout. Both, intermediate nodes and leaves can use
color-coding for a secondary attribute.

(a)

(b)

Figure 12: Implicit tree layouts for inner nodes and leaves. (a)
The Sunburst layout encodes tree topology by adjacency and a
primary (numerical) attribute by angle, a secondary attribute by
color [SZ00]. Image courtesy of Alexander Lex. (b) Icicle Plots
also encode topology by adjacency, a primary numerical attribute
by node size, and a secondary attribute by color [BWB∗14]. Image
courtesy of the authors.

Recommended Usage. Implicit tree layouts for inner nodes and
leaves are well suited for tree datasets with numerical attributes
at the leaves and potentially a secondary attribute at inner nodes
and/or leaves. In contrast to leaves-only layouts, these layouts sup-
port finding neighbors and paths between nodes well (see Table 2).
The layouts scale well with regard to the number of nodes; how-
ever, deep hierarchies tend to use a lot of space. Various intuitive
interactions are available, such as successively revealing leaves on
demand, to deal with deeper trees. Overall, we recommend implicit
tree layouts for inner nodes and leaves for tree datasets where one
numerical leaf attribute is dominant, and the tree topology plays an
important role.

5.1.3.2. Leaf-Centric Implicit Tree Layouts.
Leaf-centric layouts are those that only or predomi-
nantly allocate screen space for the leaves of a mul-
tivariate tree and encode the hierarchy by inclu-
sion/nesting [SHS11]. The classical example of this type of lay-
out is the Treemap, originally proposed by Johnson and Shneider-
man [JS91]. Treemaps use the size of a shape to represent a numer-
ical attribute of a leaf node, as shown in Figure 13(a). The leaves
belonging to one parent are arranged spatially so that their parent
is implicitly represented by a discernible shape, usually a rectan-
gle. Variations of Treemap algorithms exist to either represent only
inner nodes implicitly by the arrangement of the nodes, or to draw
a border outline for inner nodes. A series of different layout algo-
rithms has been developed to improve the readability of the size
of nodes and of the topology [BHvW00, BD05]. A secondary at-
tribute can be encoded as color hue or value/saturation, but other
encodings also exist, including glyphs [TS07] or approximate po-
sition [SDW09]. Depending on whether inner nodes are shown or
not, color or labels can be used to encode an attribute for them.
However, in practice, inner nodes are assigned little space, often
only a border, making salient encoding of attributes difficult.

(a)

(b)

Figure 13: Treemap examples. (a) A Treemap layout showing
housing data for different boroughs in London. Attributes are en-
coded by size, color, labels, and approximate position [SDW09].
c© 2009 IEEE, reprinted with permission. (b) A voronoi Treemap

with thousands of leaves and explicit borders to indicate inner
nodes [BD05]. c© 2005 IEEE, reprinted with permission.
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Recommended Usage. Leaf-centric implicit layouts are well
suited for analyzing trees with an important numerical attribute on
the leaves. Because this layout assigns most, if not all, display space
to the leaves of a tree, and the hierarchical structure groups small
elements, it is more scalable than implicit layouts that also visual-
ize inner nodes (see Table 2). Treemaps have been used to visualize
up to a million items [FP02]. Path-related tasks can be difficult be-
cause the tree structure is often only implied.

5.2. View Operations

View operations combine existing techniques using several views,
a technique commonly referred to as multiple coordinated views
(MCVs) [Rob00, WBWK00]. These approaches use separate, ded-
icated views for the attributes and the topology. Common exam-
ples are combinations of node-link diagrams with multidimensional
data visualization techniques [SHQ08,LSKS10] or providing a de-
tail view for individual nodes [HB05, TS13].

We distinguish three types of MCVs: juxtaposed, integrated, and
overloaded. The juxtaposed and overloaded categories are adopted
from the design space of composite visualizations described by
Javed and Elmqvist [JE12]. We consider their category of nested
views as a variant of our on-node/on-edge encoding category within
layouts. We introduce the separate category “integrated”, which
could be treated as a subtype of juxtaposed, yet is more tightly cou-
pled than typical juxtaposed views, since matches between nodes
or edges and their attributes are encoded by their alignment.

5.2.1. Juxtaposed Views

In the context of MVN visualization, jux-
taposed views separate the topology visual-
ization from the attribute visualization into
two or more views. Relationships between the
topology and the attributes are not explicitly encoded and typi-
cally are revealed through interaction by linking and brushing. The
key benefit of juxtaposed views is that each view can do what
it does best: visualize either topology or multivariate data. An-
other benefit is that standard techniques can be employed. Jux-
taposed views are widely used in the MVN visualization litera-
ture [AvH04,HB05,SGL08,Guo09,BCD∗10,VMCJ10,KAW∗14].
Juxtaposed views are also one of the few MVN techniques, other
than on-node encoding, supported by the major network visual-
ization tools Cytoscape [SOR∗11] and Gephi [BHJ09]. Plaisant et
al. [PSM98] showed that while a well-designed juxtaposed layout
increases user performance, designing effective juxtaposed views
can be a challenging task. Figure 14(a) shows a juxtaposition of
a geospatial node-link view to encode the topology of the net-
work, with a parallel coordinates plot to encode attributes [Guo09].
VIGOR [PHE∗18], shown in Figure14(b), uses juxtaposition to
show two topology-related views and two attribute views.

