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People’s perceptions of their social worlds determine their own 
personal aspirations1 and willingness to engage in different 
behaviours, from voting2 and energy conservation3 to health 

behaviour4, drinking5 and smoking6. Yet, when forming these per-
ceptions, people seldom have an opportunity to draw representa-
tive samples from the overall social network, or from the general 
population. Instead, their samples are constrained by the local 
structure of their personal networks, which can bias their percep-
tion of the relative frequency of different attributes in the general 
population. For example, supporters of different candidates in the 
2016 US presidential election formed relatively isolated Twitter 
communities7. Such insular communities can overestimate the rela-
tive frequency of their own attributes in the overall society. This 
has been documented in the literature on overestimation effects 
including false consensus, looking-glass perception and, more gen-
erally, social projection8–12. In an apparent contradiction, it has also 
been documented that people holding a particular view sometimes 
underestimate the frequency of that view, as described in the litera-
ture on false uniqueness13,14, pluralistic ignorance15,16 and majority 
illusion17. These over- and underestimation errors, which we call 
social perception biases, affect people’s judgements of minority- and 
majority-group sizes18.

It has been observed that social perception biases can be related 
to the structural properties of personal networks19,20, which can 
strongly affect the samples of information on which individuals rely 
when forming their social perceptions21,22. However, the impact of 
different network properties on social perception biases has not yet 
been systematically explored. Here we explore three such proper-
ties. The first is the level of homophily, or how likely the one is to 
be connected to similar others, which is known as a fundamental 
structural property of many social networks23. The second property 
is the asymmetry of homophily, or whether homophily is larger in 

some subgroups than in others. For example, it has been observed 
that in scientific collaborations, homophily among women is stron-
ger than homophily among men24. The third property is the rela-
tive size of minority and majority groups in the society. Many social 
networks are characterized by a large majority group and a much 
smaller minority group. Examples are the proportions of different 
genders in science, technology, engineering and maths, of people 
with different levels of income and of people who smoke or not.

Most existing explanations of social perception biases invoke 
motivational and cognitive processes rather than social network 
structure. For example, processes that explain overestimation of 
the frequency of one’s own attributes (for example, false consensus) 
include wishful thinking25, easier recall of the reasons for having 
one’s own view9, rational inference of population frequencies based 
on one’s own attributes26, feeling good when others share one’s own 
view27, and justifying one’s undesirable behaviours by overestimat-
ing their frequency in society28. However, these processes cannot 
explain the opposite effect, underestimating the frequency of our 
own view (for example, false uniqueness). Instead, this opposite bias 
is typically explained by a different set of cognitive or motivational 
processes, such as differential attention to one’s own and other 
groups13 and bolstering perceived self-competence14. Ideally, both 
overestimation and underestimation biases would be explained by 
a single mechanism18.

Here we show empirically, analytically and numerically that a 
simple network model can explain both over- and underestimation 
in social perceptions, without assuming biased motivational or cog-
nitive processes. Results from a cross-cultural survey show that the 
level of homophily and size of the minority group influence people’s 
social perception biases. Analytical results from a generative net-
work model with tunable homophily and minority-group size align 
well with the empirical findings. Numerical investigations show that 
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model predictions are consistent with biases that could occur in six 
empirical networks, and point to the importance of accounting for 
asymmetries in homophily. We also show when social perception 
biases can be reduced by aggregating one’s own perceptions with 
those of one’s neighbours. We discuss the implications of these 
results for the understanding of the nature of human social cogni-
tion and diverse social phenomena.

Results
Defining social perception biases. We focus on individual per-
ceptions, or estimates, of the frequency of binary attributes (for 
example, smoking, attending worship or donating to charity) in the 
overall social network. We define social perception bias as a ratio 
of perceived frequency and the true frequency of an attribute. We 
study these perception biases at the individual level (Bindv) and at the 
group level (Bgroup). Whenever necessary, we add a subscript m for 
the minority and M for the majority group.

At the individual level, we assume that individuals’ perceptions 
are based on the frequency of an attribute in their personal net-
works (their direct neighbourhoods). We define individual i’s social 
perception bias as follows:

Bindv;i ¼
i's perception of theminority
true fraction of theminority

¼ 1
fm

P
j2Λi

xj

ki
ð1Þ

where Λi is the set of i’s neighbours, ki = |Λi| is the degree of i, xj 
denotes the attribute of individual j, which has the value of 1 for a 
minority attribute and 0 for a majority attribute, and fm is the true 
fraction of the minority in the entire network. Another measure of 
perception bias could be a simple difference between i’s perception 
of the minority and the true fraction of the minority. However, this 
measure depends on the minority-group size, making it difficult to 
compare the biases for different minority-group sizes. To be able to 
compare the biases we need to normalize the difference with the 
minority-group size. That normalized difference produces essen-
tially the same results as the ratio measure of equation (1).

The group-level perception bias is defined as the average of per-
ception biases of all individuals in the group:

Bgroup ¼
1

jNg j
X

i2Ng
Bindv;i ð2Þ

where Ng is the set of individuals in a group g, which is either a 
minority group or a majority group.

We focus on perception biases in estimates of the size of the 
minority group. The minimum value of the group- and individual-
level perception biases is 0 and their maximum value is 1/fm (see 
Methods). A value below 1 indicates an underestimation of the 
minority-group size while a value above 1 indicates an overestima-
tion. If the value equals 1, a group or an individual perfectly per-
ceives the frequency of a minority attribute in the entire network.

