
Learning Decentralized Control Policies for Multi-Robot Formation

Chao Jiang, Zhuo Chen, and Yi Guo

Abstract— Decentralized formation control has been exten-
sively studied using model-based methods, which rely on model
accuracy and communication reliability. Motivated by recent
advances in deep learning techniques whereby an intelligent
agent is trained to compute its actions directly from high-
dimensional raw sensory inputs using end-to-end decision-
making policies, we consider the problem of learning decentral-
ized control policies for multi-robot formation. A deep neural
network is designed to model the control policy that maps the
robot’s local observations to control commands. We propose
to use a centralized training framework based on supervised
learning for control policy learning. The learned policy is
then deployed on each robot in a decentralized manner for
online formation control. Our proposed approach is verified and
evaluated in experiments using a robotic simulator. Simulation
results demonstrate satisfactory performance of formation con-
trol. Compared with existing methods for formation control, the
proposed approach does not need inter-robot communication,
and avoids hand-engineering the components of perception and
control separately.

I. INTRODUCTION

Multi-robot formation control has been an active research
area due to its significance in practical applications such
as exploration of unknown environments, cooperative se-
curity patrols, and autonomous transportation [1]. Conven-
tional model-based methods explicitly model the kinematics
(and/or dynamics) of the robots and the sensing and/or com-
munication graphs to generate decentralized control input to
each robot [2], [3]. Model-based methods generate analytic
control inputs and can be implemented efficiently in real
time for decentralized formation control. However, model-
based methods highly depend on model accuracy, and are
vulnerable to model uncertainties and external disturbances.
Also, many model-based methods rely on communication to
exchange neighboring state information, thus put stress on
communication reliability and security. Motivated by recent
advances in deep learning methods with enhanced capability
in perception representation [4], [5], we propose a different
approach, the learning-based approach, for decentralized
formation control. We consider the problem of learning robot
control policies to achieve multi-robot formation from the
robot’s local observation without inter-robot communication.
Particularly, we address the problem: 1) given expert demon-
stration data of decentralized formation control, whether we
can learn robot control policies; and 2) whether we can use

*This work was partially supported by the US National Science Founda-
tion under Grants CMMI-1527016, CMMI-1825709, and IIS-1838799.

The authors are with the Department of Electrical and Computer En-
gineering, Stevens Institute of Technology, Hoboken, NJ, USA 07030
Emails:{cjiang6,zchen39,yi.guo}@stevens.edu

learned policies to control the robots achieving formation
using raw sensor inputs in a decentralized manner.

A. Related Work

Decentralized formation control of multi-agent systems
was initially inspired from the natural phenomena of bird
flocking and fish schooling, where a group of agents follow
the same direction and speed while maintaining certain
geometric shape [1]–[3]. Existing model-based methods of
multi-agent formation control can be classified into position-,
displacement-, and distance-based controls, where the de-
sired formation is defined by the absolute position of each
agent with respect to a global reference frame, the desired
displacements with respect to a global reference frame, and
the desired inter-agent distances, respectively [3]. There is
a tradeoff between the sensing capability and interaction
topology in the above categorization, and distance-based
control requires less sensing capability but more interactions
among agents. Recently, researchers proposed vision-based
control schemes to alleviate the requirement of inter-robot
communication [6]–[9]. For example, in [9], the dynamics
between the leader and follower robots is modeled using
the distance, orientation and bearing angle, and a dynamic
feedback controller was designed using an observer that
estimates the neighbor’s speed. These model-based formation
control methods either require the availability of full or
partial state measurement, or rely on deliberate perception
module that explicitly returns measurements (such as bearing
and distances) from robot sensors through traditional sensor
fusion techniques.

In the last few years, a new research direction has been
actively pursued, which utilizes the enormous expressive
capability of deep neural nets to directly process high-
dimensional raw sensing data for self-driving cars [10], [11].
Also, the human-level intelligence for robot control has been
proposed with the aim to develop robot decision-making
policies that generate actions directly from raw observation,
so as to mimic the functioning and learning process of human
brains [4]. Recent deep learning methods have achieved great
success in learning representation from raw sensing data
using deep neural networks (DNN), and thus provide an
end-to-end framework for learning robot control policies that
combine multiple decoupled modules from robot perception
to action.

