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ABSTRACT
Formation control of multi-robot systems has been extensively stud-
ied bymodel-basedmethods, where analytic control inputs are con-
structed based on the kinematics and/or dynamics model and the
communication graphs of the multi-robot system. Recently, driven
by remarkable advances of robotic learning techniques, emerging
studies on learning-based methods for formation control have been
developed for adaptive and intelligent control of multi-robot sys-
tems. This paper aims to provide a brief overview of our recent
development of learning-based formation control, and compare it
with a model-based method for a case study of three-robot for-
mation control. Fundamental principles, experimental results and
technical challenges are presented, comparing the two different
methodologies.
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1. Introduction

1.1. Motivation and contribution

Formation control of multi-robot systems is an essential and common problem in a vast
range of robotic applications such as cooperative area exploration, self-driving vehicles and
security patrols (Guo, 2017). Conventionally, multi-robot formation control is addressed
bymodel-basedmethods where algorithms are designed to compute analytic robot control
inputs using the knowledge of robot kinematic and/or dynamic model and communica-
tion graph (Oh, Park, & Ahn, 2015; Qu, 2009). Model-based methods can be implemented
efficiently in real time, however, their reliance on model accuracy and communication
reliability makes the performance of those methods vulnerable to uncertainties and dis-
turbances of the system and environment. As the complexity of the application domains
of formation control constantly increases, the demands for more adaptive and intelli-
gent robot controls are on the rise, thus motivate the development of data-driven control
methodologies for multi-robot formation.

Multi-agent learning has long been an active research area where learning algorithms
are devised to have multi-agent systems (MAS) attain their optimal actions and/or coordi-
nation via experience obtained through interacting with other agents and the environment
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(Amato et al., 2016; Liu, Amato, Anesta, Griffith, & How, 2016; Tuyls & Weiss, 2012).
Learning from experience provides an alternative methodology for multi-agent control or
planning when hand-engineering the policies is difficult or even impossible to obtain in
complex environments. The difficulties could stem from the lack of complete knowledge
of the agent and environment models, e.g. unknown observation probabilities, unknown
behaviours of other agents, and non-deterministic environments. Thus, designing agent
behaviours in advance is not appropriate in such scenarios. A growing number of work
on multi-agent learning algorithms have emerged in the past a few years, and have been
applied in robot soccer, mobile sensor networks and video games (Amato, Chowdhary,
Geramifard, Üre, & Kochenderfer, 2013; Barrett & Stone, 2015; Foerster et al., 2017).

Multi-robot formation control as a sub-field of MAS problems could inherently lever-
age the advancement of multi-agent learning methods to address the emerging chal-
lenges faced by conventional model-based. Pioneering studies reported in (Aykin, Knopp,
& Diepold, 2018; Hüttenrauch, Adrian, & Neumann, 2019; Jiang, Chen, & Guo, 2019)
have explored new methods that use deep learning methods for multi-robot formation
control. This paper aims to provide the comparison of the model-based and the learning-
based methods. Specifically, two recent work of the different methodologies are briefly
overviewed for a three-robot formation control problem, and comparisons are presented
in terms of the fundamental principles, experimental results and technical challenges.

1.2. Related work

Formation control of multi-agent systems was initially inspired from the natural phe-
nomena of bird flocking and fish schooling, where a group of agents follow the same
direction and speed whilemaintaining certain geometric shape (Guo, 2017; Oh et al., 2015;
Qu, 2009). Existing model-based methods of multi-agent formation control can be classi-
fied into position-, displacement-, and distance-based controls, where the desired formation
is defined by the absolute position of each agent with respect to a global reference frame, the
desired displacements with respect to a global reference frame, and the desired inter-agent
distances, respectively (Oh et al., 2015). There is a tradeoff between the sensing capability
and interaction topology in the above categorisation, and distance-based control requires
less sensing capability but more interactions among agents. Recently, researchers proposed
vision-based control schemes to alleviate the requirement of inter-robot communication
(Gustavi &Hu, 2008; Liang,Wang, Liu, Chen,&Liu, 2017; Vidal, Shakernia, & Sastry, 2004;
Wang et al., 2016). For example, in the work by Gustavi and Hu (2008), the dynamics
between the leader and follower robots is modelled using the distance, orientation and
bearing angle, and a dynamic feedback controller was designed using an observer that esti-
mates the neighbour’s speed. Thesemodel-based formation controlmethods either require
the availability of full or partial statemeasurement, or rely on deliberate perceptionmodule
that explicitly returns measurements (such as bearing and distances) from robot sensors
through traditional sensor fusion techniques.