Recommend Usage. Juxtaposed MCVs are recommended for large
networks and/or very large numbers or heterogeneous types of node
and link attributes (see Table 2). Since each view can optimize for
either topology or attributes without concern for the other, the in-
dependent analysis of attributes or topology is generally well sup-
ported. Linking and brushing can reintroduce the connection, but

(a)

(b)

Figure 14: Examples of juxtaposed views. (a) A geospatial node-
link diagram juxtaposed with two attribute views: a parallel coor-
dinates plot and a self-organizing map [Guo09]. c© 2009 IEEE,
reprinted with permission. (b) VIGOR [PHE∗18] displays two
views for the topology of the network along with a juxtaposed at-
tribute view that shows attribute-specific distributions across the
network. c© 2018 IEEE, reprinted with permission.

only for selected items, and even then matches between specific
items in a large brushed set are difficult to identify. Consequently,
juxtaposed views do not support the tasks on our topological struc-
tures well.

5.2.2. Integrated Views

Unlike juxtaposed views, in integrated views the
topology and the attribute visualizations are laid
out with the other view in mind. Typically, inte-
grated MCVs have an unambiguous spatial relationship between
the topological features and their attributes. This spatial relation-
ship is easily achieved in tabular views, such as adjacency matri-
ces [KLS∗17]: since nodes are in rows and columns, tabular at-
tribute visualizations can be aligned to the rows or columns (see
Figure 9(a)). Other examples are linear or circular genome views,
where edges between genomic regions indicate a variety of rela-
tionships [KSB∗09, MMP09] (Figure 15(b)).

However, integrated views can also use a node-link layout for
visualizing the network topology [MWS∗10, PLS∗12, DHRL∗12,
PLS∗13, PGS∗16, NSL19]. These approaches use a variety of
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(a) Pathline (b)

Figure 15: Integrated Views. (a) Pathline introduces dedicated en-
codings for cycles and branches to linearize a network and juxta-
pose it with attribute visualizations [MWS∗10]. Image courtesy of
Miriah Meyer. (b) Circos plot of structural genome variations from
sequencing data [NdTS14]. Figure licensed under CC BY 4.0.

strategies to make sure attributes and nodes can be juxtaposed. For
example, simple networks can be linearized with special encod-
ings [MWS∗10] (shown in Figure 15(a)). For more complex net-
works, one strategy is to ask users to query for paths and integrate
attribute views only with these paths [PLS∗12, PLS∗13, PGS∗16],
or use interactively extracted spanning trees [NSL19] (see Fig-
ure 20).

Integrated views also work well for trees represented as node
link diagrams. These views are commonly used for leaf-only at-
tributes, for example in heat maps juxtaposed with a dendro-
gram [ESBB98, SS02, LNR∗08], but integrated layouts that also
visualize intermediate nodes also exist [NGCL19].

Recommended Usage. Integrated view approaches are exception-
ally good at integrating complex attribute vectors of various types
with topology, if the topology can be represented sensibly in a lin-
ear layout. Integration is easily achieved for tabular approaches
such as adjacency matrices, and for specific types of datasets,
such as trees and datasets with a natural linear ordering, such as
when using genome coordinates. For general networks and node
link approaches, integrated views can usually not visualize com-
plex topology, but they can be very useful if the network can be
linearized, e.g., using spanning trees or user-selected paths. Com-
pared to juxtaposed views, integrated views excel at tasks related to
paths, neighborhoods, and when used with matrices, clusters (see
Table 2). One drawback of integrated views is scalability with re-
spect to the number of nodes and density.

5.2.3. Overloaded Views

Overloaded views are those that display two encod-
ings on top of each other by encoding shared proper-
ties of nodes by overlaying visual features on the whole
view. A classical example, shown in Figure 16(a), is to
show a hull around a cluster of nodes (as opposed to coloring the
nodes by their cluster membership, which would be on-node en-
coding). Set memberships are also commonly encoded in a similar
way [CPC09,GHK10,ARRC11,HB05,BCD∗10,SSK14]. Alterna-
tives to the predominant “hull” approach are curves [ARRC11], as
seen in Figure 16(b).

Recommended Usage. Overloaded views are well suited for dis-
playing sets, groupings, or clusters on top of an existing representa-

(a)

(b)

Figure 16: Overloaded Views. (a) Group membership encoded
on top of the network topology [GHK10]. Image courtesy of S.
Kobourov. (b) Group membership encoded as curves [ARRC11].
c© 2011 IEEE, reprinted with permission.

tion of the topology of the network. Overloading works best if the
grouped elements are also in spatial proximity in the underlying
representation, which is commonly the case when visualizing clus-
ter membership. The major limitation of this approach is the limited
number of concurrent attributes it supports. While encoding one or
two attributes simultaneously is possible, encoding more than two
attributes with overloading can lead to clutter (see Table 2). We
hence recommend overloading for the particular use case of visu-
alizing set-memberships or clusters on top of node-link diagrams.

5.3. Layout Operations

Layout operations combine layouts to create new multivariate net-
work representations. They are distinct from view operations be-
cause they are either integrated in a single view or show different
facets of the same view using the same layout.

5.3.1. Small Multiples

Small multiples show multiple instances of the same
layout under different conditions. Small multiples are
commonly used to encode a different attribute for each
of the multiple views using on-node/on-edge encoding
in node link diagrams [BMGK08, ?, Guo09, vdEvW13] (see Fig-
ure 17(a)) or adjacency matrices [BPF14] (Figure 17(b)). Individ-
ual views in small multiples can be difficult to see in detail due to
their size. A common strategy to avoid this problem is to combine
the small multiples display with a large focus view [BMGK08, ?].

Recommended Usage. Small multiples are well suited for com-
paring several attributes of a small network. The use of a com-
mon layout makes it easy to look for attribute variations in specific
topological features, such as clusters or paths. A disadvantage of
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(a)

(b)

Figure 17: Small multiples. (a) Small multiples showing eight ex-
perimental conditions using on-node encoding (left) with a focus
view showing the network enlarged (right) [BMGK08]. c© 2008
IEEE, reprinted with permission. (b) Small multiples of a time-
varying multivariate network in an adjacency matrix [BPF14]. Im-
age courtesy of the authors.

small multiples is scalability: by rendering a network layout multi-
ple times, a lot of screen real estate is used even for small networks.
Also, attribute comparison between different views can be difficult
and require memorization.

