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Abstract

Although bio-inspired designs for cybersecurity have yielded many elegant
solutions to challenging problems, the vast majority of these efforts have
been ad hoc analogies between the natural and human-designed systems. We
propose to improve on the current approach of searching through the vast
diversity of existing natural algorithms for one most closely resembling each
new cybersecurity challenge, and then trying to replicate it in a designed
cyber setting. Instead, we suggest that researchers should follow a protocol of
functional abstraction, considering which features of the natural algorithm
provide the efficiency/effectiveness in the real world, and then use those
abstracted features as design components to build purposeful, tailored (perhaps
even optimized) solutions. Here, we demonstrate how this can work by
considering a case study employing this method. We design an extension
of an existing (and ad hoc-created) algorithm, DIAMoND, for application
beyond its originally intended solution space (detection of Distributed Denial
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of Service attacks in simple networks) to function on multilayer networks. We
show how this protocol provides insights that might be harder or take longer to
discover by direct analogy-building alone; in this case, we see that differential
weighting of shared information by the providing network layer, and dynamic
individual thresholds for independent analysis are likely to be effective.

Keywords: Cyber-Security, Bio-Inspired, Anomaly detection, Multilayer
Networks.

1 Introduction

Motivation. Bio-Inspired algorithm development in cybersecurity frequently
relies on isolated analogy building between particular threats and specific
biological systems [1]. While meticulous care is often taken in building these
analogies and then tailoring the borrowed algorithms to meet the needs of
cyber systems (e.g. [2, 3]), straying too far from the initial natural setting
can compromise the function of the solution, rendering the act of turning
to nature for inspiration frustrating and even futile. It is therefore potentially
hugely desirable to consider how one might consider, tailor, and test abstracted
features of biological algorithms outside of their native context, without having
to carry over the specific details of the biological system that shaped their use.
Naturally, this runs the risk of eliminating the very scope of the system that
made them appropriate and useful in the first place.

Balancing this desire for conceptual abstraction against the specificity of
the iterative trial-and-error refinement that builds the natural world itself is
an important step in discovering the building blocks nature uses to create
robust structures; if we can learn the principles of architecture, perhaps we
can design buildings rather than simply altering and implementing existing
blueprints. To that end, we here describe and analyze a process of exploration
in which we consider a single bio-inspired algorithm, focused on anomaly
detection in networks, and attempt to abstract its function without losing its
form for purposes of being able to describe its scope and performance. (Note:
this description may even be possible analytically, rather than experimentally,
which would allow us to bring to bear the vast toolkit available from the
world of mathematical optimization). This desired shift to focus on functional
features improves our ability to leverage the inspiration of biology without
being restricted to efficient function only in direct analogy to the contexts of
biological systems themselves.

Case Study in Anomaly Detection. One class of malicious Internet attack
of broad concern involves the saturation of the network by purposefully
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generated (and otherwise useless) traffic (e.g. DoS and DDoS attacks).
These attacks can severely influence efficient handling of packets by any
node that lies along the the path of the attack. The early detection of abnormal
traffic volume or patterns is a central problem in cybersecurity since efficient
methods allow more time to employ mitigation strategies (e.g. packet refusal,
neighborhood isolation, etc.; [4, 5]). The past few decades of work have
yielded a wealth of anomaly detection methods [6]. These methods can broadly
be classified as either centralized or distributed. In centralized methods,
a localized monitoring agent (or set of agents) collects and analyzes data
monitoring traffic from the entire domain/network, and then employs some
statistical or probabilistic metric of comparison against expectation to decide
whether anomalies are present and if these should be attributed to malicious
attacks. In contrast to that, distributed algorithms allow smaller network
neighborhoods (including individual nodes themselves) to decide on the status
of the network as it is perceived through data gathered about routed packets
handled within the small neighborhood itself, without the need to monitor
the behavior of traffic in other parts of the network. Distributed anomaly
detection methods have been gaining traction lately as a means of mitigating
attacks because they incur lesser costs in communications overhead, invoke
no delay from the collation and analysis of large, streaming data from multiple
(potentially asynchronous) sources of varying reliability, and are simply easier
to implement and deploy [7].

