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Abstract: Distance-based formation control becomes popular since it does not require absolute positions to be sensed by
each agent, which makes it suitable for vision-based robot formation control tasks. In this paper, we present a distributed
control law for a group of three differential-drive robots to maintain a desired formation with a common desired velocity.
As a first step, the control law for a group of three single-integrator modeled agents is presented and proved. Then,
the control law is extended to a group of nonholonomic robots by using a coordinate transformation technique while
considering the input saturation nonlinearity. Finally, the designed controller is verified in a robot simulator V-REP.
Simulation results have shown that the control performance is satisfactory.
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1 Introduction

Multi-robot formation control has attracted a significant
amount of research attentions in recent decades. Accord-
ing to [1], the problem of multi-agent formation control
can be classified into position-, displacement- and distance-
based formation control depending on the system’s sens-
ing capabilities and interaction topologies. Position-based
formation control imposes the highest requirement on the
system’s sensing capability, where the absolute position
of each agent with respect to a common global reference
frame must be known. In comparison, displacement-based
formation control uses only the local frame of each agent
instead of a common global reference frame. Yet, the local
reference frame used in the displacement-based formation
control must have the same orientation. In contrast, the
distance-based formation control eliminates the require-
ment of a common orientation between different agents,
which makes it suitable for vision-based regulation and
control of mobile robots [2–5], and also for cases where
sensing absolute position and orientation is difficult, e.g.,
in GPS-denied indoor environments [6]. In this paper, we
study the problem of maintaining a triangular formation of
three differential-drive robots using distance-based forma-
tion control.
Despite of the sensing advantage, distance-based forma-
tion control imposes a more stringent requirement on the
interaction topology than the position- and displacement-
based formation control. While the interaction graph does
not have to be rigid for position- and displacement-based
formation, graph rigidity is usually required for distance-
based formation control [7]. Meanwhile, it is pointed out
in [8] that while rigid formations are not globally stabiliz-
able with gradient-descent control laws in general, rigid tri-
angular formations can be stabilized with gradient-descent
control laws. Indeed, [9] tackles the distance-based for-
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mation control problem of three single-integrator-modeled
agents with a directed interaction graph. Inspired by [9],
we present distance-based formation control for a three-
robot system, and consider the kinematics of differential-
drive robots and actuator saturation, and implement the dis-
tributed controllers in a robotic simulator.
In this paper, we first define the distance-based control
problem for a system of three single-integrator modeled
agents with an undirected interaction graph and a common
desired velocity. We then present our main result that a
rigid formation of three single-integrator modeled agents is
stable under a distance-based control law if the initial lo-
cations of the three agents are non-collinear. Furthermore,
we extend the results to a group of differential-drive mobile
robots with actuator saturation nonlinearity. We evaluated
the performance of the controller using a robot simulator
V-REP.
The rest of the paper is organized as follows. In Section 2,
we solve the formation control problem for a group of three
single-integrator modeled agents. We then present the de-
sign of the controller for a group of differential drive robots
in Section 3. In Section 4, we evaluate the control law using
the robot simulator V-REP. Finally, the paper is concluded
in Section 5.

2 Formation Control for Single-Integrator Mod-
eled Agents

In this section, we first define the interaction topology for
a group of three agents with the single-integrator model.
Then the formation control problem is formulated, which
is followed by a gradient-descent control law designed and
proved.

2.1 Problem Statement
Suppose the motion of a group of three robots is governed
by

ṗi = vi, i ∈ 1, 2, 3 (1)



where pi = [xi, yi]
T ∈ R2 and vi = [vxi, vyi]

T ∈ R2 de-
note, respectively, the state and control of the i-th robot.
The relative displacement p̃ij of agent i with respect to
agent j is defined as p̃ij = pi − pj . Let p̃ be the stack
vector of p̃ij , i.e., p̃ = [p̃T

12, p̃
T
23, p̃

T
31]T ∈ D, where D is a

manifold in R6 defined by

D = {p̃ ∈ R6 : p̃12 + p̃23 + p̃31 = 0} (2)

The control objective is for the robots to achieve a desired
formation and a desired velocity v∗ = [v∗x, v

∗
y ]T ∈ R2.