5.3.2. Hybrid Layouts

Hybrid layouts combined multiple approaches to
laying out network topology. Unlike the techniques
using view operations, these layouts are character-
ized by combining different encodings for differ-
ent portions of the topology of a network. Hybrid
approaches are used to either represent networks that have dif-
ferent topological characteristics in different portions of the net-
work [HFM07], or to highlight a certain topological aspect of
the graph, such as a hierarchy embedded in a network [FWD∗03,
AMA08].

NodeTrix [HFM07] is a hybrid node-link/matrix approach (Fig-
ure 18(a)). The idea is to use matrices for dense subsets of the net-
work but node-link layouts to connect these subsets or connect to

(a) (b)

Figure 18: Hybrid approaches. (a) Hybrid node-link layout and
adjacency matrices [HFM07]. c© 2007 IEEE, reprinted with per-
mission. (b) Hybrid of a circular Treemap and a node-link lay-
out [AMA08]. c© 2008 IEEE, reprinted with permission.

outliers. Various techniques combine a Treemap encoding for the
hierarchical structure of the network with other network encod-
ings [ZMC05, AMA08] (see Figure 18(b)).

Hybrid techniques can also be used to encode multivariate at-
tributes. For example, NodeTrix [HBF08] supports on-node encod-
ing for the node-link/matrix hybrid.

Recommended Usage. Hybrid layouts can be useful for networks
with an irregular degree distribution, such as small-world networks.
However, the benefits of using an optimal layout for each part of
the network has to be weighed against the cost associated with un-
derstanding and reading a visualization that combines multiple vi-
sualization techniques. Hybrid techniques are not well suited for
visualizing multivariate networks, as also encoding attributes in-
creases the complexity of the visualization technique further, and
a different encoding schema likely has to be used for each of the
techniques employed.

5.4. Data Operations

Multivariate network visualization techniques often rely on data
wrangling operations invoked either as a preprocessing step or in-
teractively during the analysis. Here we introduce five types of data
wrangling operations that we frequently encountered in the sur-
veyed papers. However, many other operations are conceivable. For
a more comprehensive discussion of network wrangling operations,
refer to the work by Bigelow et al. [BNML18].

5.4.1. Aggregating Nodes/Edges

Aggregating nodes and edges is a common strategy
to increase the scalability of a visualization technique
and to summarize nodes and edges with shared char-
acteristic. Aggregation also allows the visualization to
more easily support overview tasks on the network. Techniques
such as PivotGraph [Wat06], Zame [EDG∗08], and Motif Simplica-
tions [DS13] employ aggregation strategies to succinctly visualize
important properties of large networks.

Aggregation can be based on topological features, such as clus-
ters or motifs [DS13], but also be driven by network attributes.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



C. Nobre, M. Meyer, M. Streit, & A. Lex / The State of the Art in Visualizing Multivariate Networks

(a)

(b)

Figure 19: Aggregation operations. (a) Original node-link network
on the left, a network aggregated based on attributes on the right.
Figure based on PivotGraph [Wat06]. (b) Geospatial network on
the left, an aggregated version with on-node encoding on the right
[vdEvW14]. c© 2014 IEEE, reprinted with permission.

PivotGraph, for example, aggregates the nodes by a categorical at-
tribute (node type) and then lays out the aggregate nodes accord-
ing to their attribute value on a grid-like node-link layout (Fig-
ure 19(a)). Van den Elzen and van Wijk [vdEvW14] aggregate
nodes based on an attribute, such as a geographic region, and then
display the aggregated nodes, their attribute properties, and the
relationships within and between the aggregates (Figure 19(b)).
Zame [EDG∗08] aggregates the nodes as well as the attributes,
which are then displayed in an adjacency matrix. An interactive
approach to aggregation is used by GraphCharter [TS13], which
allows a user to select an attribute of interest and generates an
aggregate node with all unique values for that attribute. Graffin-
ity [KLS∗17] introduces a novel approach to connectivity explo-
ration by aggregating certain paths that connect pairs of nodes in
the network.

Recommended Usage. Aggregation is a key operation to ensure
the scalability of MVN visualization and is especially useful when
high-level overviews are desired. Aggregation by attributes can re-
veal interesting relationships between attribute properties and topo-
logical features. Aggregation can be achieved in a preprocessing
step, yet it is most powerful when invoked interactively.

5.4.2. Querying and Filtering

Filtering a network or querying for a subnetwork allows
users to focus on nodes and edges of interest, reduc-
ing visual clutter from other nodes and edges. Query-
ing or filtering enables analysts to work with much
larger networks than can be reasonably displayed otherwise. Fil-

Figure 20: A query-first approach to network visualization: visu-
alizing a spanning tree originating from a node of interest, com-
bined with a degree-of-interest function to manage large node
sets [NSL19]. Image courtesy of the authors.

ters and queries can be defined based on topological structures,
attributes, or combinations of both [KZA10, PHE∗18]. Querying
first and expanding a network from a seed is a hallmark approach
of many large graph MVN visualization approaches [LPB∗06,
vHP09, PGS∗16, NSL19]. These approaches are often combined
with degree-of-interest functions [Fur86, HC04] to further manage
network size (see Figure 20).

Filtering edges is a valuable operation, especially in dense net-
works. EdgeMaps [DCW11], for example, reveals edges only for
selected nodes, whereas the technique by van den Elzen and van
Wijk [vdEvW14] displays only edges that connect selected nodes,
as shown in Figure 19(b).