Recent work developed a non-parametric, distributed, bio-inspired algo-
rithm for anomaly detection in networks utilizing principles of self-
organization observed in colonies of honey bees [8]. Mirroring the activities
and communication that honey bee colonies use to collaborate efficiently
to find and exploit external resources [9], this algorithm focuses on infor-
mation from the local network neighborhood while also preserving privacy
considerations, such as not sharing information about patterns in traffic
handled by a specific node/domain. This DIAMoND method (Distributed
Intrusion/Anomaly Monitoring for Nonparametric Detection) has been shown
to be fast and efficient, and remains efficient under a quite broad range
of traffic and attack conditions [7, 8, 10]. However, as with bio-inspired
distributed methods, DIAMoND was constructed via ad-hoc analogy to the
inspiring system of communication in foraging social insects. The complexity
of the problem makes it necessary to implement many steps according to pre-
defined decisions and use many parameters. In other words, current design
and implementation are not based on any first-principles approach and it is
not clear what their full capabilities or limitations are. Itis clear that abstraction



116 G P. Sudrez et al.

of these methods to analytically tractable models or at least understanding the
impact of the main model features would meaningfully improve our ability to
optimize algorithms such as DIAMoND which have been inspired by nature,
but are intended for use within very specific cybersecurity design cases.

As a starting point towards this abstraction, we focus in this work on the
question of which features can be abstracted and which critical features are
needed to retain the desired behaviors. We consider what kinds of simplifica-
tions and/or abstractions might be made to allow generalizable conclusions
and suggest methods for purposeful tailoring of these algorithms to achieve
goals that are further away from their bio-analogue systems. Thus using the
bioinspired DIAMoND algorithm as our case study, we use this method of
abstract interrogation to consider how the same inspiration might enable
alternative implementations for traffic in a two-layer network system.

Modern societies are built on networks of interconnected and interdepen-
dent systems [11]. As initially isolated infrastructures become increasingly
interconnected with each other, there is growing interest on the effect of inter-
dependency between/among interacting networks (such as the Internet and
the power-grid). Here we consider a scenario in which there are simultaneous
attacks on a system comprised of two layers, which results in increased traffic
in both layers. Nodes can use information on possible attacks through their
connections to nodes of the other layer. The extension of anomaly detection
methods to multi-layered systems is not straightforward and, to the best of
our knowledge, there is no published method for determining optimal ways
to achieve this. For this reason, we abstract the fundamental principle of
distributed anomaly detection developed in DIAMoND: that nodes should
leverage shared non-parametric information from other nodes to affect their
own determination of anomaly detection. We thus consider different methods
for utilizing those shared data, received from the other layer, focusing not on
replicating the type of information-sharing observed in nature, but rather in
replicating the method itself, by building the specifics of how to employ that
method as purposefully engineered design.

2 DIAMoND on Multi-layer Networks

DIAMOoND provides a non-parametric distributed coordination framework
that decouples local intrusion detection functions from network-wide coor-
dination. The aim is to provide a scheme where each node can detect traffic
anomalies, using only the information that is available to it and the perceived
state of its neighbors, without having to be informed of any parametric data
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about either “normal” or current patterns in each of the neighbor’s local traffic.
The DIAMoND algorithm has been shown to be successful in both empirical
and simulation implementations [8, 10].