In the last few years, a new research direction has been actively pursued, which
utilises the enormous expressive capability of deep neural nets to directly process high-
dimensional raw sensing data for self-driving cars (Rausch et al., 2017; Wulfmeier, Rao,
Wang, Ondruska, & Posner, 2017). Also, the human-level intelligence for robot control
has been proposed with the aim to develop robot decision-making policies that generate
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actions directly from raw observation, so as to mimic the functioning and learning pro-
cess of human brains (Mnih et al., 2015). Recent deep learning methods have achieved
great success in learning representation from raw sensing data using deep neural networks
(DNN), thus provide an end-to-end framework for learning robot control policies that
combine multiple decoupled modules from robot perception to action. To mention a few
studies of robot formation control using deep learningmethods, Aykin et al. (2018) applied
deep Q-learning to the leader–follower formation control problem. A deep neural net-
work was used to represent the robot’s policy that maps raw image observations to actions.
Jiang et al. (2019) studied the problem of learning decentralised formation control poli-
cies for multi-robot formation. A DNN model that processes robot’s LIDAR observations
to generate motor control was designed and trained in a centralised manner using super-
vised learning with expert demonstration data generated by a model-based controller. The
trained model is then deployed on each robot as a decentralised controller that only relies
on local observation to achieve formation without inter-robot communication. Hütten-
rauch et al. (2019) proposed a deep state representation based on DNN for end-to-end
learning control of robotic swarm systems. The proposed approach addresses the chal-
lenges of high and possibly changing dimentionality of robot observations in robot policy
learning. The aforementionedwork shed light on how to learn formation control fromhigh
dimensional observation received by the robots using deep learning methods.

1.3. Paper organisation

The reminder of this paper is as follows. Section 2 presents a method of model-based
formation control for a three-robot systems using distance measurements only. Section 3
briefly overviews our recent method on learning decentralised control of robot formation.
Section 4 provides the comparison between themodel-based and learning-basedmethods.
Section 5 concludes the paper.

2. Model-basedmethod for formation control

The problem of multi-agent formation control can be classified into position-,
displacement- and distance-based formation control depending on the system’s sensing
capabilities and interaction topologies. In this section, we introduce a distance-based for-
mation control method for a three-robot system that was originally developed in Chen,
Jiang, and Guo (2019). The main experimental results show stable rigid formation under
the distributed control law.

2.1. Formation control for single-integratormodelled robots

2.1.1. Problem statement
Suppose the motion of a group of three robots is governed by

ṗi = vi, i ∈ V � {1, 2, 3}, (1)

where pi = [xi, yi]T ∈ R
2 and vi = [vxi, vyi]T ∈ R

2 denote, respectively, the state and con-
trol of the ith robot. The relative displacement p̃ij of agent iwith respect to agent j is defined
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as p̃ij = pi − pj. Let p̃ be the stack vector of p̃ij, i.e. p̃ = [p̃T12, p̃
T
23, p̃

T
31]T ∈ D, whereD is a

manifold in R
6 defined by

D = {p̃ ∈ R
6 : p̃12 + p̃23 + p̃31 = 0}. (2)

The control objective is for the robots to achieve a desired formation and a desired velocity
v∗ = [v∗

x , v∗
y ]T ∈ R

2. Given the desired distances d∗
ij = d∗

ji ∈ (0,+∞) for any (i, j) ∈ E+

where E+ = {(1, 2), (2, 3), (3, 1)}, the desired formation is defined as

B = {p̃ ∈ D : ‖p̃ij‖ = d∗
ij, (i, j) ∈ E+}. (3)

The realisability Oh and Ahn (2011) of the desired formation is ensured by the triangle
inequality d∗

ij < d∗
ik + d∗

jk, for distinct i, j, k ∈ V .
The interaction topology of the group of three robots can be modelled by a graph

denoted (V , E)whereV is the set of nodes, each corresponding to a robot, and E ⊆ V × V
is the set of edges (i, j). Each agent’s accessibility to its neighbour’s displacement is signi-
fied by the set of edges. Specifically, if an edge (i, j) exists from i to j, robot i has access to
robot j’s actual displacement p̃ji relative to robot i and the desired distance d∗

ij from robot
i at all times. The set of neighbours of the ith robot is defined asNi = {j ∈ V | (i, j) ∈ E}.
Ni = {1, 2, 3} \ {i}. The Laplacian Matrix L = [lij] ∈ R

|V|×|V| of the graph is defined as

lij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, if i �= j ∧ (i, j) ∈ E
0, if i �= j ∧ ¬(i, j) ∈ E∑
k�=i

lik, if i = j
(4)