Recommended Usage. Although interactive filtering based on
topological and attribute features can and should be available in
every MVN visualization approach, query-first strategies follow a
different analysis paradigm. The benefit of the latter is that very
large networks that cannot be reasonably visualized at once can be
investigated with this approach. We recommend a query-first strat-
egy for cases where analysis questions target specific nodes and
relationships, rather than overall network patterns.

5.4.3. Deriving New Attributes

Node and edge attributes can be derived either from
topological features (e.g., node degree, clusters) or from
other attributes. Derived measures can be helpful in,
e.g., finding the most connected node in a network or quickly iden-
tifying clusters of interest. Once these derived attributes have been
computed, they can be visualized just as other attributes. Examples
of techniques that rely on derived attributes are Juniper [NSL19],
which visualizes node degrees for various subsets (Figure 20), and
EdgeMaps [DCW11], which uses a precomputed similarity metric
to position the nodes in an attribute-driven node link view.

Recommended Usage. Attribute derivation can be useful to answer
specific analysis questions. Derivations that are local to a node,
such as determining degree or deriving an attribute based on exist-
ing attributes, are easy to realize. However, derivations that rely on
topological features, such as clustering, or deriving attributes based
on connectivity patterns, require more sophisticated methods.
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5.4.4. Clustering

Network clustering is used to group nodes based on
similar features. In most cases, clustering of networks
is based on network topology. Social network analy-
sis, for example, often employs hierarchical cluster-
ing in order to find community structures in the network. Cluster-
ing can be used to highlight groups on existing networks, i.e., to
create a derived attribute, or as a precursory step to aggregation.
Techniques such as Zame [EDG∗08], Honeycomb [vHSD∗09],
and TreeMatrix [RMF12] all rely on hierarchical clustering on
the network before visualization. Zame and Honeycomb visual-
ize the clustered network with zoomable adjacency matrices, while
TreeMatrix displays the results in a hybrid approach using both
Treemaps and adjacency matrices.

Hierarchical algorithms applied to tabular datasets also generate
trees encoding the cluster similarity, which is a frequent data type
in multivariate tree visualization [ESBB98, SS02].

Recommended Usage. Clustering can be used to create derived at-
tributes, highlighting topological features, to improve layouts, e.g.,
in matrix seriation or to create groups for faceted layouts, or as a
precursor step to aggregation. It is a widely used and versatile op-
eration in multivariate network visualization.

5.4.5. Converting Attributes/Edge to Nodes

Converting attributes or edges to nodes is a useful op-
eration in various scenarios. Many visualization tech-
niques are better suited to visualize node attributes than
edge attributes, hence converting an edge to a node with new edges
connecting the original nodes is a convenient way to visualize edge
attributes [PvW08]. Making an attribute into a node can aid in the
analysis of which nodes share that specific attribute [JKZ13].

Recommended Usage. Converting attributes or edges to nodes
is a powerful operation in the right circumstances but is also a
significant reshaping operation, which risks confusing analysts.
Hence, it should be applied with care. We believe that it is most
useful as a preprocessing operation in dedicated graph wrangling
tools [BNML18].

6. Methodology

This survey is focused on techniques for visualizing multivariate
networks. We analyzed these techniques through the study of a cor-
pus of literature composed of two types of papers: those that pro-
pose a specific encoding to enable visualization of multivariate net-
works, which we refer to as technique papers; and those that focus
on evaluation and application of these techniques.

We developed a typology of MVN visualization techniques
through our analysis of the corpus, following the analysis method
used by Vehlow et al. [VBW15]. After outlining the scope of tech-
niques we consider, our core analysis activities were to compile
a corpus of relevant papers and code each paper according to its
described technique, application area, and evaluation method. This
section describes our method in detail and provides a list of the
categories used to derive the proposed taxonomy.

6.1. Scope

We limit ourselves to techniques that specifically aim to visualize
multivariate networks. Techniques that focus on visualizing either
only the network topology or attributes are not within the scope
for this survey. We consider techniques for all network types, in-
cluding general (complex) networks, layered networks, k/bi-partite
networks, and trees.

6.2. Corpus

We identified candidate papers for the corpus using three sources:
(1) all papers published in the VIS and EuroVis conference pro-
ceedings since their respective inceptions; (2) papers in the IEEE
Digital Library identified with a search for the keywords network,
graph, visualization, multivariate, attributes, faceted, and multidi-
mensional; and (3) papers that cite, or are cited by, the papers iden-
tified in steps 1 and 2, according to Google Scholar. For each of
these candidate papers, we manually surveyed its title, keywords,
and abstract, and included the paper in the corpus if it proposed
a technique, evaluation, or application for visualizing multivariate
networks. This process resulted in a corpus of 210 papers published
between 1991 and 2018.

6.3. Coding

The first author completed two rounds of coding on the corpus us-
ing the MAXQDA Qualitative Data Analysis Software [VER18]. In
the first round, we coded papers for their application area and eval-
uation method, and in the second round we focused on coding the
visualization techniques. The application areas were coded using
an open-coding approach. The evaluation methods, however, were
coded with a closed set derived from the seven guiding scenarios
identified by Lam et al. [LBI∗11]. This first coding pass allowed
us to review the entire body of work and prepared us for the sec-
ond round of exclusively coding the visualization technique used in
each paper.

The aim of the second round of coding was to identify the spe-
cific visual encodings employed by each multivariate network tech-
nique. We used the open coding method described by Beck et
al. [BBDW14], and coded papers for the specific visual encodings
used to visualize network structure and associated attributes.