In the DIAMoND algorithm (Figure 1(a)), each node keeps track of
two sensitivity thresholds and uses them to analyze the total traffic that
it is handling. This determines its current ‘threat level’ 7;(¢), which is a
private parameter, i.e. its value is not shared with other nodes. The value
of T;(t) = 0,1, or 2, summarizes what the node i believes about its status
at time ¢: ‘normal’, ‘concerned’, or ‘attacked’. Assuming that the normal
traffic of node i corresponds to a normal distribution with mean p; and a
variance o, the lower threshold is chosen as S;;, = u; + 1.50; and the upper
threshold as S;g = u; + 30;. The lower limit is fixed, but the upper limit,
Sit» changes according to the threat level, 7;(¢). If the node considers itself
under attack, then it lowers its upper threshold, but if the anomaly ceases, it
will slowly restore the upper threshold to its initial level. To determine the
extent to which the threshold should change, a node keeps a second private
parameter, L;(t) = 0,1, 2, which summarizes its average level of concern
such that higher values of L;(t) result in larger changes to the threshold. The
average level of concern, in turn, is based on the concern level ¢;(t) of the node
and the concern level ¢;(t) of all the node’s neighbors. This concern level is
considered public information and nodes freely share it with their neighbors.
The value of L;(t) is based on the average over the k neighbors of node i,
(ci) = 22 ¢j(t —1)/k, so that L;(t) = 0 when (c;) < 0.4, L;(t) = 1 when
0.4 < {(¢;) < 1.3,and L;(t) = 2 when (¢;) > 1.3. A complete description of
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Figure 1 (A) Schematic description of the DIAMoND algorithm. Nodes share their concern
level, ¢;, which is then used to calculate their confidence that there is an attack taking place, as
expressed through their threat level, T';. The value of T'; is then used to modify the sensitivity
threshold, according to the current traffic handled by the node. (B) In the two layer system,
a fraction q of nodes are connected to the other layer. These nodes can exchange information
and a node assigns a weight w on this inter-layer information.
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the DIAMoND algorithm and how these parameters are related is discussed
in [8, 10].

Baseline Implementation of DIAMoND in a 2-Layer Network. Before we
can consider different abstracted cases, first we must implement the original
algorithm itself in a multilayer context. We therefore begin by reporting
results of the original DIAMoND implementation simulated in the simplest
multilayer system possible: two inter-connected networks (Figure 1(b)). To
determine the effect of topology each layer can be either an Erdos-Renyi (ER)
network with average degree (k) = 3 or a scale-free (SF) network where the
degree distribution scales as a power-law P(k) ~ k~7. We use two scale-free
networks, with v = 2.5 where hubs are very strong and with v = 3.5 where
there are almost no hubs. In each layer, we consider that a fraction g of its
N ~ 5000 nodes is connected to nodes in the other network. Here, we fix
q = 0.8. We assume that traffic flows independently through each network
and there are never any packets crossing between networks. The inter-layer
links are used exclusively for sharing information, while both information and
traffic pass through the intra-layer links.

As in previous simulations, we assume that at every time step each node
i handles normal (i.e. standard) traffic which follows a gaussian distribution,
with mean traffic u; and a variance 01-2. The mean value is typically around
1 = 1000 in arbitrary units. A fraction p of the nodes become compromised
and start emitting “malicious” packets, each one of size z in the same arbitrary
units as 4 via a biased random walk towards a pre-assigned target node. The
intensity of the attack is determined by the fraction, p, and the size z of the
malicious packet. The parameters p and z may assume different values in
each layer, resulting in attacks of different intensity in different layers. To
evaluate the efficiency of the detection algorithm we calculate the detection
accuracy in each layer, averaged over all nodes in the layer. We count how
many of the nodes that reported an attack were actually under attack (true
positives) and how many of them were not (false positives). In the same
manner, we define true negative and false negative results. We compare the
accuracy of this naive expansion of the algorithm into a multi-layer system
to the accuracy achieved when each layer is independent and cannot use
information from the other network. In this way, we can determine if there is
any improvement in using information from both layers and can now begin
to consider the conditions under which this may happen and how such imple-
mentations might be improved beyond the naive case. Further, by relaxing
definitions of distance away from physical network layers, we can begin
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to interpret multilayer algorithms for use on networks with different types
of distance.

3 Models of Abstraction

To begin to consider how extension to multilayer networks might be best
achieved, we first isolate the component features of the DIAMoND algo-
rithm that made it effective both within its inspiring biological context, and
in its original conceptualization for simple networks. As reflected in the
computational parameters of the model, at its most fundamental, DIAMoND
involves 3 features used by each participating node: (1) Information from
direct observation of traffic handled by oneself, (2) Information from indirect
sharing of information from network neighbors, and (3) Rules for how to
interpret direct observations based on all information obtained.