In the three-robot system case, the vertex set is V = {1, 2, 3} and the edge set is E =
{(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)}. Assume an undirected connected gragh with the
Laplacian matrix as:

L =
⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦ (5)

Assumption 2.1 (Initial condition): The initial positions of the robots are not collinear
(Oh & Ahn, 2011). Namely, p̃(0) /∈ C, where

C � {p̃ ∈ D : det[p̃12, p̃23] = 0} (6)

Let the formation separation error eij between agents i and j be defined as

eij = ‖p̃ij‖ − d∗
ij, ∀(i, j) ∈ E+. (7)

The distance-based formation control problem is defined as follows.

Problem 2.1 (Single integrator): Given a three-agent system with Laplacian matrix (5),
single-integrator model (1), and Assumption 2.1, find a control law vi with i ∈ V such that
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as t → ∞, each robot reaches the desired velocity

ṗi → v∗, i ∈ V (8)

and the system achieves the desired formation B, i.e.
eij → 0 (i, j) ∈ E+ (9)

2.1.2. Control design
With a set of potential functions that have their minimums at the desired distances, a
gradient-descent control law can drive the system to its desired formation. A controller
for single-integrator modelled agents can be written as

vi = v∗ − ∇pi

∑
j∈Ni

γij(‖pj − pi‖2), (10)

where γij : (0,+∞) → R is a differentiable potential function with only one minimum at
d∗2
ij . We choose γij as

γij(‖pj − pi‖2) = K
2

(‖pj − pi‖2 − d∗2
ij )2

‖pj − pi‖2
, (11)

where K>0. Note that γij quickly approaches infinity as ‖pj − pi‖2 → 0. This property
enables effective collision avoidance between neighbouring robots.

Let βij(p̃) � ‖p̃ij‖2 = ‖pj − pi‖2. The partial derivative of γij with respect to βij can be
written as

ρij � ∂γij(βij)

∂βij
=

K(β2
ij − d∗4

ij )

β2
ij

. (12)

The domain of definition of function ρij isD \ Z where Z � Z12 ∪ Z23 ∪ Z31 and

Zij � {p̃ ∈ D : p̃ij = 0}, (i, j) ∈ E+.

Then the controller (10) can be rewritten as

vi = v∗ −
∑
j∈Ni

∂γij(βij)

∂βij

∂βij

∂pi
= v∗ −

∑
j∈Ni

ρij · (pi − pj) = v∗ −
∑
j∈Ni

ρijp̃ij. (13)

Proposition 2.1 (Single integrator): Consider system (1) with Laplacianmatrix (5), driven
by control law (13). If Assumption 2.1 is satisfied, then limt→∞ eij(t) = 0 for (i, j) ∈ E+ and
limt→∞ ṗi = v∗ for i ∈ V . That is, Problem 2.1 is solved by the controller (13).

The proof of Proposition 2.1 can be found in Chen et al. (2019).

2.2. Formation control for differential drive robots

In this section, we present the generalisation of the controller proposed in Section 2.1 to
non-holonomic multi-robot system.
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Figure 1. Kinematics of a differential drive robot: (a) Pioneer P3-DX robot; (b) Schematic illustration.

2.2.1. Differential drive robot kinematics
The two-wheel differential drive robot, Pioneer P3-DX as shown in Figure 1(a), is consid-
ered for the multi-robot system. Assuming that it moves only on a planar surface, its state
equation can be expressed as

q̇i = G(qi) satvm(�i), i ∈ {1, 2, 3}, (14)

where the ith robot’s pose qi = [qxi, qyi, θi]T ∈ SE(2) consists of the displacement
[qxi, qyi]T ∈ R

2 of the midpoint of the line segment connecting the robot’s two driving
wheels and the orientation θi ∈ SO(2) of the robot. The matrix G(qi) is written as

G(qi) =

⎡
⎢⎢⎢⎢⎢⎣

cos θi
2

cos θi
2

sin θi

2
sin θi

2
−1

l
1
l

⎤
⎥⎥⎥⎥⎥⎦
,

where l is the distance between the two drivingwheels. The control input�i = [vLi, vRi]T ∈
R
2 represents the wheel velocity input, which is comprised of the left wheel linear speed

vLi and the right wheel linear speed vRi of the ith robot. The saturation function satvm :
R
2 → [−vm, vm]2 is defined as

satvm(�i) =
[
satvm(vLi)
satvm(vRi)

]
,

where satvm(v) � sgn(v) · min{vm, |v|} and, and vm is the maximum speed limit.