DNNs and various learning algorithms have been devel-
oped for learning control policies in a vast range of robotic
problems. To briefly mention some important work in this
new direction, Giusti et al. [12] trained a DNN model
to predict the direction of forest trails from the images

 Proceedings of the 2019 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
 Hong Kong, China, July 8-12, 2019

978-1-7281-2493-3/19/$31.00 ©2019 IEEE 758

captured by a quadrotor’s onboard camera. The predicted
trail direction was used for reactive control of quadrotor
navigation. The model was trained via supervised learning
with real-world dataset and generated accurate prediction
comparable to human performance. In [11], Rausch et al.
designed and trained an end-to-end controller that calcu-
lates steering commands of autonomous vehicles given the
image observation from a front-facing camera. In [13],
Zhang et al. proposed a learning approach based on model
predictive control and guided policy search to learn deep
control policies for autonomous aerial vehicles. Long et al.
[14] studied the supervised learning of the DNN policy
for multi-robot collision avoidance based on a centralized
training framework. Foerster et al. [15] proposed end-to-end
frameworks for learning inter-robot communication protocols
to achieve collective task objectives. The aforementioned
work demonstrates promising results of the end-to-end policy
learning from robots’ raw observation in different robotic
applications.

B. Contribution and Organization

In this paper, we focus on the problem of learning decen-
tralized formation control policies for multi-robot systems,
which can directly operate on individual robots’ local per-
ception without inter-robot communication. To this end, we
designed a DNN model that maps the robot’s observation
via onboard LIDAR sensor to robot motor control. The
model was trained in a centralized manner using supervised
learning with expert demonstration data generated by a
model-based controller. The trained model is then deployed
on each robot as a decentralized controller that only relies
on local observation to achieve formation. The proposed
approach is verified and evaluated throughout extensive set
of experiments in V-REP simulator. Robot simulations show
that our approach achieves over 90% success rate, and the
performance (such as formation errors) is satisfactory.

The contributions of our work are twofold: 1) A novel
DNN-based approach is proposed to learn decentralized
control policies from robots’ local observations rendered in
raw sensing data. The method avoids the need of inter-robot
communication, and relieves the efforts of hand-engineering
the components of perception and control separately that is
commonly used in model-based formation control methods.
2) The technical challenge of neural network architecture
design for policy representation is addressed, and the input
design is specified for formation control. To the best of our
knowledge, this is the first paper that addresses decentral-
ized formation control for multi-robot systems using deep
learning methods.

The rest of the paper is organized as follows: Section II
formulates the problem of learning decentralized formation
control policy for multi-robot systems. Section III provides
the design of the proposed control policy learning approach.
We demonstrate the simulation results and evaluation of our
approach in Section IV. We conclude our work and discuss
future work in Section V.

Fig. 1: The schematic diagram of the formation control
scenario.

II. PROBLEM STATEMENT

In this paper, we consider the formation control problem
with three mobile robots that are equipped with LIDAR
sensors as shown in Fig. 1. Each robot has an on-board
self-localization system that can measure its current orienta-
tion, φi(t). The desired formation is defined as the desired
orientation, φ∗, desired speed (which is a scalar), v∗, and
the desired relative distance between any two robots, dij for
i, j = 1, 2, 3 and i 6= j. For simplicity, we assume dij = d∗

that is a positive constant. The three robot team achieves
formation if the robots follow the desired orientation φ∗ and
the desired speed v∗, and keep the distance d∗ from each
other.

The decentralized control policy can be regarded as a
generalization of a decentralized control law. In our case,
the decentralized control policy maps the input of the robot’s
local sensor observation (i.e., occupancy map from the robot
onboard LIDAR sensor) to the output of the robot’s motor
control.

We address the problem of learning a decentralized control
policy and using it for online formation control. For this
purpose, we consider two phases in the paper, the training
phase and the testing phase as shown in Fig. 2. In the training
phase, the objective is to learn an end-to-end control policy:

ûi = F (yi,∆φi, d
∗), (1)

where the input of the control policy consists of the oc-
cupancy map yi and two auxiliary inputs including the
difference between the robot’s current orientation and the
desired orientation, ∆φi = φi−φ∗, and the desired formation
distance, d∗; and the control policy outputs the robot motor
control ûi = [ûil, ûir] ∈ R2 with ûil and ûir being the
left and right motor control, respectively. A DNN model is
designed as the parameterized function representation of the
control policy F (·) defined in (1).