The act of characterizing these fundamental, abstract features of
DIAMOND, not as features that simply existed because they reflected the
biological system that inspired them, but as features that enable the function
of all such systems of this design instantly suggested directions for how to
extend the same functional features to settings (such as multilayer networks)
for which the direct biological analogy might have been stretched too thin
to provide concrete inspiration. Furthermore, this characterization of abstract
features also instantly suggested a set of initial experiments that would test
the relative importance/impact of alterations in each of these features as they
might be applied in the context of multilayer systems.

3.1 Model 1: Merged Attack Information

The first natural question suggested by our abstraction is to explore whether
adding additional network layers is meaningfully different at all. We therefore
considered a straightforward extension of the single-layer case, where the two
layers are treated as one system and each node applies DIAMoND based on
all available information, even though each layer may experience an attack
of different intensity. This means that nodes can exchange information on
whether an attack takes place but since they use data from both layers they
are not able to distinguish if the attack takes place on any given layer. The
only information that a node can use is whether its neighbor belongs to the
same layer or not. As a result, each node averages the concern level of all
its neighbors, independently of the neighboring node’s layer. These values
represent an averaged estimation on the status of the system as a whole,
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1.e. there is no distinction between layers. The main difference from the one-
layer system is in the calculation of the average concern level, which is now
weighted depending on whether a neighbor node j is in the same layer or not.
For this, we use a trust parameter, w, so that the average concern level now
becomes (c¢;) = > ; wijc;j(t —1)/k, where w;; = 1 for neighbors in the same
layer and w;; = w for neighbors in different layers. In this way, a node can
assign higher or lower weight to the information received from the other layer.
As we increase w (Figure 2), the accuracy of the method increases slowly or
remains similar to the accuracy for the isolated network in the ER layer when
the attacks in the two layers are of relatively low intensity, i.e. small values of
z and p. When the attack intensities differ significantly from each other, the
accuracy in the SF layer drops significantly.

To study the effect of different attack intensities, we systematically
changed the attack intensities from z = 0 to z = 100 in each layer. In Figure 3
we show changes in accuracy when one layer is an ER network and the other
layer is a SF network with degree exponent v = 2.5 (left panels) or v = 3.5
(right panels). The detection accuracy in the ER layer improves by as much
as 2%, compared to the already high accuracy of DIAMoND in an isolated
ER layer, when the attack in the other network is of relatively high intensity,
because it raises stronger attack awareness in the ER layer. For weak attacks
in the other layer, accuracy remains the same or actually worsens, as the other
layer tends to be less aware of the attack. At the same time the accuracy in the
SF layer drops significantly, almost independently of the type of attack and
remains similar to the isolated detection only when the attack in the SF layer is
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Figure 2 [MODEL 1] Ratio of accuracy in each layer of a two-layer system (ER connected
to scale-free, v = 2.5) over the accuracy in the isolated network, as a function of the trust
parameter, w. Solid lines represent accuracy in the ER layer and dashed lines in the scale-free
layer. Colors correspond to different attack packet sizes, z, as shown in the plot. (A) Different
fraction of compromised nodes in each layer: prr = 0.3 and psr = 0.7. (B) Same fraction
of compromised nodes in both layers: pgr = 0.3 and psr = 0.3.
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Figure 3 [MODEL 1] Ratio of accuracy in each layer of a 2-layer system over accuracy in
the isolated layer, for different values of attack size, z, in each layer. Top-left: accuracy in the
ER layer of the ER-SF (v = 2.5) system. Bottom-left: accuracy in the SF layer of the ER-SF
(v = 2.5) system. The right panels show the corresponding results when the scale-free layer
has a degree exponent y = 3.5.
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Figure4 [MODEL 2] (A) Change in accuracy of the ER-layer when it is connected to either
an ER layer (black line), a SF layer with v = 2.5 (red), or a SF layer with v = 3.5 (blue),
as a function of the packet size z. In all cases, p = 0.3. (B) Change in accuracy when a SF
layer with v = 2.5 is connected to each of the other three layers described above. (C) Same
information as above for accuracy in a SF layer with v = 3.5. Notice that in almost all plots,
the black and red lines coincide.