2.2.2. Coordinate transformation
As shown in Figure 1(b), we define a reference point located at pi = [xi, yi]. If we set
c = l/2, the nonholonomic kinematic model (14) can be converted to the single-integrator
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model (1). That is, in the new coordinate defined by
[
xi
yi

]
=

[
qxi + c cos θi
qyi + c sin θi

]
. (15)

The robot model can be derived as Li, Kong, and Guo (2014):
[
ẋi
ẏi

]
=

[
vxi
vyi

]
. (16)

The control input �′
i ∈ R

2 is defined as:

�′
i �

[
v′
Li
v′
Ri

]
=

⎡
⎢⎣ sin θi + l

2c
cos θi sin θi − l

2c
cos θi

[6pt] sin θi − l
2c

cos θi sin θi + l
2c

cos θi

⎤
⎥⎦

[
vxi
vyi

]
. (17)

After the coordinate transformation, the control law (13) can be applied to the single-
integrator model based on Proposition 2.1.

2.3. Simulation

2.3.1. Experiment environment
The controller is evaluated in experiments using a robot simulator V-REP (Rohmer, Singh,
& Freese, 2013). The simulation scenario with three P3-DX robots is shown in Figure 2.
Each driving wheel motor of the robot is configured to be able to produce 3N·mof torque,
while the maximum linear speed of the driving wheels are set to 0.7m/s.

2.3.2. Simulation results
The setup of the simulation is described as follows. The desired formation is set to d∗

12 =
1m, d∗

23 = 2m, d∗
31 = √

3m. Themaximumwheel linear speed is vm = 0.7m/s. The com-
mon desired velocity is v∗ = [0.25, 0.25

√
3] (m/s). The controller parameter K in (12) is

chosen as K = 0.4. Note that any positive constant K can stabilise the system, but the per-
formance could vary. K is empirically chosen as K = 0.4 for good transient behaviours
including small overshoot and short settling time.

The simulation snapshots are shown in Figure 2. One can see the robot team achieves
a desired formation and velocity after 6 seconds. Figure 3 shows that simulation results.
It can be seen from Figure 3(a) that the formation separation errors reduce from 4m to 0
within 7 s. Figure 3(b) showss that the robot wheel velocities initially are maxed at 0.7m/s
and then settled to the common desired velocity 0.5m/s. Figure 3(c) shows the trajectories
of the three robots that achieve the triangular formation and then move in consensus at
the desired velocity.

3. Learning-basedmethod for formation control

The model-based method uses the robot model and the performance is subject to model
uncertainties and external disturbances. When there’s a lack of complete knowledge of the
robot model, designing robot control is difficult or even impossible. Moreover, the model-
based method requires state measurement and hand-engineering the robot perception
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Figure 2. Kinematics of a differential drive robot: (a) Pioneer P3-DX robot; (b) Schematic illustration.
(a) t = 0 s, (b) t = 1.5 s, (c) t= 3 s, (d) t = 4.5 s, (e) t = 6 s, (f ) t = 7.5 s.

Figure 3. Performance of the proposed control law with K = 0.4: (a) Formation separation error eij(t);
(b) Trajectories of the three robots are denoted by solid curves in red, green and blue. Triangles represent
the pose of the robots every 3 s; Solid black circles and black curves illustrate the trajectory of their centre
of mass. (c) Robot control input [vLi , vRi]T. (a) t = 0 s (b) t = 1.5 s (c) t = 3 s (colour online).

and control components separately. In this section, we introduce the problem of learning
decentralised formation control policies for multi-robot systems, which do not rely on the
robot model and can directly operate on individual robots’ local perception without inter-
robot communication. This method was originally presented in our recent conference
paper (Jiang et al., 2019).

3.1. Problem statement

Consider the formation control problem with three mobile robots that are equipped with
LIDAR sensors as shown in Figure 4. Each robot has an on-board self-localisation system
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Figure 4. The schematic diagram of the formation control scenario.

that can measure its current orientation, φi(t). The desired formation is defined as the
desired orientation, φ∗, desired speed (which is a scalar), v∗, and the desired relative dis-
tance between any two robots, dij for i, j = 1, 2, 3 and i �= j. For simplicity, it is assumed
that dij = d∗ is a positive constant. The three robot team achieves formation if the robots
follow the desired orientation φ∗ and the desired speed v∗, and keep the distance d∗ from
each other.