Given the desired distances d∗ij = d∗ji ∈ (0,+∞) for any
(i, j) ∈ E+ where E+ = {(1, 2), (2, 3), (3, 1)}, the desired
formation is defined as

B = {p̃ ∈ D : ||p̃ij || = d∗ij , (i, j) ∈ E+} (3)

Note that the realizability [8] of the desired formation is
ensured by the triangle inequality d∗ij < d∗ik + d∗jk, for
distinct i, j, k ∈ V .
The interaction topology of the group of three robots can
be modeled by a graph denoted (V, E) where V is the set
of nodes, each corresponding to a robot, and E ⊆ V × V
is the set of edges (i, j). Each agent’s accessibility to its
neighbor’s displacement is signified by the set of edges.
Specifically, if an edge (i, j) exists from i to j, robot i has
access to robot j’s actual displacement p̃ji relative to robot
i and the desired distance d∗ij from robot i at all times. The
set of neighbors of the i-th robot is defined as Ni = {j ∈
V|(i, j) ∈ E}. The Laplacian Matrix L = [lij ] ∈ R|V|×|V|
of the graph is defined as

lij =


−1, if i 6= j ∧ (i, j) ∈ E
0, if i 6= j ∧ ¬(i, j) ∈ E∑
k 6=i lik, if i = j

(4)

In our case, the vertex set is V = {1, 2, 3} and the edge
set is E = {(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)}. We
assume an undirected connected gragh with the Laplacian
matrix as:

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 (5)

Assumption 1 (Initial condition). The initial positions of
the robots are not collinear [1,8]. Namely, p̃(0) /∈ C, where

C , {p̃ ∈ D : det[p̃12, p̃23] = 0} (6)

Let the formation separation error eij between agents i and
j be defined as

eij = ||p̃ij || − d∗ij , ∀(i, j) ∈ E . (7)

We define our distance-based formation control problem in
the following.

Problem 1 (Single integrator). Given a three-agent system
with Laplacian matrix (5), single-integrator model (1), and
Assumption 1, find a control law vi with i ∈ V such that as
t→∞, each robot reaches the desired velocity

ṗi → v∗, i ∈ V. (8)

and the system achieves the desired formation B, i.e.,

eij → 0 (i, j) ∈ E (9)

2.2 Control Design
With a set of potential functions that take on their mini-
mums at the desired distances, a gradient-descent control
law can drive the system to its desired formation. A con-
troller for single-integrator modeled agents can be written
as

vi = v∗ −∇pi

∑
j∈Ni

γij(||pj − pi||2), (10)

where γij : (0,+∞) → R is a differentiable potential
function with only one minimum at d∗2ij . We choose γij
as

γij(||pj − pi||2) =
K

2

(
||pj − pi||2 − d∗2ij

)2
||pj − pi||2

. (11)

where K > 0. Note that γij quickly approaches infinity as
||pj − pi||2 → 0. This property enables effective collision
avoidance between neighboring robots.
Let βij(p̃) , ||p̃ij ||2 = ||pj − pi||2. The partial derivative
of γij with respect to βij can be written as

ρij =
∂γij(βij)

∂βij
=
K
(
β2
ij − d∗4ij

)
β2
ij

. (12)

The domain of definition of function ρij is D \ Z where
Z = Z12 ∪ Z23 ∪ Z31 and

Zij = {p̃ ∈ D : p̃ij = 0}, (i, j) ∈ E+.

Then the controller (10) can be rewritten as

vi =v∗ −
∑
j∈Ni

∂γij(βij)

∂βij

∂βij
∂pi

=v∗ −
∑
j∈Ni

ρij · (pi − pj)

=v∗ −
∑
j∈Ni

ρij p̃ij .