As an example, Fig. 1 illustrates how we define the perception 
bias at the individual and group levels for a high-homophily (homo-
philic) network and a low-homophily (heterophilic) network. The 
colour of an individual node depicts its group membership: orange 
nodes belong to the minority and blue nodes to the majority. We 
focus on the central individual i, who is in the majority in both net-
works. This individual estimates the size of the minority group on 
the basis of the fraction of orange nodes in their personal network 
(enclosed in a dashed circle). In the homophilic network (Fig. 1a), 
as per equation (1), their individual-level perception bias is (1/6)/
(1/3) = 0.5, which means that they have underestimated the size of 
the minority group by a factor of 0.5. Consequently, they overesti-
mate the size of their own majority group in the entire network. In 
the heterophilic network (Fig. 1b), the perception bias of individual 
i is (4/6)/(1/3) = 2, implying that the size of the minority group is 

overestimated by a factor of 2. At the group level, as per equation (2),  
the majority group (blue) perceives the size of the minority group 
to be 7/48 in the homophilic network and 25/48 in the heterophilic 
network. Therefore, the majority group underestimates the size of 
the minority group by a factor of (7/48)/(1/3) = 0.45 in the homo-
philic network and overestimates it by a factor of (25/48)/(1/3) = 1.6 
in the heterophilic network.

Survey of social perception biases. To investigate the role of net-
work structure in social perception biases, we conducted a survey 
with n = 99 participants from Germany, n = 100 from South Korea 
and n = 101 from the United States (see Methods). We asked ques-
tions about different societal attributes for which we knew the true 
frequencies in the general population from existing national sur-
veys in these countries (for example, donating to charity, worship 
attendance and smoking; Supplementary Tables 1 and 2).

Participants answered three groups of questions. First, they 
answered questions about their own attributes (for example, 
whether they smoke). Second, they estimated the frequency of 
people with each attribute in their personal networks, defined as 
‘all adults you were in personal, face-to-face contact with at least 
twice this year’. We used these answers to calculate the homoph-
ily in their personal networks (see Methods). Homophily can vary 
from 0 (complete heterophily—for example, smoker interacts only 
with nonsmokers) to 1 (complete homophily—for example, smoker 
interacts only with smokers).

Majority

Minority

i i

Homophilic network Heterophilic network

(Minority size underestimated) (Minority size overestimated)

a b

Fig. 1 | Individual- and group-level social perception bias. a,b, Individuals 
belong to one of two groups: the majority (blue) or the minority (orange). 
The minority fraction is 1/3 in both (fm ≈ 0.33) the (a) homophilic 
network and (b) heterophilic network. We studied social perception 
biases originating at both the individual and group level. On the individual 
level, individual i perceives the size of the minority group in the overall 
network based on their personal network, denoted by dashed circles. 
In the homophilic network, i perceives the size of the minority to be 
approximately 1/6 ≈ 16%, while in the heterophilic network, i perceives 
the size of the minority to be approximately 4/6 ≈ 67%. Therefore, in 
the homophilic network, individual i underestimates the minority-group 
size by a factor of 0.5 and in the heterophilic network i overestimates 
the minority-group size by a factor of 2 (see equation (1)). At the group 
level, the majority group perceives the size of the minority group to 
be (1/3 + 1/6 + 2/3)/8 = 7/48 ≈ 0.15 in the homophilic network, and 
(1/2 + 1/3 + 2/3 + 2/3 + 1 + 1)/8 = 25/48 ≈ 0.52 in the heterophilic 
network. Thus, the majority group underestimates the size of the minority 
group by a factor of 0.45 in the homophilic network (group-level perception 
bias = 0:15fm

I
=0:15

0:33
I

 = 0.45) and overestimates the minority-group size by a 
factor of 1.6 in the heterophilic network (0:520:33

I
 = 1.6; see equation (2)). In 

sum, depending on the structure of the network, individuals’ and groups’ 
perceptions about their own and other groups’ sizes can be distorted.
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Third, participants estimated the frequency of people with a 
particular attribute in the general population of their country. We 
used these answers to calculate the participants’ social perception 
biases as a ratio of their population estimates and the true popu-
lation frequency of each attribute taken from national surveys 
(Supplementary Table 2). For example, if a participant estimated 
that 60% of the country’s population smoke tobacco, whereas the 
national survey suggested that only 40% do so, that participant’s 
perception bias was 60/40 = 1.5 (equation (1)). We obtained group-
level perception biases by averaging individual participants’ percep-
tion biases for different levels of homophily (equation (2)).

For each country, we analysed individual- and group-level per-
ception biases separately for attributes that, in that country, are 
objectively held by a small (fm < 0.2), medium (0.2 ≤ fm < 0.4) or 
large (0.4 ≤ fm < 0.5) minority group. For example, the attribute ‘not 
having money for food’ is held by less than 20%, or a small minority 
of the general population in all countries (Supplementary Table 2).  
The attribute ‘worship attendance’ is held by a small minority of 
the general population in Germany (10%), a mid-sized minority in 
South Korea (30%) and a large minority in the United States (41%; 
Supplementary Table 2).

Figure 2 shows individual and group perception bias for the size 
of the minority group, separately for participants who belonged to 
the minority and majority groups. Visually, patterns of perception 
biases differ for different sizes of the minority group in the overall 
population (fm) and for different levels of homophily in personal 
networks (h). As minority-group size in the overall population 
decreased, its overestimation increased (compare red and yellow 
lines in Fig. 2a–f). Moreover, when homophily in personal networks 
was large (h > 0.5), minority participants overestimated and major-
ity participants underestimated the size of the minority, resembling 
false consensus (see right-hand side of Fig. 2a–f). In contrast, for 
low levels of homophily in personal networks (h < 0.5), we observed 
a much smaller false consensus, or even a false uniqueness tendency, 
for both minority and majority participants (see left-hand sides of 
Fig. 2a–f). Similar visual patterns for perception biases, homophily 
and minority-group size could be observed in all three countries 
(compare the panels across the three rows in Fig. 2).