During the training phase, expert demonstration is needed
to train the DNN, which can be obtained either by a human
driver that demonstrates the appropriate steering actions
given a certain vehicle state, or by model-based methods to
generate analytic control laws with full state measurement. In
this paper, we use the model-based method to generate expert
demonstration. Specifically, given the robot states obtained
by the measurement system, the model-based controller
generates the robot control, ui, as expert demonstration.
Meanwhile, the corresponding local observation, yi, from
the robot’s onboard LIDAR sensor and the auxiliary inputs,

759

Fig. 2: The overview of our proposed policy learning scheme.

∆φi and d∗, are recorded. The expert control ui, LIDAR
observation yi and the auxiliary data ∆φi, d∗ are then fed
to the DNN for training.

In the testing phase, the trained DNN policy is executed
on each robot i in a decentralized manner to compute robot
control command through a feedforward pass of DNN based
on current robot LIDAR observation and auxiliary inputs.
The robot motor control law ui = Kûi, where K is a
constant gain that adjusts the robot’s speed to the desired
speed v∗. Note that the common speed of the robot team
is not an input to the DNN in the training phase, and can
be adjusted directly during the testing phase through linear
scaling.

In the next section, we present our DNN architecture
that represents the control policy, and a supervised learning
method to train the policy with expert demonstration data
that collectively represent a latent observation-to-control
mapping.

III. PROPOSED APPROACH

The overall diagram of the learning-based formation con-
trol is illustrated in Fig. 3. During online testing, each robot
acquires the occupancy map yi from its onboard LIDAR
observation and the robot’s current orientation φi accessed
via robot self-localization or compass. The occupancy map
yi, the orientation difference ∆φi and the desired formation
distance d∗ are passed to the DNN policy to compute the
robot control ûi. Note that the learned DNN policy drives
the robot to converge to the desired speed v∗. The speed of
the robots can be adjusted by scaling the policy output ûi
with a gain K.

A. Model Architecture

The capability of DNNs to model complex and nonlin-
ear functions lends themselves well to the control policy
representation. We propose a DNN as shown in the dotted-
line box of Fig. 3, which is composed of a convolutional
neural network (CNN) and a fully-connected (FC) network
to approximate the control policy function defined in (1).
The parameterized representation of the control policy using
the DNN is denoted as ûi = F (yi,∆φi, d

∗;θ), where θ
represents the parameters of the DNN model.

1) Model Input: The input of the control policy model
is the three-tuple (yi,∆φi, d

∗) including the grayscale oc-
cupancy map yi with both width and height size of 50 and

channel size of 1 (i.e. 50×50×1), the difference between the
desired orientation and the current robot orientation, ∆φi,
and the desired formation distance d∗.

2) Model Output: The output of the control policy model
is a 2-dimensional vector of continuous control command of
the robot’s motor control ûi.

3) CNN: The CNN functions as feature representation
that extracts discriminate features capturing the information
of other robots from LIDAR observation. The CNN has three
convolutional layers. The first convolutional layer generates
a number of feature maps by a convolution operation on the
image input, and the last two convolutional layers generate
several feature maps given the output from the previous layer,
respectively. Let zjn,ν denote the value of the jth feature map
at coordinate (n, ν) generated by each convolutional layer,
then zjn,ν is given by

zjn,v = σ

(
bj +

L∑
l=1

M∑
m=1

W j
l,m ∗ on+l,v+m

)
, (2)

where W j
l,m represent the value of the L×M weight matrix

W j at coordinate (l,m); bj represents the bias; on+l,v+m
denotes the value of the image input or the feature map of the
previous layer at the coordinates (n+ l, v+m). The results
of the convolution operation at each convolutional layer is
activated by the rectified linear unit (ReLU), denoted as σ(·),
which is given by

σ(z) = max(0, z) (3)

The output of the last convolution layer is then flatten into
a vector as the input of the fully-connected network. The
details of arithmetic operations of CNN can be found in [16].