(13)

In view of (13), the system of inter-agent displacements can
be written as

˙̃p =

 ˙̃p12

˙̃p23

˙̃p31

 =

ṗ1 − ṗ2

ṗ2 − ṗ3

ṗ3 − ṗ1

 =

v1 − v2

v2 − v3

v3 − v1


= −

ρ12p̃12 + ρ13p̃13 − ρ21p̃21 − ρ23p̃23

ρ21p̃21 + ρ23p̃23 − ρ31p̃31 − ρ32p̃32

ρ31p̃31 + ρ32p̃32 − ρ12p̃12 − ρ13p̃13


= −

 ρ12p̃12 − ρ31p̃31 + ρ12p̃12 − ρ23p̃23

−ρ12p̃12 + ρ23p̃23 − ρ31p̃31 + ρ23p̃23

ρ31p̃31 − ρ23p̃23 − ρ12p̃12 + ρ31p̃31


= −

 2 −1 −1
−1 2 −1
−1 −1 2

⊗ I2

ρ12p̃12

ρ23p̃23

ρ31p̃31


= −Aν

(14)



where

A , L⊗ I2 =


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

 ,

ν , ((W ⊗ I2)p̃) =

ρ12p̃12

ρ23p̃23

ρ31p̃31

 ∈ R6,

and
W = diag{ρ12, ρ23, ρ31}

Note that (14) is not defined on Z .

Lemma 1. ˙̃p = 0 if and only if ρ12p̃12 = ρ23p̃23 =
ρ31p̃31 .

Proof. Letting ˙̃p = 0 in (14) yields

Aν = 0. (15)

We know that matrixA has an eigenvalue λ1 = 0 with two
eigenvectors ν1 and ν2 associated with it, where

ν1 =


1
0
1
0
1
0

 , ν2 =


0
1
0
1
0
1

 .

Hence the solution to (15) is ν = α1ν1 + α2ν2 with
α1, α2 ∈ R, namely,

ρ12p̃12

ρ23p̃23

ρ31p̃31

 =


α1

α2

α1

α2

α1

α2

 .

Equivalently,

ρ12p̃12 = ρ23p̃23 = ρ31p̃31 = [α1, α2]T.

Let G be a set of p̃ in which ˙̃p = 0. From Lemma 1,

G = {p̃ ∈ D : ρ12p̃12 = ρ23p̃23 = ρ31p̃31}.

Since ρ12 = ρ23 = ρ31 = 0 implies ˙̃p = 0, noticing (6),
the set of desired equilibria B is a proper subset of G. Let
M = G \ B. In light of (3) and (12), we have

B = {p̃ ∈ D : ρ12 = ρ23 = ρ31 = 0}.

In view of (6), it follows that

M = C ∩ G =M0 ∪M1 ∪M2 ∪M3 ∪M4, (16)

where

M0 = (C ∪ G) \ (Z12 ∪ Z23 ∪ Z31) = (C ∪ G) \ Z
M1 = (C ∪ G) ∩ Z12 \ (Z23 ∪ Z31)

M2 = (C ∪ G) ∩ Z23 \ (Z12 ∪ Z31)

M3 = (C ∪ G) ∩ Z31 \ (Z12 ∪ Z23)

M4 = Z12 ∩ Z23 ∩ Z31

We will show that trajectories starting outside of C are
bounded away from M. This can be achieved in several
steps. As a first step, the following lemma shows that it
holds within finite time.

Lemma 2. If p̃(0) /∈ C, then p̃(t) /∈ C for t < +∞.

Proof. For p, q ∈ R2, determinant det[p, q] = pTGq,
where

G =

[
0 1
−1 0

]
In view of (2) and (14), it follows that

d

dt
det[p̃12, p̃23]

=
d

dt

(
p̃T

12Gp̃23

)
= ˙̃pT

12Gp̃23 + p̃T
12G ˙̃p23

=− (ρ12p̃12 − ρ31p̃31 + ρ12p̃12 − ρ23p̃23)TGp̃23

− p̃T
12G(−ρ12p̃12 + ρ23p̃23 − ρ31p̃31 + ρ23p̃23)

=− ρ12p̃
T
12Gp̃23 + ρ31p̃

T
31Gp̃23 − ρ12p̃

T
12Gp̃23

− p̃T
12Gρ23p̃23 + p̃T

12Gρ31p̃31 − p̃T
12Gρ23p̃23

=− 2(ρ12 + ρ23) det[p̃12, p̃23]

+ ρ31 (det[p̃31, p̃23] + det[p̃12, p̃31])