Generative network model with tunable homophily and group 
size. Our survey results suggest a correlation between the level of 
homophily and perception biases. To gain insights on how the struc-
ture of social networks (homophily and heterophily) and minority-
group size influence perception biases, we developed a generative 
network model (see Methods) that allowed us to create heavy-tailed 
networks with tunable homophily and minority-group sizes.

In our model, nodes have a binary attribute (for example, 
smoker and nonsmoker, male and female). When the attributes are 
distributed unequally among the nodes, we call the smaller group 
the minority and the larger group the majority. Each newly added 
node creates links to existing nodes: the probability of an attach-
ment of a new node w to an existing node v, denoted by ϕwv, is pro-
portional to node v’s degree (kv) and the homophily between the 
two nodes (hwv)—that is, ϕwv∝hwvkv. The degree of the existing node 
and the homophily parameter regulate the probability of connec-
tion between nodes. Here homophily hwv represents an intrinsic ten-
dency of nodes having the same attribute to be connected, and its 
value ranges from 0 to 1. By assuming that all nodes having the same 
attribute behave similarly, we can study the model only in terms of 
hαβ, with α,β being m for the minority or M for the majority. For 
example, hmm represents the homophily between minority nodes 
and hMM the homophily between majority nodes. We then consider 
two cases—that is, symmetric and asymmetric homophily. For the 
symmetric case, the tendency of nodes having the same attribute 
to be connected is the same for both groups. Thus, we need only 
one parameter, h, because hmm = hMM = h (that is, hmM = hMm = 1 − h).  

On the other hand, for the asymmetric case we need two homophily 
parameters, hmm and hMM, as these are different from each other. In 
the case of symmetric homophily, when h < 0.5, nodes tend to con-
nect to other nodes with the opposite attribute, whereas if h > 0.5, 
nodes have a greater tendency to connect to nodes with the same 
attribute. In the case of the extremely homophilic situation, h = 1, 
two separate communities of the same attributes will emerge.

The model we present here was partly inspired by the Bianconi–
Barabási fitness model29. In that model, each node has an intrin-
sic fitness that is independent of other nodes and regulates nodes’ 
attractiveness to other nodes, whereas nodes in our model have an 
intrinsic tendency to connect to other nodes, which is dependent on 
the attractiveness between a pair of nodes rather than an individual’s 
characteristic. Considering the difference, this network model is a 
variation of the Barabási–Albert preferential attachment model (BA 
model) with the addition of a homophily parameter, h. Therefore, 
we call our model the BA-homophily model. .

Figure 3 depicts analytically derived perception biases of minor-
ity-group size among the members of minority and majority groups, 
as a function of the true fraction of the minority in the entire net-
work and the homophily parameter. The perception biases in het-
erophilic networks (0 ≤ h < 0.5) resemble false uniqueness. The 
minority underestimates its own size while the majority overesti-
mates the size of the minority, the more so the smaller the minority 
group (smaller fm). In homophilic networks (0.5 < h ≤ 1), percep-
tion biases resemble false consensus. The minority overestimates 
its own size (the more so the smaller the minority group), while 
the majority underestimates the size of the minority. Slight devia-
tions between biases expected for minority and majority groups (see 
insets in Fig. 3) are due to the disproportionate number of links for 
the two groups, affecting the results of equations (6) and (7). Also 
note that, in the mean-field approximation, we assume that nodes 
with the same attribute behave similarly on average.

These analytical derivations can help us describe the functional 
form of the biases observed in the survey (Fig. 2). As shown in equa-
tion (11), the minority’s perception bias (Bm

group

I
) is proportional to 

the density of links between minority nodes (pmm), which increases 
with the homophily between minority nodes—that is, hmm. Similarly, 
the majority’s perception bias (BM

group

I
) is proportional to the density 

of intergroup links (pmM), which decreases as the homophily (hmm 
and hMM) increases. In addition, the sizes of minority and majority 
groups influence the growth rate of links for each group according 
to equation (12) so that perception biases can increase (or decrease) 
nonlinearly with group size (see Supplementary Methods 1).  
For instance, in the extreme homophily case with h = 1, one gets 
pmm = pMM = 1, while pmM = pMm = 0, leading to the minority’s group-
level perception bias of 1/fm. In sum, the proposed BA-homophily 
model and its analytical derivations facilitate systematic under-
standing of how network structure affects perception biases.

While we find general agreement between the survey results and 
our BA-homophily model, there are certain differences that call for 
more detailed investigation in the future. One main difference is 
that in the survey results (Fig. 2) we observed perception bias >1 in 
some cases when Fig. 3 predicts it to be <1. Specifically, this tends 
to happen for small minority-group sizes, when h < 0.5 for minority 
and h > 0.5 for majority participants. A possible explanation that is 
in line with previous studies in social cognition30,31 is that people do 
not observe and report attribute frequencies in their samples (here, 
their personal networks) completely accurately, but with some ran-
dom noise. When minority-group size is relatively large, errors of 
over- and underestimation can cancel out. For smaller minority-
group sizes, the estimate cannot be lower than 0 so errors of over-
estimation could be larger than errors of underestimation and not 
cancel out21. Hence, people’s estimates of the frequency of attributes 
in their samples could show overestimation for small minority 
groups, which is what we observed in the survey results.
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Social perception biases in real-world networks. The 
BA-homophily model offers a simple representation of real-world 
networks. To examine possible social perception biases in the real 