The objective is to learn a decentralised control policy and use it for online forma-
tion control. The decentralised control policy can be regarded as a generalisation of a
decentralised control law, which maps the input of the robot’s local sensor observation
(i.e. occupancy map from the robot onboard LIDAR sensor) to the output of the robot’s
motor control. That is

ûi = F(yi,�φi, d∗), (18)

where the input of the control policy consists of the occupancy map yi and two auxil-
iary inputs including the difference between the robot’s current orientation and the desired
orientation, �φi = φi − φ∗, and the desired formation distance, d∗; and the control pol-
icy outputs the robot motor control ûi = [ûil, ûir] ∈ R

2 with ûil and ûir being the left and
right motor control, respectively. A DNNmodel is designed as the parameterised function
representation of the control policy F(·) defined in (18).

3.2. Approach

The learning-based approach has two phases, i.e. the training phase and the testing phase
as shown in Figure 5.

During the training phase, the expert demonstrations generated by a model-based
method are used to train the DNN. Specifically, given the robot states obtained by the
measurement system, the model-based controller generates the robot control, ui, as expert
demonstration. Meanwhile, the corresponding local observation, yi, from the robot’s
onboard LIDAR sensor and the auxiliary inputs, �φi and d∗, are recorded. The expert
control ui, LIDAR observation yi and the auxiliary data �φi, d∗ are then fed to the DNN
for training.

The training process is essentially to optimise theDNNparameters θ such that given the
three-tuple (yi,�φi, d∗), the error between theDNNoutput, ûi = F(yi,�φi, d∗; θ), and the
expert control ui provided by expert demonstration is minimised. Thus, the loss function



10 C. JIANG ET AL.

Figure 5. The overview of our proposed policy learning scheme.

for each iteration of the mini-batch learning is defined as the Euclidean loss:

L(θ) = 1
NB

NB∑
j=1

‖F(yj,�φj, d∗; θ) − uj‖2, (19)

where NB is the mini-batch size. A gradient-descent based training algorithm with Adam
optimiser (Kingma & Ba, 2014) is used to learn the optimal parameters of the DNN. After
T epochs of training process, the DNN parameters θ converge to optimum in the sense
that the loss function (19) is minimised. The DNN model with the learned parameters is
then used by each robot in online testing phase.

In the testing phase, the trained DNN policy is executed on each robot i in a decen-
tralised manner to compute robot control command through a feedforward pass of DNN
based on current robot LIDAR observation and auxiliary inputs. The robot motor con-
trol law ui = Kûi, where K is a constant gain that adjusts the robot’s speed to the desired
speed v∗. Note that the common speed of the robot team is not an input to the DNN in
the training phase, and can be adjusted directly during the testing phase through linear
scaling.

3.3. Experiment results

3.3.1. Experiment setup
Robot simulation: The robot simulation is performed in the robot simulator V-REP
(Rohmer et al., 2013). Figure 6 shows the snapshots of a simulation experiment in V-REP.
The differential drive mobile robot, Pioneer P3-DX, is chosen as the robot platform. The
robot is equipped with a Velodyne VPL16 LIDAR sensor to perform laser scan measure-
ment. The data of laser scan measurement in a square region of 5 × 5m2 centred at the
sensor position are represented by a 50 × 50 gray-scale image of 2D occupancymap. Thus,
the spatial resolution of the occupancy map is 0.1m/pixel. Note that, given the same laser
scan range, increasing the spatial resolution of the occupancymap results in a larger size of
the image and more computational cost. The tradeoff between the image size and the spa-
tial resolution of the occupancy map can be balanced considering practical requirements
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(a) (b) (c)

Figure 6. Snapshots of online formation control experiment inV-REP simulator at (1) t = 0 s; (b) t = 5 s;
and (c) t = 15 s. The squared images show the occupancy map generated from the observation of the
corresponding robot, where the black dots indicate the surrounding robots of each robot. The coloured
arcs visualise the LIDAR scanning.

of applications. The robot control algorithms are implemented in a client program written
in Python, which communicates with the V-REP simulator via the provided remote API.
Thus, the V-REP simulator sends simulation data to the client program for robot control
calculation, and computes the robot dynamics given the control commands received from
the client program. The simulation frequency is set to 20Hz.