=− 2(ρ12 + ρ23 + ρ31) det[p̃12, p̃23]

(17)

Hence,

det[p̃12(t), p̃23(t)]

= det[p̃12(0), p̃23(0)]e−2
∫ t
0

(ρ12(z)+ρ23(z)+ρ31(z))dz

(18)

Note that ρij(t) < K < +∞ for (i, j) ∈ E+ be-
cause of (12). Considering that p̃(0) /∈ C is equivalent
to det[p̃12(0), p̃23(0)] 6= 0, we have, for t < +∞, that

|det[p̃12(t), p̃23(t)]| > |det[p̃12(0), p̃23(0)]|e−2Kt > 0.

Hence, p̃(t) /∈ C for t < +∞.

In light of (16), M ⊂ C. Therefore, p̃(t) /∈ M for t <
+∞. It remains to be shown that p̃(t) will not enter M
as t → +∞, which will be done by proving Lemma 3 and
Lemma 4. Let Θ : D \ Z → R be a function Θ(p̃) =
ρ12(p̃) + ρ23(p̃) + ρ31(p̃).

Lemma 3. There exists an open set W ⊂ D such that
M⊂W and for p̃ ∈ W \ Z , Θ(p̃) < 0.

Proof. In (16),M is divided into 5 subsets. Note that Θ(p̃)
is defined onM0, but not onM1,M2,M3, orM4. Be-
fore proceeding, let

Wi(ε) , {p̃ ∈ D : inf
m∈Mi

||p̃−m|| < ε}.



First let’s suppose p̃ ∈ M0. Since M0 ⊂ G, we have
ρ12p̃12 = ρ23p̃23 = ρ31p̃31. Since M0 ⊂ C, we have
||p̃ij || = ||p̃jk|| + ||p̃ki|| for distinct i, j, k ∈ V . Without
loss of generality, suppose

||p̃12|| = ||p̃23||+ ||p̃31||. (19)

Because M0 ⊂ C means p̃12, p̃23 and p̃31 are collinear,
we have

ρ12||p̃12|| = −ρ23||p̃23|| = −ρ31||p̃31||. (20)

Now we will prove ρ12 > 0 by contradiction. SinceM0 ∩
Z = ∅, we have ρ12, ρ23, ρ31 6= 0. Suppose ρ12 < 0. With
(20), it follows that ρ23 > 0 and ρ31 > 0. Considering (12),
we have ||p̃12|| < d∗12, ||p̃23|| > d∗23 and ||p̃31|| > d∗31. As
the triangular inequality must be satisfied for d∗12, d∗23 and
d∗31, we have

0 < d∗23 + d∗31 − d∗12 < ||p̃23||+ ||p̃31|| − ||p̃12||

This is in contradiction with (19). Hence, ρ12 > 0. In light
of (19) and (20), we have

Θ(p̃) = ρ12 + ρ23 + ρ31

= ρ12 −
||p̃12||
||p̃23||

ρ12 −
||p̃12||
||p̃31||

ρ12

= ρ12

(
1− ||p̃12||
||p̃23||

− ||p̃12||
||p̃31||

)
< 0

Since ρij is locally Lipschitz, there must exist an ε0 > 0
such that if p̃ ∈ W0(ε0), then Θ(p̃) < 0.
Next let’s analyze the value of Θ(·) in the neighborhood of
M1,M2 andM3. Observing (12), we find ρij is bounded
above by K, but does not have a lower bound. Let ε1 =
3−1/4 · d∗12. Suppose p̃ ∈ W1(ε1) \ Z . SinceM1 ⊂ Z12,
we have ||p̃12|| < ε1. In view of (12), we find

ρ12 <
K
(
ε41 − d∗412

)
ε41

< −2K.

Since ρ23, ρ31 < K, it follows that Θ(·) < 0. In summary,
Θ(p̃) < 0 onW1(ε1)\Z . The same reasoning can be used
to show Θ(·) < 0 on both W2(ε2) \ Z and W3(ε3) \ Z ,
where ε2 = 3−1/4 · d∗23 and ε3 = 3−1/4 · d∗31.
Finally, it is obvious that Θ(·) < 0 on W4(ε4) \ Z where
ε4 = min{d∗12, d

∗
23, d

∗
31}.