world, we studied six empirical networks with various ranges of 
homophily and minority-group sizes (see Methods). These net-
works have different structural characteristics and show different 
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Fig. 2 | Survey results: bias in perception of minority-group size for participants whose personal networks exhibit different levels of homophily (h)  
and for attributes held by a small, medium or large minority group in a given country. a–f, Each row shows results from a different country: Germany  
(a,b, n = 99), South Korea (c,d, n = 100) and the United States (e,f, n = 101). Columns show perception biases of the minority (left) and the majority  
(right) group for each attribute. Different colours distinguish perception biases for attributes that in a given country are held by a small (fm < 0.2; yellow), 
medium (0.2 ≤ fm < 0.4; purple) or large (0.4 ≤ fm < 0.5; red) minority group. The value of the individual perception bias indicates the accuracy with  
which each participant (each point in the plot) perceived the size of the minority group in the overall population. Group-level perception biases are 
calculated by averaging individual participants’ perception biases for each homophily bin (0.02 increments), and they are denoted by fitted lines.  
A perception bias of 1 suggests perfect accuracy (horizontal line in each panel), values >1 indicate overestimation of the minority-group size and values 
<1 indicate underestimation of the minority-group size. The insets show fitted trends on a log scale for easier comparison of the sizes of underestimation 
and overestimation. These trends also approximate the results for the simple difference measure of perception biases. Homophily (h) is estimated from 
participants’ reports about the frequency of people with each attribute in their personal networks (see Methods).
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levels of homophily or heterophily with respect to one specific attri-
bute (Table 1). In five of the networks (Brazil, POK, USF51, GitHub, 
DBLP) this attribute is gender (female or male) while in one—
the American Physical Society (APS) network32—the attribute is 
whether a paper belongs to the field of classical statistical mechanics 
(CSM) or quantum statistical mechanics (QSM).

To estimate homophily, we start by assuming that homoph-
ily is symmetric in all networks. The symmetric homophily has 
a linear relation to Newman’s assortativity measure (q), which is 
the Pearson coefficient between attributes of connected nodes 
(for example, race33). This measure shows how assortative the 
network is with respect to a certain attribute. Positive assortativ-
ity means that two nodes with the same attribute are more likely to 
be connected compared to what would be expected from random 
connectivity. Negative assortativity means that two nodes with dif-
ferent attributes are more likely to be connected compared to what 
would be expected by chance. The Newman assortativity measure 
corresponds directly to homophily in our model when adjusted 

for the scale. In our model, h = 0 means complete heterophily  
(negative assortativity, q = −1), h = 0.5 indicates no relationship 
between structure and attributes (no assortativity, q = 0) and h = 1 
indicates complete homophily (positive assortativity q = 1; see 
Supplementary Fig. 1).

In reality, however, the tendency of groups to connect to other 
groups can be asymmetric24, that is, different for the minority (hmm) 
and the majority (hMM). Given the relationship between the number 
of edges between nodes of the same group and homophily in equa-
tions (9) and (13), we can estimate the asymmetric homophily (see 
Methods). As we show below, it turns out that asymmetric homoph-
ily has an important impact on the predictability of perception bias 
in empirical networks.

We used the measured homophily and minority-group size in the 
empirical networks (Table 1) to generate synthetic networks with 
characteristics similar to those of the six empirical social networks. 
This enabled us to compare perception biases in empirical and syn-
thetic networks and to gain predictive insights into the impact of 
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resembling false uniqueness. In homophilic networks (0.5 < h ≤ 1), the minority overestimates its own size while the majority underestimates the size of 
the minority, resembling false consensus. The insets show the same information on a log scale for comparison of underestimation and overestimation. The 
numerical estimations are averaged for 20 simulations using networks with n = 2,000 nodes. Error bars are ±1 s.d.

Table 1 | Characteristics of the empirical networks.

Data Number of nodes Minority, n (%) Majority (n) Symmetric h Asymmetric h (minority, majority)

Brazil 16,730 Sex sellers 6,624 (40%) Sex buyers 10,106 0.0 0, 0

POK 29,341 Minority gender 12,868 
(44%)

Majority gender 16,473 0.17 0.2, 0.17

USF51 6,200 Male 2,603 (42%) Female 3,597 0.47 0.48, 0.47

GitHub 119,275 Female 6,730 (5.6%) Male 112,545 0.53 0.69, 0.54

DBLP 280,200 Female 63,356 (22%) Male 216,844 0.55 0.57, 0.56

APS 1,853 CMS 696 (37%) QSM 1,157 0.92 0.9, 1.0

Each network contains nodes with binary attributes and has a minority and a majority group (see Methods for more details). The calculations of symmetric and asymmetric values of the homophily are 
based on the derivations described in Methods. The data can be found online at https://github.com/frbkrm/NtwPerceptionBias
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homophily and minority-group size on possible individual- and 
group-level perception biases.

Figure 4 shows group-level perception biases in the empiri-
cal networks that could occur if people’s perceptions were based 
solely on the samples of information from their personal networks. 
Visually these patterns are in agreement with the results obtained 
from the survey (Fig. 2), and from the synthetic networks (Fig. 3). 
Figure 4 suggests that in heterophilic networks, the minority group 
is expected to underestimate its own group size and the majority 
group is likely to overestimate the size of the minority. Conversely, 
in homophilic networks, the minority group is expected to overesti-
mate its own size and the majority group is likely to underestimate 
the size of the minority. Because further cognitive or motivational 
processes could affect the final perceptions, these estimates can be 
taken as a baseline level of biases that could occur without any addi-
tional psychological assumptions.