4) FC Network: The 2-layer fully-connected network is
used to uniformly approximate the continuous function that
fuses the extracted features from the CNN, the orientation
difference ∆φi, the desired formation distance d∗, and out-
puts the robot control command ûi. Each layer of the FC
network consists of a number of hidden units, the output of
which is given by

h = g (Wh ∗ d+ bh) (4)

where Wh and bh represent the weights and bias, respective-
ly; d denotes the vector of output from the previous layer.
g(·) denotes the activation operation. The output of the first
and second layer are followed by ReLU and linear activation,
respectively.

B. Training Phase
The training process is essentially to optimize the DNN

parameters θ such that given the three-tuple (yi,∆φi, d
∗),

the error between the DNN output, ûi = F (yi,∆φi, d
∗;θ),

and the expert control ui provided by expert demonstration
is minimized.

We define the loss function for each iteration of the mini-
batch learning as the Euclidean loss:

L(θ) =
1

NB

NB∑
j=1

‖F (yj ,∆φj , d
∗;θ)− uj‖2 (5)

760

Fig. 3: The overall diagram of the DNN-based formation control policy.

Algorithm 1: Training of DNN
Input : Occupancy map image y, orientation difference

∆φ, desired formation distance d∗, and expert
control u;

Output: DNN parameters θ;
1 Initialize: DNN parameters θ0;
2 for epoch t← 1 to T do
3 Initialize: first moment vector m0;
4 Initialize: second moment vector υ0;
5 Initialize: learning rate η0;
6 for batch k ← 1 to B do
7 for sample l← 1 to NB do
8 Calculate predicted control

ûl = F (yl,∆φl, d
∗;θk−1);

9 Calculate loss Ll(θk−1) = ‖ûl − ul‖2;
10 end
11 L(θk−1) =

∑NB

l=1 Ll(θk−1)/NB ;
12 Calculate gradient gk ← ∇θL(θk−1);
13 Update first moment

mk ← β1 ·mk−1 + (1− β1) · gk;
14 Update second moment

υk ← β2 · υk−1 + (1− β2) · g2k;
15 Update learning rate

ηk ← η0 ·
√

1− βk2/(1− βk1);
16 Update DNN parameters

θk ← θk−1 − ηk ·mk/(
√
υk + ε̂);

17 end
18 end

where NB is the mini-batch size.
We use a gradient-descent based training algorithm with

Adam optimizer [17] to learn the optimal parameters of the
DNN. Adam optimizer uses adaptive learning rates for each
parameters in the DNN model. The training algorithm is
summarized in Algorithm 1. The algorithm is fed with the
four-tuples of occupancy map image y = [y1,y2,y3], the
orientation difference ∆φ = [∆φ1,∆φ2,∆φ3], the desired
formation distance d∗, and the expert control u as input.
The output is the optimal DNN parameters θ. Note that the
training is conducted in a centralized manner, and we do not

distinguish each individual robot in the training phase.
Before the training process, the parameters of the DNN

are randomly initialized as θ0. The training process consists
of T epochs. In each epoch t ∈ [1, T], the initial learning
rate η0, the initial estimates of the first moment m0 and the
second moment υ0 are selected. Each epoch comprises B
iterations of parameters updating, where B is the number
of mini-batches. In each iteration k ∈ [1, B], one mini-
batch containing NB sampled data are used to update the
DNN parameters. Specifically, given each sampled data l ∈
[1, NB], we calculate the predicted control ûl through a
feedforward pass in line 8. The loss Ll(θk−1) associated
with the lth sample is calculated as the squared error between
the predicted control and the expert control, as shown in
line 9. Then, we take an average of the loss over the NB
samples in line 11. The gradient of the averaged loss, gk, is
calculated in line 12. Then, the estimates of the first moment
mk and the second moment υk are updated in line 13 and
14, where β1 and β2 ∈ [0, 1) are the exponential decay rates
for the moment estimates, and g2k denotes the element-wise
square. Then, the learning rate ηk is updated in line 15, where
βk1 and βk2 denote β1 and β2 to the power k, respectively.
The parameters of DNN is updated via gradient descent
rule shown in line 16 toward the minimization of the loss
function, where ε̂ is a small constant for numerical stability.
After T epochs of training process, the DNN parameters θ
converge to optimum in the sense that the loss function (5)
is minimized. The DNN model with the learned parameters
is then used by each robot in online testing phase.