Let

W =
4⋃
i=0

Wi(εi). (21)

SinceMi ⊂ Wi(εi), we have

M =
4⋃
i=0

Mi ⊂
4⋃
i=0

Wi(εi) =W.

In conclusion, there exists an open set W such thatM ⊂
W and for p̃ ∈ W \ Z , Θ(p̃) < 0.

Lemma 4. If the initial positions of the robots are not
collinear, then the trajectories of system (1) with Laplacian
matrix (5) driven by control law (13) will not approach M
as t→∞.

Proof. We will prove this by contradiction. Suppose the
opposite is true. That is, there exists a trajectory p̃(t) such
that p̃(0) ∈ D \ C and p̃(t) tends toM as t→ +∞. Since
M⊂ C, we have

lim
t→∞

det[p̃12(t), p̃23(t)] = 0. (22)

Let W be the open set in (21). Since W ⊃ M and
p̃(t) tends to M as t → +∞, there must exist a time
T ∈ (0,+∞) such that p̃(t) ∈ W for t ∈ [T,+∞). Ac-
cording to Lemma 2, p̃(T ) /∈ C because T < +∞. Hence,

det[p̃12(T ), p̃23(T )] > 0.

From (17), we can obtain that, for t > T ,

det[p̃12(t), p̃23(t)]

= det[p̃12(T ), p̃23(T )]e−2
∫ t
T

(ρ12(z)+ρ23(z)+ρ31(z))dz

= det[p̃12(T ), p̃23(T )]e−2
∫ t
T

(Θ(p̃(z)))dz

>det[p̃12(T ), p̃23(T )] > 0.

(23)

As t→ +∞, (23) is in contradiction with (22). Therefore,
all trajectories starting outside C will not approachM even
if t→ +∞.

Proposition 1 (Single integrator). Consider system (1)
with Laplacian matrix (5), driven by control law (13). If
Assumption 1 is satisfied, then limt→∞ eij(t) = 0 for
(i, j) ∈ E and limt→∞ ṗi = v∗ for i ∈ V . That is, Prob-
lem 1 is solved by the controller (13).

Proof. Consider the candidate Lyapunov function

V (p̃) =γ12(β12(p̃)) + γ23(β23(p̃)) + γ31(β31(p̃))

=
∑

(i,j)∈E+
γij(βij(p̃))

=
∑

(i,j)∈E+

(βij(p̃)− d∗2ij )2

βij(p̃)
.

Obviously, we have{
V (p̃) = 0, ∀p̃ ∈ B;

V (p̃) > 0, otherwise.

Since

β̇ij(p̃) =
d

dt
||p̃ij ||2 = 2p̃T

ij
˙̃pij ,

The derivative of the candidate Lyapunov functioncan be



derived as

V̇ (p̃) =
∂V

∂β12
β̇12 +

∂V

∂β23
β̇23 +

∂V

∂β31
β̇31

=
∂γ12(β12)

∂β12
β̇12 +

∂γ23(β23)

∂β23
β̇23 +

∂γ31(β31)

∂β31
β̇31

=ρ12β̇12 + ρ23β̇23 + ρ31β̇31

=2ρ12p̃
T
12

˙̃p12 + 2ρ23p̃
T
23

˙̃p23 + 2ρ31p̃
T
31

˙̃p31

=2 ·

ρ12p̃12

ρ23p̃23

ρ31p̃31

T  ˙̃p12

˙̃p23

˙̃p31


=− 2νTAν.

Since A is positive semidefinite and K is a positive num-
ber, we have {

V̇ (p̃) = 0, ∀p̃ ∈ B;

V̇ (p̃) ≤ 0, otherwise.

Letting V̇ (p̃) = 0 yields

νTAν = 0 (24)

Using eigendecomposition,A can be factorized as

A = QΛQ−1

where Λ = diag{0, 0, 3, 3, 3, 3}, and

Q =



√
3

3 0 −
√

2
2 0 −

√
2
√

3
6 0

0
√

3
3 0 −

√
2

2 0 −
√

2
√

3
6√

3
3 0

√
2

2 0 −
√

2
√

3
6 0

0
√

3
3 0

√
2

2 0 −
√

2
√

3
6√

3
3 0 0 0

√
2
√

3
3 0

0
√

3
3 0 0 0

√
2
√

3
3


is an orthogonal matrix.
Then Eqn. (24) can be rewritten as

0 = νTAν = νTQΛQ−1ν

=
(
QTν

)T
Λ
(
QTν

)
.