DNN implementation: The first convolutional layer (Conv1) has 32 filters with filter size
8 × 8 and stride 4. The output of the Conv1 layer is 32 feature maps of dimension 12 × 12.
The second convolutional layer (Conv2) has 16 filters with size 4 × 4 and stride 2. The
output of the Conv2 layer is 16 feature maps of dimension 5 × 5. The final convolutional
layer (Conv3) has 16 filters with size 3 × 3 and stride 1. The output of the Conv3 layer is
16 feature maps of dimension 3 × 3. All three convolutional layers are activated by ReLU.
The featuremaps of the last convolutional layer are flattened into a 144-dimensional vector
which is fed to the FC network. The dimension of each hidden layer of the FC network is
32, and the dimension of the output layer is 2. The first and second layer are followed by
ReLU and linear activation, respectively.

3.3.2. Training experiments
Data collection. The training data were collected in the robot simulator V-REP, where
a model-based controller was implemented to control each robot to provide expert
demonstration data. The distance-based formation controller proposed in Dimarogonas
and Johansson (2008) is used to generate the motor control for the robots. A simulation
scenario with three mobile robots is created. The robots’ initial positions pi(0) are ran-
domly selected from a circular region with a radius of 3m, and the initial orientations
φi(0) are randomly selected from [0, 2π). For each simulation run during data collection,
a constant desired orientation φ∗ is randomly selected from [0, 2π), and the desired speed
v∗ is set to 0.7m/s. The desired formation distance d∗ is randomly selected from the set
{1, 1.5, 2}m. The duration of each simulation run is 12 s. At each time step t, the control
output ui(t) computed by the model-based controller, the corresponding occupancy map
yi(t) from LIDAR observation, the orientation difference �φi(t) of each robot i, i = 1, 2,
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Figure 7. Euclidean loss over training iterations.

3, and the desired formation distance d∗ was recorded and stored as one sample of training
data. The entire training data set includes 110,160 samples, which were grouped into 3442
mini-batches with the batch size NB = 32. The sampled data collected by all three robots
are used to train the control policy in a centralised training framework.

Training results. With the collected training data, the DNN model is trained using
supervised learning to find an appropriate control policy. The initial learning rate is set
as η0 = 0.0001; the exponential decay rates for the moment estimates are initialised as
β1 = 0.9 and β2 = 0.999, respectively. The constant ε̂ is set to 10−8. The training epoch
is set as T = 500. The evolution of loss over training iterations is shown in Figure 7. One
can see that the loss of the Adam optimiser converges around 0.009 after 1.2 × 106 itera-
tions of training. The training results demonstrate that our proposed learning scheme is
converging and minimises difference between the predicted control output and the expert
control. Next, we verify and evaluate the learned policy in online testing experiments.

3.3.3. Testing experiments
After sufficient training, the parameters of the DNN model remain unchanged, and the
DNNmodel is deployed on each robot for online formation control. As shown in Figure 5,
the learned policymodel calculates the control command from the robot’s own observation
via the onboard LIDAR sensor and the auxiliary inputs. The learned robot control policy is
evaluated in the cases of constant and time-varying desired velocity, respectively. In all the
online testing experiments, themagnitude of the desired velocity is set to v∗ = 0.7m/s, thus
the speed control gain K = 1 as the speed after convergence given by the trained control
policy is 0.7m/s.

Case 1 with constant desired velocity. The testing case with a constant desired velocity
is shown in Figure 8. The desired orientation is φ∗ = 3.76 rad, and the desired formation
distance is 2m. One can see from Figure 8(a) that the formation error between the robots
and orientation error of each robot decrease and converge around zero after about 6 s.
Figure 8(b) shows the control commands of the robots’ left and right wheel speed. It can be
seen that the control of the robot wheel speed converges around the desired speed 0.7m/s
of the robot after 6 s.Figure 8(c) shows the trajectories of the robots, where the triangles
and the dotted lines represent the position of the robots and the formation at every 3 s,
respectively. It can be seen that the group of robots achieves the desired formation and
moves at the desired velocity.

Cases 2 and 3 with time-varying desired velocity. In these cases, the desired orientation
φ∗(t) changes as a function of time. Note that, in the training phase, only constant desired
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(a) (b) (c)

Figure 8. Case 1 with constant desired orientation φ∗ = 3.76 rad and desired formation distance d∗ =
2 m: (a) formation and orientation error; (b) robot control; (c) robot trajectories.