In the second round, we did not code the entire corpus, instead
stopping when we reached saturation [OK14]: i.e., we no longer
encountered new concepts in any of the categories we were coding
for. More specifically, the categories we coded for were visualiza-
tion techniques and encoding methods. We refer to techniques as
a visualization idiom such as node-link diagram, adjacency matrix,
tree-like layout, and others. Nuances of the technique used were
also captured, including encoding methods such as the use of color,
a particular network layout algorithm, and ordering for matrices.

In addition to textual codes, the first author also developed a set
of visual codes that summarized the encountered approaches to en-
coding both the topology and the attributes of a network. These
representations did not aim to faithfully reproduce every nuance of
the techniques, but instead supplemented the assigned textual codes
with a visual summary of each technique. The need for visual codes
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arose from the limited ability of textual codes to efficiently capture
the ways in which different techniques encoded the topology and
the attributes of a network. As a result, the visual codes emerged as
a way to capture these aspects and were critical in our analysis and
in the development of the multivariate network typology.

The first author categorized the textual and visual codes into 33
distinct techniques for visualizing multivariate networks, grouped
by their underlying layout approach: node-link, tabular, implicit,
or coordinated views. The first author and one of the senior au-
thors then performed an analysis of these techniques, aided by
feedback from a second senior author. This analysis revealed core
common encodings among a set of techniques. For example, al-
though PivotGraph [Wat06], GraphDice [BCD∗10], and FlowViz-
Menu [VMCJ10] appear to have unique approaches, they build on
a common backbone of positioning the nodes according to attribute
values. Similarly, Circos plots [KSB∗09] and force-directed layouts
share the basics of node-link layouts with edges connecting items.

This analysis process provided us with two insights regarding
the similarities and differences of the techniques. First, we found
a useful distinction between the layout technique used by an ap-
proach, and the data transformations applied to the network prior
to visualization. The second insight is that complex layouts are of-
ten the result of combining two or more core layouts into a single
design. Guided by these insights, we used the technique analysis
to develop a typology with four dimensions: layouts, view opera-
tions, layout operations, and data operations. The layouts category
includes the eight core layout approaches observed in the literature
(Figure 1). View operations are those that combine the basic lay-
outs into multiple coordinated views. Layout operations refers to
the process of either multiplying a given layout or combining com-
ponents of two or more layouts into a hybrid layout, such as the
NodeTrix design [HFM07]. The last dimension, data operations,
encompasses any data processing that is done to the data prior to
visualization, such as aggregation and computing new attributes.
All four dimensions are discussed in more detail in Section 5.

6.4. Developing the Numerical Guidelines

The process of scoring the techniques (see Table 2) for how well
they support certain data types and tasks was done with a ‘peer
review’-like system among all four authors of the paper. The first
phase involved independent scoring by each author for each of the
techniques along the 20 dimensions. Once all authors submitted
their scores, each author identified their outlier scores and wrote a
short justification for that score or modified the score when a mis-
take was made. A discussion phase allowed us to reach a consensus
score for every combination in the table.

The rating of techniques that fall within the view operations,
such as overlays and juxtaposed views, required some assumptions
in order to grade them consistently across authors. For example,
when rating juxtaposed views, we considered an optimized encod-
ing for the topology and attributes in order to focus the score on the
juxtaposed aspect of this technique, and not on the choice of layout
for the topology or the attributes. The same applied to the overlay
category, where the score was given to account for the overlaid as-
pect of the views, regardless of the specific layout technique used
for each component.

7. Applications

MVNs are a prevalent data type in various areas. Our corpus
of papers spans applications in several domains, including digi-
tal humanities [MLCM16], oceanography [NL15], system analy-
sis [PvW08], and engineering [SIB∗11]. The most common appli-
cation areas we observed were those of social network analysis,
biological applications, and software engineering. We discuss the
latter three areas below and give a brief overview of others. We do
not, however, claim an exhaustive review of application areas since
the range of journals and conferences where application papers can
be published is too broad for the scope of this survey. A survey of
application areas for MVNs, also focusing on social networks, bi-
ology, and software engineering, can be found in the book edited
by Kerren et al. [KPW14].

7.1. Social Network Analysis

Social networks are a popular and widely available source of data.
Social networks are defined as a network whose vertices are so-
cial entities such as people or organizations, with edges captur-
ing relationships between them. The field of social network anal-
ysis (SNA) is concerned with finding structural properties in the
network and analyzing the associated attributes of the nodes and
edges [WF94,Sco17]. Social networks often contain a multitude of
attributes on both nodes and edges. This large number of node and
edge attributes represents one of the major challenges with visual-
izing social networks. Additional attributes are frequently derived
using SNA algorithms, which compute additional topology-related
attributes such as degree, centrality, and clustering coefficients.

Visual analytics systems in this area can leverage multiple co-
ordinated views, one for each aspect of the network. Since so-
cial networks are commonly categorized as a small world net-
work [Sco17], several systems in this field use adjacency matri-
ces for their ability to support dense and highly connected por-
tions of the network [HF07, HF06, vHSD∗09, YEL10]. Examples
of such approaches include the work by Henry et al. in both
MatLink [HF07] and MatrixExplorer [HF06], which use adjacency
matrices in either hybrid or juxtaposed MCV layouts. MatLink
leverages an overloaded node-link and matrix layout to address
the tradeoffs between using these two opposing layouts for locally
dense structures such as those found in social networks. Their over-
loaded layout consists of an adjacency matrix with edges connect-
ing the nodes overlaid on top to allow for easier path following.
This modification is particularly useful in addressing path-related
topology tasks, a shortcoming of tabular approaches.