We can compare perception biases estimated directly from 
empirical networks (crosses in Fig. 4) to those estimated from syn-
thetic networks with similar symmetric homophily and minority-
group size (triangles in Fig. 4). Although symmetric homophily 
traces empirically observed perception biases for most networks 
(as suggested by a close overlap between crosses and triangles in 
Fig. 4), it fails to capture the biases in the GitHub network for the 
minority group (see Supplementary Table 3). This network exhib-
its a higher level of asymmetric homophily compared to other net-
works (see far right column in Table 1). When perception biases 
are estimated from a synthetic model that assumes asymmetric 
homophily (squares in Fig. 4), they closely approximate perception 
biases of both the minority and the majority groups in all networks, 
including GitHub (see Supplementary Table 3). This suggests that 

asymmetric homophily plays an important role in shaping possible 
perception biases.

It is known that influential nodes in networks, usually identi-
fied by their high degree, can affect processes in networks such as 
opinion dynamics34, social learning35 and wisdom of crowds36. To 
evaluate the impact of degree on shaping perception biases, we plot-
ted individual perception biases, Bindv, versus individual degrees in 
Supplementary Fig. 2. This figure suggests that the distribution of 
individual perception biases estimated from the BA-homophily 
model mostly corresponds to the empirically estimated distribu-
tion; however, the model does not explain all the variation observed 
in the empirical networks. Specifically, the model suggests that the 
minority members of the USF51 network should have lower per-
ception biases than they really have, and vice versa for the majority 
members (see Supplementary Fig. 2). This could be due either to 
incomplete observations of all social contacts in real networks or to 
other processes that we did not consider in generating the model. 
However, the model can still predict the trend we observed in the 
empirical data, which would not be predicted assuming random 
connectivity among individuals (see Supplementary Fig. 3).

Reducing social perception biases. To what extent and under 
what structural conditions can individuals reduce their perception 
bias? To address this question, we considered perception biases of 
individuals and their neighbours. We aggregated each individual’s 
own perception of frequency of different attributes (ego) with the 
averaged perceptions of the individual’s neighbours37. For simplic-
ity, we assumed symmetric homophily in the BA-homophily model 
(details on DeGroot’s weighted belief formalization and the results 
for asymmetric homophily are in Supplementary Result 1).

Figure 5 compares the bias of individual perceptions to that of 
individual perceptions combined with perceptions of direct neigh-
bours. The results show that taking into account the estimates of 
direct neighbours improves estimates of individuals in heterophilic 
networks (this can be observed visually on the left-hand side of the 
insets in Fig. 5, where blue triangles are closer to the grey dashed 
line than are orange circles). The reduction in perception biases is 
the result of individuals being more likely to be exposed to neigh-
bours with opposing attributes. In homophilic networks, inclusion 
of neighbours’ perceptions does not lead to a notable improvement 
(this can be observed visually on the right-hand side of the insets in 
Fig. 5, where blue triangles and orange circles follow similar trends), 
because individuals are exposed to neighbours with attributes simi-
lar to their own.

Taken together, our results suggest that in homophilic networks, 
individuals cannot improve their perception because their peers do 
not add sufficient new information that would increase the accu-
racy of their estimates. However, in heterophilic networks, indi-
viduals benefit from considering their neighbours’ more diverse 
perceptions. While the overall trend is not surprising, our results 
reveal how the accuracy of these combined estimates changes as a 
function of homophily.

Discussion
The way in which people perceive their social networks influences 
their personal beliefs and behaviours and shapes their collective 
dynamics. Many studies have documented biases in these social 
perceptions, including both overestimation and underestimation 
of the size of minority groups. Here we investigated to what extent 
these seemingly contradictory biases can be explained merely by the 
structure of the social networks in which individuals are embedded, 
without assuming biased cognitive or motivational processes.

Using a survey of 300 participants in three different countries, 
analytical investigations of a simple network model with tunable 
homophily and minority-group size, and numerical simulations on 
a range of real-world networks, we show that structural properties 
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Fig. 4 | Numerical simulations: group-level social perception biases 
that could occur in six empirical social networks. a,b, Accuracy of 
estimation by (a) the minority group and (b) the majority group of the 
size of the minority group in real-world social networks with different 
levels of homophily. The symmetric homophily values of the empirical 
social networks are depicted on the x axis. Group-level perception bias of 
empirical networks is calculated as an average of an individual’s perception 
bias. The horizontal line in each panel indicates the point of no bias. 
Homophily is measured between genders (female and male), except in 
the APS data, where homophily is measured between different academic 
fields—CSM and QSM. Empirical estimates of perception biases (crosses) 
can be visually compared to estimates from the BA-homophily model 
assuming symmetric (triangles) and asymmetric (squares) homophily.  
The synthetic networks were generated with n = 2,000 nodes and averaged 
over 20 simulations. Error bars are ±1 s.d. and are shown if they are larger 
than a marker size (see Supplementary Table 3 for more details).
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of personal networks strongly affect the samples people draw from 
the overall population. As a result, people's estimates of the fre-
quency of different attributes in the general population are related 
to the level of homophily in their personal networks, asymmetries 
in the homophily in different groups and the minority-group size in 
the overall society.