(a) (b) (c)

Figure 9. Case 2with time-varying desired orientationφ∗(t) = 0.1t rad and desired formation distance
d∗ = 1m: (a) formation and orientation error; (b) robot control; (c) robot trajectories.

orientations φ∗ are used to train the DNN, and the time-varying desired velocities are not
in the training set. As shown in this subsection, the learned policy can achieve formation
with time-varying desired velocities. This is due to the reason that �φ (i.e. the difference
between the robot’s current orientation and the desired orientation) is chosen as the input
to the DNN that learns the mapping from �φ after training.

For Case 2, the desired orientation is set as φ(t) = ω · t with the angular velocity
ω = 0.1 rad/s, and the desired formation distance is 1m. This setup requires the robot
team to keep a desired formation andmeanwhile moves in a circular trajectory. The testing
results of this case are shown in Figure 9. One can see from Figure 9(a) that the formation
and orientation errors decrease and converge around zero after 20 s.Figure 9(b) shows the
control output of the robots’ left and right wheel speed. It can be seen that the speed control
of the robots converges around 0.7m/s after 20 s. Figure 9(c) shows the trajectories of the
robots, where the triangles and the dotted lines represent the position of the robots and
the formation at every 3 s, respectively. One can see that the group of robots achieves the
desired formation and moves at the desired velocity.

For Case 3, the desired orientation is set as φ(t) = sinωt with the angular velocity ω =
0.2 rad/s, and the desired formation distance is selected as 1.5m. This means the robot
team is required to keep a desired formation and meanwhile moves in a sinusoidal-like
trajectory where the desired orientation is changing sinusoidally. From Figure 10(a) one
can see that the formation and orientation errors decrease and converge around zero after
15 s. Figure 10(b) shows the control commandof robotwheel speedwhich converge around
0.7m/s after 15 s. The trajectories of the robots are shown in Figure 10(c).
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(a) (b) (c)

Figure 10. Case 3 with time-varying desired orientation φ∗(t) = sin(0.2t) rad and desired formation
distance d∗ = 1.5m: (a) formation and orientation error; (b) robot control; (c) robot trajectories.

Table 1. Statistical results over 100 runs.

5% error tolerance 10% error tolerance

Convergence percentage 90% 96%

Figure 11. Box plot of convergence time, relative formation error and orientation error after conver-
gence over successful runs.

Statistical results. The statistical results of 100 simulation runs are presented. The sim-
ulation time is set to 60 s. A simulation run is considered successful if the formation error
between any robot i and j, i �= j, converges in the sense that the temporal average of the
relative formation error |dij − d∗|/d∗ over the most recent 20 s is smaller than 5% or 10%.
The statistic results of our approach are summarised in Table 1 which shows our approach
achieves 90% and 96% success rate under 5% and 10% error metrics, respectively. The sta-
tistical results of the convergence time, the relative formation error and the orientation
error over all successful runs under 10% error metrics are further shown in Figure 11.
One can see that the median convergence time of our approach is about 10 s. The median
relative formation error is 2.5% and the median orientation error is 0.031 rad. Compared
with existing model-based formation control methods with relative formation errors of
1%–10% in general (Oh et al., 2015), the performance of our learning-based method is
satisfactory.
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The formation errors in online testing experiments are mainly the result of the quanti-
sation errors introduced when converting the LIDAR sensory data to the occupancy map.
In this paper, the spatial resolution of the occupancy maps is 0.1m/pixel, i.e. any LIDAR
scan data within 0.1m cannot be reflected by the image pixels. Reducing the quantisation
errors can be realised by increasing the size of the occupancy map images to increase the
spatial resolution of the images. However, larger size of images requires more computa-
tional power to process the image input and compute the robot control commands in real
time. The tradeoff between the image size and the spatial resolution of the occupancy map
can be balanced according to practical requirements of applications.

3.4. Remark on the learning-based control method

The proposed learning-based control approach only considers a three-robot formation sce-
nario with equal desired distance between any two robots. This is due to the reason that
we assume no additional information is acquired by each robot to distinguish between its
neighbouring robots. The current approach can be scaled to n-robot cases by adopting the
semantic labelling methods (Dequaire, Ondrúška, Rao, Wang, & Posner, 2018) to assign
distinct IDs to the neighbouring robots. Also, the mean embedding-based state represen-
tation (Hüttenrauch et al., 2019) can be used to improve the scalability of the decentralised
policy learning method, which is the scope of our future work.