Similar to MatLink, NodeTrix [HFM07] leverages two topology
encodings, but in a hybrid layout. Their design displays the network
with a node-link layout while replacing dense and highly connected
areas with embedded adjacency matrices. NodeTrix also allows the
user to encode network attributes for both nodes and edges using
the following visual channels: color, transparency, shape size, filled
area of the shape, border color, width, and labels.

Despite the prevalence of adjacency matrices for SNA visu-
alization, several MVN approaches use node-link diagrams to
represent the topology of the network [HB05, VD04, BCD∗10].
GraphDice [BCD∗10] displays a grid of small multiples where each
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multiple contains an attribute-driven node-link with two attributes,
thereby giving the user an overview of how several attributes vary
throughout the network. Vizster [HB05] displays a node-link view
for the topology of the network, linked with a juxtaposed attribute
panel that shows details on demand for nodes of interest.

Combining multiple ways of encoding attributes in a single view
can also be effective, an example of which can be found in the paper
by Ghani et al. [GKL∗13]. The system uses coordinated views, one
of which is an instance of parallel node link bands. This view lever-
ages attributes in three ways: a faceted node-link diagram partitions
the nodes into bands according to their attribute values for cate-
gories of interest; within each band, the user can order the nodes
according to either node or edge attributes; and on-node encoding
is used to represent an additional attribute, such as the previously
computed degree centrality of each node.

7.2. Biological Applications

Biological networks are another common area of applications for
MVN visualizations. Networks in this space are most often char-
acterized by nodes and edges with complex attributes, with several
examples in fields such as genetics, cancer research, and systems
biology.

Unlike the prevalence of adjacency matrices in social network
visualizations, MVNs in biological applications rely heavily on
node-link layouts [OFH∗11,GOB∗10,NGCL19,LPK∗13,PLS∗12].
These layouts are often optimized for displaying paths, since sev-
eral tasks in this area relate to understanding how attributes vary
along biologically meaningful cascades. As a result, work such
as that done by Schreiber et al. [SDMW09] and Karp and Pa-
ley [KP94] focus exclusively on providing layout algorithms for
node-link diagrams of biological networks that focus on displaying
paths in an intuitive manner. These optimized layouts are partic-
ularly useful for MVN tasks that target either topology-driven or
attribute exploration of biological pathways.

Techniques that focus on path-related tasks include En-
tourage [LPK∗13], Pathline [MWS∗10], Pathfinder [PGS∗16], and
Enroute [PLS∗12]. Entourage and Enroute allow the user to high-
light a path of interest in a network, which is then juxtaposed with
an attribute view to create a single integrated view. In a similar
vein, Pathline linearizes a pathway network, which is then juxta-
posed with an attribute table.

In a survey of existing techniques for visualizing omics data in
systems biology, Gehlenborg et al. [GOB∗10] highlight the preva-
lent use of node-link diagrams, often with on-node encoding or
attribute-driven layouts. Among the examples given in their sur-
vey is Cerebral [BMGK08], which uses both, small multiples and
multiple coordinated views to display the topology and attributes of
the network. The node-link view facets the nodes according to their
locations in the cell and is linked to a small multiples view and a
parallel coordinate view to display the associated attributes. In Lin-
eage [NGCL19], Nobre et al. linearize a node-link representation
of genealogies and juxtapose an attribute table to create a single
integrated view of the topology and attributes of the network.

New et al. describe an example of linked views that includes an

adjacency matrix instead of the more commonly used node-link di-
agram [NKHC08]. The authors introduce a tilted adjacency matrix
that permutes rows and columns of a matrix in such a way as to
cluster nonzero elements in blocks along the diagonal.

7.3. Software Engineering

Visualization of MVNs in software engineering is part of the
broader area of software visualization [Die07]. Software visualiza-
tion refers to visual depictions of any component of the software
lifecycle, from the source code itself to the associated documenta-
tion, mental models, and output data [DT14]. The survey by Diehl
and Telea [DT14] gives an overview of multivariate network visu-
alization as applied to software engineering.

Within the context of multivariate networks, software visualiza-
tion often models networks with nodes representing entities such
as files, classes, functions, or other components of software. Edges
encode the relationships between these entities and can either repre-
sent a hierarchical relationship, such as files in a folder or functions
in a class, or simply reflect the association between nodes, such as
function calls or data flow between nodes [DT14]. Attributes can
be diverse and include computed software metrics such as lines of
codes, numbers of classes, number of calls, or runtime in a specific
module or function, which make up the multivariate node and edge
attributes of these networks [JDK10].

Similar to MVNs in the field of biology, networks in software
engineering are often very large and contain several attributes, and
therefore requires particular attention to scalability [DT14]. An-
other defining characteristic of networks in this field is the large
variety of attribute types, since nodes and edges can represent di-
verse entities software components, data, people, files, etc.

Visualizing software engineering data has been
done in a myriad of ways including with UML dia-
grams [SW05], treemaps [RVET14], tabular visualiza-
tions [ESS92], icicle plots [CCeT∗12], and multiple coordinated
views [CCeT∗12, RVET14]. Adjacency matrices, though less
common, have been used to compare the hierarchies of two
different systems [BD13].

UML diagrams are node-link layouts with relevant attributes
encoded directly on the node marks in the form of text, glyphs,
or small embedded visualizations. The often hierarchical nature
of structure data is well suited to the combined use of node-
link layout and overloading techniques, an approach optimized to
encode group membership or hierarchical relations between ele-
ments [BT09].

Treemaps are often used to convey the hierarchical nature of the
data, e.g., from packages to classes, to functions, to lower-level
control structures. The size of the node represents attributes such
as the lines of code underlying the structure. Other attributes in
treemaps are usually encoded using color on the treemap nodes,
but 3D objects have also been used [WL07].