The results show that biased samples alone can lead to appar-
ently contradictory social perception biases such as false consensus 
and false uniqueness. While cognitive and motivational processes 
undoubtedly play an important role in the formation of social per-
ceptions27, our analyses establish a baseline level of biases that can 
occur without assuming biased information processing21,38–41. We 
find that predictions from our generative network model corre-
spond well with empirical observations of perception biases in dif-
ferent social networks as well as self-reports from the survey study, 
suggesting that the model is not only theoretically interesting but 
also may describe actual human behaviour. Specifically, we find that 
when homophily is high, both minority and majority groups tend 
to overestimate their own size, whereas when homophily is low, 
both groups tend to underestimate their own size. Furthermore, the 
smaller the size of the minority group, the more its size is overesti-
mated by both minority and majority groups.

Our study complements past results in the social psychol-
ogy literature in several ways. It has been observed that minority 
groups tend to strongly overestimate, and majority groups slightly 
underestimate, their own frequency18. Our generative network 
model predicts when one can expect these, or different, patterns 
of overestimation and underestimation to be exhibited by minority 
and majority groups. While overestimation of small, and underes-
timation of large, frequencies can be expected when estimates are 
imperfectly correlated with the true population frequencies30,31, our 
model goes further to explain how different patterns of biases occur 
not only because of the size of the minority group but also because 
of varying levels of, and asymmetries in, homophily. The fact that 
we found predicted relationships between homophily and percep-
tion biases in our survey data suggests that people rely on samples 
from their personal networks when making judgements about the 
overall population. Our study provides a quantitative elaboration of 

a mechanism, previously only verbally postulated, of selective expo-
sure, showing that it might play an important role in the occurrence 
of social perception biases, over and above purely social projection 
effects or motivational biases42.

Besides providing a theoretical account of perception biases, this 
work has practical implications for understanding real-world social 
phenomena. Given the importance of homophilic interactions in 
many aspects of social life, ranging from health-related behaviour43 
to group performance44 and social identity45, it is crucial to consider 
obstacles faced by both minorities and majorities when trying to 
form accurate social perceptions. Perceptions of the frequency of 
different beliefs and behaviours in the overall population influence 
people’s beliefs about what is normal and shape their own aspira-
tions43,46,47. When people overestimate the frequency of their own 
attributes in the overall population, they will be more likely to 
think that they are in line with social norms and, consequently, less 
likely to change. For example, we found that small minorities with 
high homophily are especially likely to overestimate their actual 
frequency in the overall network. If such committed minorities 
become resistant to change, they can eventually influence the whole 
network48–50 and, when such minorities have erroneous views, the 
whole society could be worse off. Our results further suggest that 
a possible way to correct biases is to promote more communica-
tion with, and reliance on, neighbours’ perceptions. However, this 
can be useful only in conjunction with promoting more diversity in 
people’s personal networks. Promoting greater communication in 
homophilic networks does not improve perception biases.

This study is not without limitations. One strong assumption in 
our methodology is that one’s perception is based solely on infor-
mation sampled from one’s personal network, or direct neighbour-
hood. In the real world, individuals can also rely on other sources 
such as news reports, polls and general education. In addition, we 
observe differences between the results of our survey and numeri-
cal simulations, indicating a need for future investigation of the 
impact on perceptions of minority-group size and heterogeneity 
of homophily at the individual level. Finally, this investigation did 
not include a quantitative specification of the cognitive processes 
underlying people’s sampling from their personal networks. Such 
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Fig. 5 | Social perception biases for individual nodes and for the weighted average of perceptions of individual nodes and their neighbours. a,b, Individual  
nodes and their neighbours for the minority (a) and majority (b) groups. Insets show the same results in log scale. Orange lines are calculated from 
equation (2) as a group-level bias. Blue lines show the perception bias of the weighted average of perceptions of individual nodes and their direct 
neighbours. The dashed lines indicate the point of no bias. We assume symmetric homophily, a minority fraction of 0.2 and networks with 2,000 nodes. 
Results, averaged over 50 simulations, show that perceptions of both minority and majority groups become slightly more accurate when taking into 
account their neighbours, but only in the heterophilic networks (in insets, blue triangles are closer than orange dots to the dashed line, denoting less bias). 
Error bars show ±1 s.d.
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specifications20,22,38,40 could be combined with the network model 
described here.

In sum, this study shows that both over- and underestimation of 
the frequency of one’s own view can be explained by different levels 
of homophily, the asymmetric nature of homophily and the size of 
the minority group. Integration and quantification of the biases pro-
vide a rather comprehensive picture of the baseline level of human 
perception biases. We hope that this paper offers insights into mea-
suring and reducing social perception biases, and fuels more work 
on understanding the impact of network structure on individual 
and group perceptions of our social worlds.

Methods
BA-homophily model. To gain insight into how network structure affects 
perception biases, we developed a network model that allowed us to create scale-
free networks with tunable homophily and minority-group size32. This network 
model is a variation of the Barabási–Albert model, with the addition of the 
homophily parameter h. In this model, the probability that a newly introduced 
node w connects to an existing node v is denoted by ϕwv, and it is proportional  
to the product of the degree of node v, kv, and the homophily between w and  
v as follows:

ϕwv ¼
hwvkvP

v2fGg;v≠w hwvkv
ð3Þ

Here, hwv is the probability of connection between nodes v and w. This is an 
intrinsic value that is dependent on the group membership of v and w. {G} is a set 
of nodes in a graph G.

Before constructing the network, we specify two initial conditions: (1) the 
size of the minority group and (2) the homophily parameter that regulates the 
probability of a connection between minority and minority individuals, majority 
and majority individuals, minority and majority individuals, and majority and 
minority individuals. Each arrival node continues the link formation process 
until it finds λ nodes to connect to. If it fails to do so—for example, in an extreme 
homophily condition—the node remains in the network as an isolated node. The 
parameter λ guarantees the lower bound of degree and in our model is set to 2. 
Although this parameter is fixed for each node, the stochasticity of the model 
ensures the heterogeneity of the degree distribution.