4. Comparison between the twomethods

In this section, we compare the model-based method and learning-based method pre-
sented in Sections 2 and 3, respectively, from the perspective of fundamental principles,
sensing requirements and communication requirements.

4.1. Fundamental principles

The model-based method requires the robot dynamics/kinematics model (e.g. Equa-
tions (14) and (1)) and the interaction topology (e.g. the Laplacian matrix (5)) to design
the analytic control law. If the robot and environment dynamics are deterministic, the
model-based approach can be implemented effectively in real time. However, in practical
applications the robot model inevitably includes uncertainties and the environment could
be stochastic. The dependence on system model makes the performance of the control
law vulnerable to model errors and/or disturbances. Moreover, hand-engineering features
could be difficult or even impossible for complex domainswhen the complete knowledge of
the robot and environmentmodels is not available (e.g. unknownobservation probabilities,
and/or non-deterministic environments).

On the contrary, the learning-based method does not rely on the knowledge of robot
dynamics/kinematics model. However, it requires training data that capture the under-
lying control policy mapping the robot sensor observation to robot control. The control
policy in the learning-based methods is represented using deep neural networks, and a
supervised learning algorithm is used to train the neural networks to recover the optimal
policy for formation control. The learned control policy is used as a generalisation of the
decentralised control law. Compared with the model-based method which could perform
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poorly under model uncertainties or stochastic environments, the learning-based method
uses no information about robot model, thus is not subject to the model uncertainties.
Furthermore, learning-based method is able to find robot control policies under environ-
mental uncertainties which are embedded in the training data used to learn the control
policies.

4.2. Sensing requirements

The distance-based formation control introduced in Section 2 requires each robot to be
able to sense the relative positions of its neighbouring agents with respect to its own local
coordinate systems. This requirement basically needs the robots to be able to access the
relative positionmeasurements, or have onboard deliberate perceptionmodules that return
the measurements explicitly.

In contrast, the learning-based method introduced in Section 3 uses the occupancy
map constructed from the raw laser scan measurements as the input to the control pol-
icy. Thus, the learning-based method relieves the burden of hand-engineering the robot
perception that is required by traditional model-based methods before controllers can be
applied. Moreover, learning control policies that operate on raw sensor observations is
worth investigating.

4.3. Communication requirements

Model-based methods normally rely on inter-robot communication to different extend,
depending on the sensing capability of the robots. For example, the robots in the method
discussed in Section 2 needs to communicate with the neighbouring robots for their posi-
tion information to calculate the required relative positions of the neighbouring robots.
Thus, communication reliability and security is critical to the successful operation of
control algorithm.

One the other hand, the learning-based method in Section 3 does not need inter-robot
communication but only the robot’s local observation. In the future, it is of interest to learn
the optimal communication tominimise the communication cost for complexmulti-robot
system (Sukhbaatar, Szlam, & Fergus, 2016).

4.4. Discussion

Both model-based and learning-based control methods come with their own advan-
tages and disadvantages. Conventional model-based control methods are suitable for the
problems when reliable system models are available and the system or environmental
uncertainties are moderate or easy to model. As learning-based methods relax the reliance
on systemmodels for control design, suchmethods can be consideredwhen the knowledge
of the system dynamics or environmental uncertainties are not available. Moreover, incor-
porated with deep learning techniques, learning-based methods is able to train control
policies to operate on non-hand-engineered features. The adaptive learning and feature
representation capabilities of the learning-based methods lend themselves to complex
intelligent control problems in practical applications. As the emerging method for multi-
robot formation, the learning-based method merits further studies on key issues such as



JOURNAL OF CONTROL AND DECISION 17

advanced learning algorithms for general formation control, algorithm stability analysis,
and generalisability/scalibility.

5. Conclusion

This paper presents and compares two recent works on a three-robot formation con-
trol problem using model-based and learning-based methods. In general, the model-
based method provides provably stable formation control if the model of robot dynam-
ics/kinematics is known. Analytic control laws derived by the model-based method can
be implemented efficiently in real time through online sensing or communication. How-
ever, as the complexity of real-world application of robot formation control is increasingly
greater, the lack of complete knowledge of the robot and environment dynamics make the
problem challenging to solve by model-based methods. The learning-based method pro-
vides the solution to adaptive and intelligent control of robot formation, though it relies on
data and appropriate design of training strategies to learn the desired control policy. In the
future, it is desirable to develop more efficient training schemes using advanced machine
learning or deep-learning methods.
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