relatively weak. In terms of the topology influence, DIAMoND works better
when the second layer does not include strong hubs, such as when v = 3.5,
because hubs tend to stabilize the opinion of most network nodes and it is
difficult to increase their concern level.
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We find, therefore, that even as detection in one layer improves, the
accuracy in the second layer may diminish. As expected, this model does
not take full advantage of information provided by the other layer because it
merges the two layers into one broader entity and cannot separate attacks
of different size. Therefore, our main result here is that DIAMoND-type
algorithms do require distinct tailoring for multilayer implementation. Each
node should, at least, be able to treat attacks in each layer separately. This
therefore suggested the next logical feature experiment: a coupled parallel
version of DIAMoND in which we assign an independent set of parameters
for each layer to each node.

3.2 Model 2: Nodes Use Parallel DIAMoND Calculations for Each
Layer

In the previous model, the concern level of a node was based on mixed
information from both layers. When a node can identify whether the received
information refers to its own layer or the other layer, it is reasonable that
the node should maintain a different personal opinion on the status of each
layer, such as when it feels certain that there is an attack in the other layer
but not on its own, or vice versa. To keep these opinions separate each node
keeps two sets of parameters: {ci, L™ T/} for information on its own layer
and {c0¥, L% T?u'} for information on the other layer. In this model, the
node runs two parallel DIAMoND algorithms for each set and calculates the
corresponding values. The node only acts based on information of its own
layer (the in set) to change its sensitivity threshold, and maintains the out set
in order to inform its neighbors in both layers about its opinion on possible
attacks in the other layer. The calculation for the average concern levels of
a node i is as follows (j runs over same-layer neighbors, and m runs over
other-layer neighbors):

_— Ej c;'." + 3, wedt
()™ = Zj 1+ Zm w M

Zj C?Ut + Zm wcj”’rrll

All concern levels are initialized to 0. In order to assess the performance of
this model, in Figure 4 we show changes in accuracy of model 2 for layers in
different combinations, expressed as a percentage of the performance of the
DIAMOoND algorithm if the layer was isolated.

2
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Figure 5 [MODEL 3] The change in accuracy for the same conditions described in Figure 3,
where now nodes use Model 3 as their detection algorithm.

These results clearly show that the intensity of the attack is important and
practically all layers improve or maintain their detection accuracy for low
intensities. As the z value increases, the accuracy drops in all cases, however,
the extent of the effect is influenced by the topology of each layer.

By focusing explicitly on the impact of expanding to a multilayer context
for the 2nd feature, we find that explicit separation of information per layer
does not improve the overall accuracy, but it does allow for different layers to
independently improve their effectiveness.

3.3 Model 3: Nodes use Weighted Parallel DIAMoND
Calculations for Each Layer

This case corresponds to the possibility that a node might be able to exploit
greater confidence about the status of its own layer. Here, we allow a node
to give different weights to the information received depending on where it
comes from and what layer it refers to. We implement this distinction by
modifying the calculation of the average concern level as follows:

. cin wmcffft
<Ci>m — Z] J Em (3)

Zj C?Ut + Zm WoutCry

Zj 1+ Zm Wout

<Ci>out —

“)



124 G P. Sudrez et al.

We typically use w;, = 1 and we,: = w. This means that to assess the status
of its own layer, a node gives equal weight to all its neighbors, independently
of their layer. To calculate the concern level for the other layer, though, the
node gives higher (or lower) weight to information received from nodes in the
other layer. Again, all concern levels are initialized to 0.

In Figure 5 we see that all layers can detect attacks with very little change
in their accuracy under almost any conditions, where the maximum accuracy
loss is of the order of 0.5%. This shows that relating the information directly
with its source improves the performance of DIAMoND, but only when this
information is additionally weighted according to which layer contributes this
information. In contrast, we observed lower accuracy of as much as almost
2% in Model 2 where we do not distinguish between trust in same-layer or
other-layer.