C. Testing Phase

In the online testing phase, the trained model is deployed
on each robot in a decentralized manner. That is, the DNN
model is executed on each robot to compute its motor control
command given its own observation via onboard sensor as
input.

The online formation control algorithm applied to each
robot is summarized in Algorithm 2. The algorithm takes
as input the occupancy map image yi(t), the robot orien-
tation φi, the desired robot orientation φ∗, and the desired
formation distance d∗. The algorithm outputs the robot motor
control. At each time step t ∈ [1, T], each robot obtain an

761

(a) t=0s (b) t=5s (c) t=15s

Fig. 4: Snapshots of online formation control experiment in V-REP simulator at (1) t=0s; (b) t=5s; and (c) t=15s. The squared
images show the occupancy map generated from the observation of the corresponding robot, where the black dots indicate
the surrounding robots of each robot. The colored arcs visualize the LIDAR scanning.

Algorithm 2: Online Formation Control
Input : Occupancy map image yi(t), robot orientation

φi(t), desired robot orientation φ∗, and desired
formation distance d∗;

Output: Robot motor control ui(t);
1 Load the DNN model with parameters θ trained using

Algorithm 1;
2 Initialize robot position pi(0) and orientation φi(0);
3 for Time step t← 1 to T do
4 Obtain an image of occupancy map yi(t) via

LIDAR observation;
5 Obtain robot orientation φi(t) via self-localization

system;
6 Calculate orientation difference

∆φi(t) = φi(t)− φ∗;
7 Calculate DNN policy output ûi(t) through a

feedforward pass;
8 Calculate robot motor control ui(t) = Kûi(t);
9 Output ui(t);

10 end

image of occupancy map yi(t) via its current LIDAR ob-
servation and the current orientation φi(t). It then calculates
the difference between the its current and desired orientation,
∆φi(t). Then the three-tuple (yi(t),∆φi(t), d

∗) is passed to
the DNN model as input, which computes the policy output
ûi(t). Then, the policy output is multiplied with the control
gain K to generate the motor control command ui, where
K can be chosen as K = v∗/vtrain with vtrain being the
common robot speed used in the training phase.

IV. EXPERIMENT RESULTS

In this section, we present the results of the proposed
policy learning approach and verify the effectiveness of the
learned policy in simulation experiments of online forma-
tion control with different desired formation distances and
velocities.

A. Experiment Setup

1) Robot Simulation: The robot simulation is performed
in the robot simulator V-REP [18]. V-REP is a virtual

robot experimentation platform which provides realistic robot
dynamics and 3D rendering. Fig. 4 shows the snapshots of a
simulation experiment in V-REP. We choose the differential
drive mobile robot, Pioneer P3-DX, as the robot platform.
The robot is equipped with a Velodyne VPL16 LIDAR sensor
to perform laser scan measurement. The data of laser scan
measurement in a square region of 5 × 5 m2 centered at
the sensor position are represented by a 50 × 50 gray-scale
image of 2D occupancy map. Thus, the spatial resolution
of the occupancy map is 0.1 m/pixel. Note that, given the
same laser scan range, increasing the spatial resolution of
the occupancy map results in a larger size of the image and
more computational cost. The tradeoff between the image
size and the spatial resolution of the occupancy map can be
balanced considering practical requirements of applications.
The robot control algorithms are implemented in a client
program written in Python, which communicates with the
V-REP simulator via the provided remote API. Thus, the V-
REP simulator sends simulation data to the client program
for robot control calculation, and computes the robot dy-
namics given the control commands received from the client
program. The simulation frequency is set to 20 Hz.