Another network datatype in the context of software engineer-
ing is versioning data. Visualization approaches are used to track
the evolution of software components (the nodes) between differ-
ent versions [TA08].
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7.4. Other Application Areas

Other areas where MVN visualization techniques are used include
transportation networks, communication networks, and security.

Transportation Networks. In transportation networks, nodes
often represent locations, such as countries, cities, or intersections,
and edges represent either connectivity between these nodes (roads
of flight routes), or actual movement of people or goods between
the nodes. Node attributes are commonly properties of the loca-
tions, such as the number of inhabitants of a city, edge attributes
are frequently distance, travel time, or number of people travel-
ing between locations. Edge attributes are typically encoded us-
ing color [HTC09] Due to their geospatial nature, transportation
networks are often visualized on maps in the form of node-link
diagrams, resulting in a fixed layout of the nodes. This fixed lay-
out exacerbates the problem of edge clutter. Edge bundling tech-
niques can improve readability by aggregating edges with common
sources and targets, thus making higher-level flow patterns visi-
ble [PHT15]. By aggregating areas, it is possible to reduce the scale
of the network and display sophisticated visualizations embedded
on the nodes [vdEvW14]. Certain transportation networks, such as
subway maps, often do not use precise geolocations and instead
preserve only approximate positions and the relative ordering of
nodes [Wol07]. An example of attribute-driven positioning used in
transportation networks are “isotime flow maps”, where distances
between nodes encode the travel times between them [ZFA∗14].

Communication Networks. Communication networks are con-
cerned with the flow of information between devices or people.
Similar to transportation networks, the most prevalent form of
MVN visualization within communication networks are node-link
diagrams [BFN04, OGK06]. While geolocated node-link represen-
tations are common in cases where the precise location of the nodes
is of interest [BEW95, Eic96], many communication networks are
laid out differently, for example using attribute driven positioning
to group similar nodes [BFN04].

Security Networks. The field of security visualization is fre-
quently concerned with the analysis and visualization of security
networks, i.e networks aimed at detecting anomalous patterns that
may indicate vulnerability and attacks [SSG12]. These networks
are often communication networks. The difference to generic com-
munication networks lies mostly in the types of attributes and anal-
ysis tasks, which are geared towards capturing unexpected behavior
and traffic patterns. The types of visualizations used are varied and
include force-directed node-link layouts [PR07, MMK08], node-
link layouts as parallel axis [YYT∗04], and matrices [KOK05].

In general, we noticed that social network analysis, biological
and life science applications, and software engineering use a variety
of different encodings, but other domains rely heavily on node-link
diagrams. We speculate that this is because visualization research
papers are often case studies for the former domains and therefore
see a wider variety of techniques.

8. Evaluation

All papers in the corpus were coded for the evaluation methods
described in Section 6. An in-depth analysis of how MVN visu-

alization techniques are evaluated is beyond the scope of this sur-
vey. Coding evaluation methods, however, allowed us to understand
how multivariate network techniques are currently being evaluated,
and to, we hope, open up a conversation on whether these methods
of evaluation are sufficient and appropriate.

The closed set of evaluation codes we used, and our interpreta-
tion of each method are as follows:

• Use cases are informal demonstrations of usage, without the in-
volvement of a domain expert or any quantitative measure of the
tool’s validity.

• Controlled experiments are those that control some of the anal-
ysis process and include crowd-sourced studies.

• Case studies are a form of evaluation that reports in detail on
domain experts’ use of the proposed tool in the wild.

• Theoretical evaluation argues for the efficacy of a proposed
technique based on existing visualization principles and a com-
parison with similar work.

• Usability evaluation is aimed at observing how users interact
with a tool, either through a set of predefined usability tasks or
through observations of free-form usage.

• Algorithmic evaluation measures computational performance
of a technique.

• Heuristics evaluations entail inspecting a system according to
a chosen set of relevant heuristics or guidelines.

For each paper, we coded all the evaluation methods used, which
ranged from a single approach to up to three different evaluation
methods. Our analysis found that the majority of technique papers
in our corpus used use cases (63%), followed by controlled experi-
ments (28%), case studies (15%), and usability studies (15%). Less
frequently, we found examples of theoretical evaluation (8%) or
algorithmic evaluation (4%). We did not encounter heuristic evalu-
ation in our corpus. Also, likely due to our inclusive definition of
evaluation, we found that all papers included at least one of these
methods.

Use cases were by far the most common approach to evaluation,
likely due to the simplicity of conducting them and their useful-
ness for explaining a new technique. When done well, use cases
leveraged real-world data to walk the reader through examples of
how a tool can be helpful for data analysis and exploration. A
common problem with this approach is the choice of data. Sam-
ple datasets such as movie actors and movies, or interactions be-
tween the characters in Les Miserables, are readily available and
explainable without extensive domain knowledge, but do not pro-
vide evidence that the technique would scale well to real-world ap-
plications and datasets. With more complex, real-world datasets,
use cases provide stronger evidence that the proposed technique
could be effective in the wild.

Controlled experiments were also common and were most often
conducted in one of two scenarios: (1) comparing a novel MVN
approach with existing techniques [LPB∗06, JRA09, ARRC11,
YDGM17]; or (2) comparing variations of a given design for vi-
sualizing MVNs [SSE16, BW11].

Other common types of evaluation encountered were case stud-
ies and usability evaluations. The systems evaluated with case stud-
ies were often developed in close collaboration with domain ex-
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perts. These systems are frequently complex and unique so that
they cannot be easily compared to other tools.