Analytical derivation of group-level perception bias. In mean-field 
approximation, we estimate the group-level perception bias by behaviour of an 
average node in the group. In the case of the minority, let us denote the average 
number of links to other nodes of group m for an average node in group m as �lmm

I
. 

One can show that

�lmm ¼ 2Lmm

Nm
ð4Þ

where Lmm is total number of links between the minority nodes, and Nm is the 
number of nodes in the minority group m. The average degree of a node in group m 
is the sum of all degrees that nodes in group m have divided by the group size:

�km ¼ Km

Nm
¼ 2Lmm þ LmM þ LMm

Nm
ð5Þ

where Km is the total number of degrees of the group. Thus the average perception 
of a minority node (about the frequency of the minority group) is proportional to 
the average number of links from a minority to minority �lmm

I
 divided by the average 

degree of a minority:

Bm
group ¼

1
fm

�lmm

�km
¼ 1

fm

2Lmm

2Lmm þ ðLmM þ LMmÞ
ð6Þ

Similarly, for group M,

BM
group ¼ 1

fm

�lMm þ�lmM

�kM
¼ 1

fm

LmM þ LMm

2LMM þ ðLmM þ LMmÞ
ð7Þ

Here, Lmm is the number of edges between minority nodes and LMM is the 
number of edges between majority nodes. Note that we distinguish the number 
of edges between the minority and majority LmM and between the majority and 
minority LMm. These values are equivalent when homophily is symmetric, but they 
are unequal when homophily is asymmetric.

One can calculate the probability of inter- and intragroup links based on the 
growth mechanism of the model. Let us consider Km(t) and KM(t) as the total 
number of degrees for each group of the minority and the majority, respectively, 
at time t. At each time step, one node arrives and connects with λ existing nodes 
in the network. Therefore, the total degree of the growing network at time t is 

K(t) = Km(t) + KM(t) = 2λt. In this model, the degree growth is linear for both 
groups. Denoting C as the minority’s degree growth factor, we have

KmðtÞ ¼ Cλt; KMðtÞ ¼ ð2 � CÞλt ð8Þ

The probability of a connection between two minority nodes is the product of 
their degree and homophily:

pmm ¼ hmmKmðtÞ
hmmKmðtÞ þ hmMKMðtÞ ¼

hmmC
hmmC þ hmMð2� CÞ ð9Þ

where hmm is the homophily between minority nodes and hmM = 1 − hmm is the 
tendency of minority nodes to be connected to majority nodes, or heterophily.  
The connection probability from a minority to a majority pmM is the complement  
of pmm as

pmM ¼ hmMKMðtÞ
hmmKmðtÞ þ hmMKMðtÞ

¼ hmMð2� CÞ
hmmC þ hmMð2� CÞ ð10Þ

Similar relationships can be found for the connection probability of majority to 
majority and majority to minority. Since Lmm and LMM in equations (6) and (7) have 
a relation as a product of the total number of edges and the link probability, such as 
Lmm = λNmpmm, we can reduce these two equations to the following equations:

Bm
group ¼ 1

fm
2pmm

2pmmþpmMþðNM=NmÞpMm

BM
group ¼ 1

fm
ðNm=NM ÞpmMþpMm

2pMMþðNm=NM ÞpmMþpMm

ð11Þ

where Nm and NM represent the number of nodes in each group. The analytical 
derivations are intuitive and well explained by the numerical results (solid lines in 
Fig. 3). For example, when fm = 0.5 in extreme homophily (h = 1.0) with the degree 
growth C = 1 (a symmetric homophily condition), Bm

group ¼ 2
I

 from equation (11) 
matches well with the numerical result in Fig. 3a. Note that the growth  
parameter C is a polynomial function, and its relation to homophily is shown  
in Supplementary Method 1.

Measuring homophily in empirical networks. From the linear degree growth 
shown in Supplementary Equation (3), we can derive the relation between the 
degree growth C and the inter- and intralink probabilities pmm, pmM in equations (9) 
and (10). Thus,

C ¼ fmð1þ pmmÞ þ fMpMm ð12Þ

In empirical networks we know the edge density for both the minority 
(rmm = Lmm/L) and the majority (rMM = LMM/L) where L is the total number of links. 
Thus, the probability of connection within a group can be written as rmm = fmpmm 
and rMM = fMpMM. From equation (9) and the relation between rmm and pmm (or rMM 
and pMM), we can derive the empirical homophily by using edge density, rmm,rMM,  
as follows:

hmm ¼ rmmð2�CÞ
fmCþ2rmmð1�CÞ

hMM ¼ rMMC
fM ð2�CÞ�2rMM ð1�CÞ

ð13Þ

These calculations allow us to estimate the homophily from the empirical 
networks assuming that the BA-homophily model is a valid model of a social 
network. The homophily, by definition, can be either symmetric (hmm = hMM) or 
asymmetric (hmm ≠ hMM).

Survey study. We conducted a survey on n = 99 participants from Germany, 
n = 100 from South Korea and n = 101 from the United States, from March to 
May 2018. The German and US participants were recruited from Amazon’s 
Mechanical Turk crowdsourcing platform, and the South Korean survey was 
conducted through the survey platform Tillion Panel (see Supplementary Fig. 4 
for demographic details of the samples). These sample sizes were considered to 
be sufficient based on the results of a previous publication using this method, 
where the trends of interest were detected with samples that were half this size20. 
The research was approved by the Federalwide Assurance Signatory Official of the 
Santa Fe Institute.