2) DNN Implementation: The first convolutional layer
(Conv1) has 32 filters with filter size 8×8 and stride 4.
The output of the Conv1 layer is 32 feature maps of
dimension 12×12. The second convolutional layer (Conv2)
has 16 filters with size 4×4 and stride 2. The output of the
Conv2 layer is 16 feature maps of dimension 5×5. The final
convolutional layer (Conv3) has 16 filters with size 3×3 and
stride 1. The output of the Conv3 layer is 16 feature maps of
dimension 3×3. All three convolutional layers are activated
by ReLU. The feature maps of the last convolutional layer
are flattened into a 144-dimensional vector which is fed to
the FC network. The dimension of each hidden layer of the
FC network is 32, and the dimension of the output layer is 2.
The first and second layer are followed by ReLU and linear
activation, respectively.

3) Computer Configuration: The simulation experiments
are conducted on a computer with an Intel R©XEONTME3-
1535M (3.1 GHz × 8) CPU and an Nvidia Quadro R©M2200
GPU. The robot simulator V-REP and the model-based con-
troller program for data collection run on the CPU, and our

762

Fig. 5: Euclidean loss over training iterations.

Tensorflow programs implementing the training and testing
of the proposed DNN run on a GPU for faster computation.

B. Training Experiments

1) Data Collection: The training data were collected in
the robot simulator V-REP, where a model-based controller
was implemented to control each robot to provide expert
demonstration data. We use the distance-based formation
controller proposed in [19] to generate the motor control for
the robots. We create a simulation scenario with three mobile
robots. The robots’ initial positions pi(0) are randomly
selected from a circular region with a radius of 3 m, and the
initial orientations φi(0) are randomly selected from [0, 2π).
For each simulation run during data collection, a constant
desired orientation φ∗ is randomly selected from [0, 2π), and
the desired speed v∗ is set to 0.7 m/s. The desired formation
distance d∗ is randomly selected from the set {1, 1.5, 2} m.
The duration of each simulation run is 12 s. At each time
step t, the control output ui(t) computed by the model-
based controller, the corresponding occupancy map yi(t)
from LIDAR observation, the orientation difference ∆φi(t)
of each robot i, i = 1, 2, 3, and the desired formation distance
d∗ was recorded and stored as one sample of training data.
The entire training data set includes 110160 samples, which
were grouped into 3442 mini-batches with the batch size
NB = 32. The sampled data collected by all three robots
are used to train the control policy in a centralized training
framework.

2) Training Results: With the collected training data, we
then train the DNN model using Algorithm 1 to find an
appropriate control policy. The initial learning rate is set as
η0 = 0.0001; the exponential decay rates for the moment
estimates are initialized as β1 = 0.9 and β2 = 0.999,
respectively. The constant ε̂ is set to 10−8. The training
epoch is set as T = 500. The evolution of loss over training
iterations is shown in Fig. 5. One can see that the loss of
the Adam optimizer converges around 0.009 after 1.2× 106

iterations of training. The training results demonstrate that
our proposed learning scheme is converging and minimizes
difference between the predicted control output and the
expert control. Next, we verify and evaluate the learned
policy in online testing experiments.

C. Testing Experiments

After sufficient training, the parameters of the DNN model
remain unchanged, and the DNN model is deployed on each
robot for online formation control. As shown in Fig. 2,

the learned policy model calculates the control command
from the robot’s own observation via the onboard LIDAR
sensor and the auxiliary inputs. We evaluate the learned
robot control policy in the cases of constant and time-
varying desired velocity, respectively. In all the online testing
experiments, the magnitude of the desired velocity is set to
v∗ = 0.7 m/s, thus the speed control gain K = 1 as the
speed after convergence given by the trained control policy
is 0.7 m/s.

1) Case 1 with Constant Desired Velocity: We first show
a testing case with a constant desired velocity in Fig. 6.
The desired orientation is φ∗ = 3.76 rad, and the desired
formation distance is 2 m. One can see from Fig. 6a that the
formation error between the robots and orientation error of
each robot decrease and converge around zero after about 6
s. Fig. 6b shows the control commands of the robots’ left
and right wheel speed. It can be seen that the control of the
robot wheel speed converges around the desired speed 0.7
m/s of the robot after 6 s. Fig. 6c shows the trajectories of the
robots, where the triangles and the dotted lines represent the
position of the robots and the formation at every 3 seconds,
respectively. We can see that the group of robots achieves
the desired formation and moves at the desired velocity.