It follows that

QTν = [
√

3α1,
√

3α2, 0, 0, 0, 0]T

for some α1, α2 ∈ R. Hence,

ρ12p̃12

ρ23p̃23

ρ31p̃31

 = ν = Q



√
3α1√
3α2

0
0
0
0

 =


α1

α2

α1

α2

α1

α2

 .

Equivalently, p̃ ∈ G. By Lemma 2 and Lemma 4, it follows
that p̃ ∈ B. Thus by Lasalle’s Invariance Principle, we
can conclude that B is asymptotically stable. Therefore,
limt→∞ eij(t) = 0 for (i, j) ∈ E .
Since limt→∞ eij(t) = 0, the second term of the control
law (13) also tends to 0. It follows that limt→∞ ṗi = v∗

for i ∈ V .

(a)
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Figure 1: Kinematics of a differential drive robot. (a) Pio-
neer P3-DX robot; (b) Schematic illustration.

3 Formation Control for Differential Drive
Robots

In this section, we first present the kinematic model of a
group of differential drive robots. Then the controller dis-
cussed in Section 2 is generalized to control this nonholo-
nomic multi-robot system.

3.1 Differential drive robot kinematics
Pioneer P3-Dx, a two-wheel differential drive robot, is con-
sidered in this paper. Assuming that it moves only on a
planer surface, its state equation can be expressed as

q̇i = G(qi) satvm (Γi) , i = 1, 2, 3, (25)

where the i-th robot’s pose qi = [qxi, qyi, θi]
T ∈ SE(2)

consists of the displacement [qxi, qyi]
T ∈ R2 of the mid-

point of the line segment connecting the robot’s two driving
wheels and the orientation θi ∈ SO(2) of the robot. The
matrixG(qi) is written as

G(qi) =


cos θi

2

cos θi
2

sin θi
2

sin θi
2

−1

l

1

l

 ,
where l is the distance between the two driving wheels. The
control input Γi = [vLi, vRi]

T ∈ R2 represents the wheel
velocity input, which is comprised of the left wheel linear
speed vLi and the right wheel linear speed vRi of the i-th
robot. The saturation function satvm : R2 → [−vm, vm]2

is defined as

satvm (Γi) =

[
satvm (vLi)
satvm (vRi)

]
where satvm(v) , sgn(v) · min{vm, |v|} and , and vm is
the maximum speed limit.

3.2 Coordinate Transformation
As shown in Fig.1b, we define a reference point located at
pi = [xi, yi]. If we set c = l/2, the nonholonomic kine-
matic model (25) can be converted to the single-integrator
model (1). That is, in the new coordinate defined by[

xi
yi

]
=

[
qxi + c cos θi
qyi + c sin θi

]
, (26)



we can derive the robot model as [10][
ẋi
ẏi

]
=

[
vxi
vyi

]
. (27)

Control input Γ′i ∈ R2 is defined as

Γ′i ,

v′Li
v′Ri



=

 sin θi +
l

2c
cos θi sin θi −

l

2c
cos θi

− sin θi +
l

2c
cos θi sin θi +

l

2c
cos θi


vxi
vyi

 .
(28)

After the coordinate transformation, we can apply the con-
trol law (13) to the single-integrator model based on Propo-
sition 1.

3.3 Actuator Saturation Nonlinearity
For Pioneer robots, the maximum speed of each
wheel/actuator is limited to vm in (25). The velocity
generated by the robot controller needs to undergo
the following transformation before being input to the
actuators.[

vLi

vRi

]
= min

{
vm,

vm
max{|v′Li|, |v′Ri|}

}
·
[
v′Li
v′Ri

]
(29)

Here we prove that the trajectory of a robot will not be
changed by this transformation.
We omit the subscript i in the following proof. The curva-
ture of the trajectory is defined as

R ,
ds

dθ
=
ds

dt

(
dθ

dt

)−1

where

ds ,
√
dx2 + dy2.