Participants were asked questions about their own attributes, the frequency 
of these attributes in their personal networks and their frequency in the general 
population of their country. Question texts and objective sizes of minority and 
majority groups in the general populations were taken from publicly available 
results of large national surveys conducted in each country. Details are provided 
in Supplementary Table 1. German and US participants were asked about ten 
attributes, and Korean participants about seven of those attributes for which we 
could find objective population data.

We estimated the homophily of participants’ personal networks on the basis of 
their reports of the size of minority and majority groups in their social circles. Each 
participant reported the fraction of his or her personal network (or social circle) 
who have a specific attribute. For example, a participant who does not smoke 
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might have estimated that 80% of their social circle is nonsmokers. We used this 
fraction to calculate the probability that any two nonsmokers in their social circle 
are connected. As a complementary relation of connection between attributes, we 
furthermore used the fraction of smokers in their social circle (20%) to calculate 
the probability that any nonsmoker and smoker are connected. These probabilities 
are equivalent to pmm or pMM in the BA-homophily model. Using equations (9) and 
(12) we can calculate the homophily hmm (or hMM) of each participant’s personal 
network. In addition, we can evaluate hmM and hMm using the relations hmM = 1 − hmm 
and hMm = 1 − hMM.

To study the effect of minority-group size, we analysed results separately 
for attributes for which minority-group size in a particular country was small 
(fm < 0.2), medium (0.2 ≤ fm < 0.4) and large (0.4 ≤ fm  < 0.5). For example, small-
minority attributes in the United States are experienced theft, smoking and 
not having enough food, because the objective frequency of these attributes in 
the general US population is <0.2 (see Supplementary Table 2). We measured 
participants’ individual perception bias by dividing their estimate of minority-
group size in the general population by the objective minority-group size  
obtained from national surveys, according to equation (1).

Empirical networks. We investigate six empirical networks. The first network 
is a Brazilian network that captures sexual contact between sex workers and 
sex buyers51. The network consists of 16,730 nodes and 39,044 edges. There are 
10,106 sex buyers and 6,624 sex sellers (minority-group size fm = 0.4). In this 
network, no edges among members of the same group exist, resulting in  
Newman’s assortativity (q = −1) and, consequently, the network is purely 
heterophilic (h = 0).

The second network is an online Swedish dating network from PussOKram.
com (POK)52. This network contains 29,341 nodes with strong heterophily 
(h = 0.17, q = −0.65). Given the high bipartivity of the network, we are able to infer 
the group of nodes using the max-cut greedy algorithm. The results are in good 
agreement with the bipartivity reported in the literature53. We label the nodes based 
on their relative group size as minority gender and majority gender. Here, the 
fraction of the minority in the network is 0.44.

The third network is a Facebook network of a university in the United States 
(USF51)54. We removed the nodes without links. As a result, the network is 
composed of 6,200 nodes and includes information about individuals’ gender. In 
this network male students are in the minority, occupying 42% of the network, and 
the network exhibits a weak heterophily54 (q = 0.06, h = 0.47).

The fourth network is extracted from the collaborative programming 
environment GitHub. The network is a snapshot of the community (extracted 
4 August 2015) that includes information about the first name and family name of 
the programmers. We used the first name and family name to infer the gender  
of the programmers55. After we removed ambiguous names and nodes having  
no links, the network consisted of 112,545 men and 6,730 women. Here,  
women belong to the minority group and represent only about 5.6% of the 
population. The network displays a moderately symmetric gender homophily  
of 0.53 (q = 0.07).

The fifth network depicts scientific collaborations in computer science and 
is extracted from Digital Bibliography and Library Project’s website (DBLP)56. 
We used a method that combines names and images to infer the gender of the 
scientists with high accuracy55. We used a 4-year snapshot for the network. After 
we filtered out ambiguous names, the resulting network included 280,200 scientists 
and 750,601 edges (paper co-authorships), with 63,356 female scientists and 
216,844 male scientists. This network shows a moderate level of symmetric 
homophily (h =0.55 and q = 0.1).

The final network is a scientific citation network of the APS. Citation networks 
depict the extent of attention to communities in different scientific fields. We 
used the Physics and Astronomy Classification Scheme (PACS) identifier to select 
papers on the same topics. Here, we chose statistical physics, thermodynamics and 
nonlinear dynamical systems subfields (PACS = 05). Within a specific subfield, 
there are many subtopics that form communities of various size. To make the data 
comparable with our model we chose two relevant subtopics, namely CSM and 
QSM. The resulting network consists of 1,853 scientific papers and 3,627 citation 
links. Among nodes, 696 are in the minority and 1,157 in the majority. Here, the 
minority group in these two subtopics is CSM (fm = 0.37). This network shows 
the highest homophily compared to the other empirical datasets (h = 0.92 and 
q = 0.83).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The three empirical data (DBLP, GitHub, APS) can be found online at https://
github.com/frbkrm/NtwPerceptionBias. The network data for Brazil can be found 
in the data description of the study51 published in PLoS Computational Biology in 
2011. POK can be found from the corresponding authors of the study52 published 
in Social Networks in 2004, and USF51 can be found from the corresponding author 
of the study54 in Physica A, 2011. The survey data can be obtained from the authors 
upon request.

Code availability
The Python scripts used for the generative model and empirical network analyses 
are available online at https://github.com/frbkrm/NtwPerceptionBias. Additional 
information about codes is available from the corresponding authors upon request.
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