Usability studies were often used in conjunction with another
evaluation approach, such as a usage scenario or a case study. The-
oretical evaluations were uncommon, likely due to the challenge of
convincing readers of the superiority of the proposed tool through
theoretical arguments. Only 4% of the papers were coded as algo-
rithmic evaluations, which is unsurprisingly low given the types of
contributions—novel encodings as opposed to novel algorithms—
of papers in this survey.

9. General Guidelines for Visualizing Multivariate Networks

In this section, we provide general guidelines on visualizing mul-
tivariate networks, complementing our technique specific recom-
mendations given in Section 5.1 and our recommender system on
the accompanying website (https://vdl.sci.utah.edu/
mvnv/).

One of the major challenges that MVN visualization techniques
face is scaling to large networks (Table 2) and large attribute
datasets. For large trees, treemaps are very well suited, with the
caveat that they are tailored to displaying only a few attributes and
only for leaves. For other types of networks, MVN techniques typ-
ically do not scale to networks with over 1,000 nodes, especially
when attempting to show both attributes and network topology.
Data operations can be very useful to either reduce the subset of
the network the user is looking at, through a query-first or filter
approach [NSL19, TS13], or to aggregate the network into a more
manageable size [Wat06, EDG∗08]. These data operations can be
done through either preprocessing of the network or interactive op-
erations directly in the visualization.

Juxtaposed views scale to large networks and many attributes,
since they allow for a topology-only view that can optimize the
layout and an attribute only view well suited to display multivariate
data. However, having separate views for topology and attributes
comes at the cost that these systems often perform poorly on tasks
that require integration between attributes and topology.

A scalable technique with regard to the number of node and
edge attributes and node/edge heterogeneity are integrated views
that align a node/edge with a tabular representation. These tech-
niques are easily combined with all tabular methods or can be com-
bined with node link layouts when leveraging interaction. Along
with juxtaposed views, integrated views are suitable for networks
with several attributes. The tight visual coupling of the topology
and attribute of the network make integrated networks the highest
rated techniques for performing MVN tasks on non-tree networks.
We recommend adjacency matrices with integrated attribute views
for dense networks with many attributes, and node-link networks,
combined with integrated attribute views and interactive data oper-
ations, for small networks.

Interaction is useful for most techniques, but it is particularly im-
portant for node-link representations when combined with juxta-
posed or integrated coordinated views. Juxtaposed views rely heav-
ily on interaction to link the components in the topology and at-
tribute views through linking and brushing. Integrated views, on

the other hand, are based on a linear ordering of the nodes in the
network. This linear ordering can be the product of user selection
by picking subsets of the networks, such as spanning trees or paths.
For these subsets, integrated views provide excellent integration of
topological features and attributes.

10. Conclusions and Future Work

In this paper, we presented the state of the art in visualizing multi-
variate networks. We provide a data and task abstraction for MVNs,
along with a typology of techniques for visualizing this complex
data type. The typology was generated through a qualitative analy-
sis of 210 papers published within the visualization research com-
munity and lays out the four dimensions along which MVN visual-
izations can be characterized. Additionally, we provide an overview
of common application areas targeted by these published tech-
niques and the evaluation methods used to test them. We believe the
typology will be useful for practitioners to understand and choose
appropriate multivariate network visualization techniques, and for
researchers to identify areas that would benefit from further devel-
opment.

MVNs are becoming ubiquitous in a broad range of domains,
and thus the demand for efficient ways of visualizing them is grow-
ing. The use of node-link diagrams to portray networks is by far
the most common approach, but the limitation on the number of
attributes that can easily be encoded on these structures has led to
the popularization of coordinated views and other techniques that
are more amenable to encoding multiple attributes, most notably,
tabular approaches.

This overview of the field of MVN visualization techniques
highlights areas that are ripe for further development, as well as
challenges encountered by current techniques.

Tabular Techniques. Node-link layouts have received a lot of at-
tention, but tabular techniques such as adjacency matrices have not
been studied in depth in the context of attribute visualization. Tabu-
lar approaches have significant potential for visualizing MVNs due
to their linear layout of nodes, which allows for trivial juxtaposition
of both node and edge attributes.

Edge Attributes. Many solutions are available for visualizing node
attributes, but the currently known techniques for visualizing edge
attributes are limited. Even matrices, which are considered the best
solution for visualizing edge attributes, can only show a handful
of edge attributes. Visualizing edge attributes comes with its own
set of challenges. Hence, dedicated research in the area is neces-
sary. We identified tabular and integrated approaches as potentially
fruitful areas of investigation for edge attributes. BioFabric pro-
vides a unique but so far underexplored opportunity for better edge
attribute visualization, as edges are represented as columns in Bio-
Fabric, which could be leveraged for integration with edge attribute
visualizations. Similarly, interactive integrated techniques provide
opportunities for better edge attribute visualizations.

Interaction. With the increasing use of web-based systems, inter-
action has become a ubiquitous element in multivariate network ex-
ploration systems, allowing users to quickly and effortlessly filter
and analyze the network, as well as modify the encodings used on
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demand. The study of interaction in MVN visualization techniques
is an open opportunity.

User Studies. No studies have rigorously investigated the benefits
and trade-offs of different MVN techniques with respect to certain
tasks and datasets. We believe that our taxonomy can guide more
formal evaluation approaches.

Tools. Hundreds of papers have addressed multivariate network vi-
sualization techniques, but the few robust, well-documented, and
maintained open-source software packages provide only basic mul-
tivariate attribute visualization capabilities. The scientific commu-
nity needs new and better tools that integrate the scientific state of
the art in well-maintained software.

We hope this review allows visualization designers to more eas-
ily compare existing approaches to MVN visualization, as well as
to leverage our guidelines on which techniques are best suited for
given network types and specific exploration tasks. MVN visual-
ization is a constantly evolving field providing visualization re-
searchers rich and interesting open problems.
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