2) Cases 2 and 3 with Time-Varying Desired Velocity: In
these cases, the desired orientation φ∗(t) changes as a func-
tion of time. Note that, in the training phase, only constant
desired orientations φ∗ are used to train the DNN, and the
time-varying desired velocities are not in the training set. In
this subsection, we show that we can achieve formation with
time-varying desired velocities. This is due to the reason
that ∆φ (i.e., the difference between the robot’s current
orientation and the desired orientation) is chosen as the input
to the DNN that learns the mapping from ∆φ after training.

For Case 2, we set the desired orientation as φ(t) = ω · t
with the angular velocity ω = 0.1 rad/s, and the desired
formation distance is 1 m. This setup requires the robot
team to keep a desired formation and meanwhile moves in a
circular trajectory. The testing results of this case are shown
in Fig. 7. One can see from Fig. 7a that the formation and
orientation errors decrease and converge around zero after
20 s. Fig. 7b shows the control output of the robots’ left and
right wheel speed. It can be seen that the speed control of the
robots converges around 0.7 m/s after 20 s. Fig. 7c shows the
trajectories of the robots, where the triangles and the dotted
lines represent the position of the robots and the formation
at every 3 seconds, respectively. We can see that the group
of robots achieves the desired formation and moves at the
desired velocity.

For Case 3, we set the desired orientation as φ(t) = sinωt
with the angular velocity ω = 0.2 rad/s, and the desired
formation distance is selected as 1.5 m. This means the
robot team is required to keep a desired formation and
meanwhile moves in a sinusoidal-like trajectory where the
desired orientation is changing sinusoidally. From Fig. 8a one
can see that the formation and orientation errors decrease and
converge around zero after 15 s. Fig. 8b shows the control
command of robot wheel speed which converge around 0.7

763

(a) (b) (c)

Fig. 6: Case 1 with constant desired orientation φ∗ = 3.76 rad and desired formation distance d∗ = 2 m: (a) formation and
orientation error; (b) robot control; (c) robot trajectories.

(a) (b) (c)

Fig. 7: Case 2 with time-varying desired orientation φ∗(t) = 0.1t rad and desired formation distance d∗ = 1 m: (a) formation
and orientation error; (b) robot control; (c) robot trajectories.

(a) (b) (c)

Fig. 8: Case 3 with time-varying desired orientation φ∗(t) = sin(0.2t) rad and desired formation distance d∗ = 1.5 m: (a)
formation and orientation error; (b) robot control; (c) robot trajectories.

m/s after 15 s. The trajectories of the robots are shown in
Fig. 8c.

The computational cost of calculating the robot control by
the DNN model given an occupancy map in online testing is
2.1 ms on average over 100 runs, which satisfies real-time
control requirement.

3) Statistical Results: We conducted extensive simulation
experiments to verify our proposed approach for learning
formation control policies, and present the statistical results
of 100 simulation runs. The simulation time is set to 60
s. We consider a simulation run successful if the formation
error between any robot i and j, i 6= j, converges in the
sense that the temporal average of the relative formation error
|dij−d∗|/d∗ over the most recent 20 s is smaller than 5% or

10%. The statistic results of our approach are summarized in
Table I which shows our approach achieves 90% and 96%
success rate under 5% and 10% error metrics, respectively.
To further evaluate the performance of our approach, we
show the statistical results of the convergence time, the
relative formation error and the orientation error over all
successful runs under 10% error metrics in Fig. 9. One can
see that the median convergence time of our approach is
about 10 s. The median relative formation error is 2.5%
and the median orientation error is 0.031 rad. Compared
with existing model-based formation control methods with
relative formation errors of 1% − 10% in general ([3]), the
performance of our learning-based method is satisfactory.

The formation errors in online testing experiments are

764

TABLE I: Statistical results over 100 runs.