Since
dθ

dt
=
vL − vR

l
,

we find that, before the transformation, the radius of curva-
ture of the trajectory is

R′ =
2(v′L − v′R)

l(v′L + v′R)
.

After the transformation, the radius of curvature of the tra-
jectory is

R =
2(vL − vR)

l(vL + vR)
. (30)

Substituting the transformation (29) into (30), it can be seen
that

R′ = R, ∀ vL, vR

Hence, the radius of curvature is preserved by this trans-
formation. Thus, the trajectory is not changed by applying
(29).
The control procedure for each differential-drive robot (25)
is summarized in Algorithm 1.

Algorithm 1 The control algorithm for the i-th robot
Input: The relative displacements p̃ij of robot i from robots j,

j ∈ Ni, pose qi of robot i, and the desired velocity v∗.
Output: The wheel velocities Γi.

1: Calculate the control input for the single-integrator model
vi ← Substitute v∗ and p̃ij , j ∈ Ni, into (13)

2: Apply the input transformation to obtain the wheel velocities
Γ′i ← Substitute vi and qi into (28)

3: Scale down the wheel velocities
Γi ← Substitute Γi into (29)

4 Simulation

In this section, we demonstrate the performance of the de-
signed controller in a robot simulator.

4.1 Experiment Setup
A robot simulator V-REP [11] is used to evaluate the per-
formance of the controller. In V-REP, Bullet Physics Li-
brary makes the robot dynamics calculation realistic as the
physical robot platform. The simulation scenario, contain-
ing three P3-DX robots on a flat floor without obstacles,
is shown in Fig. 2. Each driving wheel motor of the robot
is configured to be capable of producing 3N·m of torque,
while the maximum linear speed of the driving wheels are
limited to 0.7 m/s.
The controller is implemented in Python as a remote API
client that operates in synchronization with the simulation
loop which runs at 20Hz. The velocity from the controller
is input to the robot motors while a built-in low-level con-
troller calculates the torque to be applied to each wheel
based on the difference between the target and actual wheel
velocities.

4.2 Simulation Results
We evaluate the performance of the control law summa-
rized in the stepwise procedure described in Section 3.3.
The setup of the simulation is described as follows. The de-
sired formation is set to d∗12 = 1 m, d∗23 = 2 m, and d∗31 =√

3 m. The maximum wheel linear speed is vm = 0.7m/s.
The common desired velocity is v∗ = [0.25, 0.5

√
3] (m/s).

The controller parameter is chosen as K = 0.15.
Simulation results are shown in Fig. 2 and Fig. 3. It can be
seen that the formation separation errors reduce from 4m to
0 within 7 seconds. The robot wheel velocities initially are
maxed at 0.7m/s and then settled to the common desired
velocity 0.5m/s. Fig. 3b shows the trajectories of the three
robots that achieve the triangular formation and then move
in consensus at the desired velocity.

5 Conclusion

In this paper, we designed a distance-based formation
control law for a group of three differential-drive robots.
Specifically, we applied a coordinate transformation tech-
nique to convert the nonholonomic robot kinematic model
to a single-integrator model. Then a gradient-descent con-
trol law was employed to stabilize the formation of the
single-integrator modeled robot system. The actuator input
saturation nonlinearity was also considered. Finally, the



(a) t = 0.0 s. (b) t = 1.5 s. (c) t = 3.0 s. (d) t = 4.5 s. (e) t = 6.0 s. (f) t = 7.5 s.

Figure 2: Snapshots of the simulation scenario in V-REP robot simulator.
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Figure 3: Performance of the proposed control law. (a) Formation separation error eij(t). (b) Trajectories of the three
robots are denoted by solid curves in red, green and blue. Triangles represent the pose of the robots every 3 seconds. Solid
circles and black curves illustrate the trajectory of their center of mass. (c) Robot control input [vLi, vRi]

T.

performance of the control law was evaluated using a robot
simulator V-REP. In the future work, we plan to extend the
three-robot system control to a larger group of robots con-
sisting of triangular structures.
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