5% error tolerance 10% error tolerance
Convergence percentage (%) 90 96

Fig. 9: Box plot of convergence time, relative formation error
and orientation error after convergence over successful runs.
The central mark in each box is the median, the edges of the
boxes are the 25th and 75th percentiles, the whiskers extend
to the maximum/minimum, and the circles represent outliers.

mainly the result of the quantization errors introduced when
converting the LIDAR sensory data to the occupancy map.
In this paper, the spatial resolution of the occupancy maps is
0.1 m/pixel, i.e., any LIDAR scan data within 0.1 m cannot
be reflected by the image pixels. Reducing the quantization
errors can be realized by increasing the size of the occupancy
map images to increase the spatial resolution of the images.
However, larger size of images requires more computational
power to process the image input and compute the robot
control commands in real time. The tradeoff between the
image size and the spatial resolution of the occupancy
map can be balanced according to practical requirements of
applications.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel approach for learn-
ing decentralized formation control of multiple robots. The
control policy was modeled using a DNN that directly maps
the robot’s own observation to control actions. The model
was trained with a centralized learning framework based on
supervised learning. The trained model was deployed on
each robot as a decentralized controller which only used
the robot’s local observation and no inter-robot communica-
tion was performed. Extensive simulated experiments were
conducted in a robot simulator, and the results verified the
effectiveness of the proposed learning approach for robot
formation control.

As our first attempt solving a decentralized formation con-
trol problem using deep learning method, we only considered
the three robot formation scenario with equal desired distance
between any two robots. This is due to the reason that the
robot has no additional sensors or communication equipment
to distinguish its neighboring robots. Advanced deep learning
methods such as semantic labeling [20] may be developed
so that the robot can assign IDs to its neighboring robot
for different desired relative distance requirement. We plan
to study learning control policy from raw vision perception

with semantic labels in the future. Also, extending the current
work to general distributed learning of multi-robot systems
is in the scope of our future research.

REFERENCES

[1] Y. Guo, Distributed Cooperative Control: Emerging Applications.
John Wiley & Sons, 2017.

[2] Z. Qu, Cooperative control of dynamical systems: applications to
autonomous vehicles. Springer Science & Business Media, 2009.

[3] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[5] C. Amato, G. Konidaris, A. Anders, G. Cruz, J. P. How, and L. P. Kael-
bling, “Policy search for multi-robot coordination under uncertainty,”
The International Journal of Robotics Research, vol. 35, no. 14,
pp. 1760–1778, 2016.

[6] R. Vidal, O. Shakernia, and S. Sastry, “Following the flock [formation
control],” IEEE Robotics & Automation Magazine, vol. 11, no. 4,
pp. 14–20, 2004.

[7] H. Wang, D. Guo, X. Liang, W. Chen, G. Hu, and K. K. Leang,
“Adaptive vision-based leader–follower formation control of mobile
robots,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4,
pp. 2893–2902, 2017.

[8] X. Liang, H. Wang, Y.-H. Liu, W. Chen, and T. Liu, “Formation control
of nonholonomic mobile robots without position and velocity measure-
ments,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 434–446,
2018.

[9] T. Gustavi and X. Hu, “Observer-based leader-following formation
control using onboard sensor information,” IEEE Transactions on
Robotics, vol. 24, no. 6, pp. 1457–1462, 2008.

[10] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” The International Journal of Robotics
Research, vol. 36, no. 10, pp. 1073–1087, 2017.

[11] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K.
Hedrick, “Learning a deep neural net policy for end-to-end control
of autonomous vehicles,” in American Control Conference, pp. 4914–
4919, 2017.

[12] A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. P. Rodrı́guez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro, et al., “A machine
learning approach to visual perception of forest trails for mobile
robots.,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 661–
667, 2016.

[13] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep
control policies for autonomous aerial vehicles with MPC-guided
policy search,” in IEEE International Conference on Robotics and
Automation, pp. 528–535, 2016.

[14] P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy
for distributed multiagent navigation,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 656–663, 2017.

[15] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in
Advances in Neural Information Processing Systems, pp. 2137–2145,
2016.

[16] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint arXiv:1603.07285, 2016.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[18] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1321–1326, 2013.

[19] D. V. Dimarogonas and K. H. Johansson, “On the stability of distance-
based formation control,” in IEEE Conference on Decision and Con-
trol, pp. 1200–1205, 2008.

[20] J. Dequaire, P. Ondrúška, D. Rao, D. Wang, and I. Posner, “Deep
tracking in the wild: End-to-end tracking using recurrent neural
networks,” The International Journal of Robotics Research, vol. 37,
no. 4-5, pp. 492–512, 2018.

765