3.4 Model 4: Effect of the Default Concern Level

Here, we expand on the realization that there may be ambiguity in our 3*4
feature and that this ambiguity may influence our ability to understand our
274 feature: a node may interpret a large set of available information (from
features 1 and/or 2) and come to conclusion of ‘no concern’, or instead, there
may be no information to interpret, which may also lead to a conclusion of ‘no
concern’. To determine whether or not this potential ambiguity may impact the
performance of our algorithm, we explore an alternative scenario compared
to all models above which initialize their concern level to 0. This is, of course,
reasonable since at the default state without attacks there is no reason to
increase this value. Especially when dealing with two-layer systems, in which
there is no potential for direct observation of information (i.e. feature 1), we
need to distinguish whether the information of my same-layer neighbors is
based on data received from the other layer or if they just report their default
value, which carries no real content. The same-layer neighbors dominate the
calculation of the average and even if a neighbor from the other layer attempts
to inform about an attack, the same-layer neighbors may force the average
to stay at the no-attack state, just by being in their default state. Therefore,
we introduce a new value for the concern level, cf“t = —1, which indicates
that the node has never received information about the other layer from any
neighbor. These nodes are ignored in the calculation of the averages above,
which run only over nodes which have % values different than —1. Once a
node gets a c“! value different than —1, it can never get back to —1.
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Figure 6 [MODEL 4] The change in accuracy for the same conditions described in Figure 3,
where now nodes use Model 4 as their detection algorithm.

We can apply this idea of ignoring the nodes with no new information
about the other layer to both of the earlier models as well. In Figure 6 we
show the results that correspond to the conditions of Model 4, where we now
initialize all concern levels to a default state of —1. The plots in this model are
practically the same as in Model 3, and we have found a plot very similar to
Figure 4, when simulated under the conditions of Model 2 (not shown here).
Critically, this means the initial state of the system is irrelevant to the behavior
of the algorithm because the nodes continuously update their status according
to current information, and completely forget their initial status. This insight
vastly simplifies the computational burden of design testing.

Again, our abstracted feature set allows us to tailor our desired algorithmic
behavior based on the component principles that allow the original, biological
algorithm to succeed, rather than attempting to understand some analogous
version of weighted, multi-layer signal interpretation when the inspiring honey
bee system may not provide a truly multi-layer template for exploitation.

3.5 Model 5: Effect of Initial Thresholds for Anomaly Definition

While the first four Models have explored the modification of every aspect of
the system related to the connections between layers, and how the information
is shared among neighboring nodes, they do not consider modifications of
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the individual-layer process of DIAMOoND itself. We therefore also consider
the case in which appropriate tailoring for multi-layer function relies on the
tailoring of the single-layer process.

Here, we investigate the effect of varying the set of parameters that
individual nodes participating in the DIAMoND process use to determine
whether their internal analysis of the patterns of network traffic constitute
an anomaly. As a baseline simulation of packet traffic, we assumed that the
total traffic for each node is a sum of a “normal,” baseline amount of traffic,
and the “extra” traffic that is formed by the malicious packets generated
by the attack. We assume that each node has a different normal traffic, but
all of them experience the same fundamental distribution. In each of the
scenarios explored in the models above, we defined the baseline traffic to
be normally distributed. In other words, the node i would have normally
distributed baseline traffic with mean value u; and variance ;. The algorithm
employs threshold values characterized by the distance from the mean: a
value for the lower limit .S;;, = u; + rro; and a value for the upper limit
Sio = Wi + ryo;, for each node i. In each of our models explored above, we
set 77, = 1.5 and vy = 3. While the lower limit, r, is constant for the whole
process, the upper limit, 7;; can change, as explained in Section 2, but it can
never drop below the original value ;. For this reason, the accuracy of the
algorithm’s performance is tightly connected to these two values.

In abstract consideration of the role of these parameters in the algorithm,
the values chosen for r; and ry should reflect both the distribution of
baseline traffic expected by the node, and the average connectivity of the
node in the network topology. As a result, selection of these parameter values
can be calibrated empirically by each node based on “training” samples to
characterize baseline traffic under non-attack conditions, if such conditions
are identifiable and likely to hold constant over time. However, it is of course
also possible to characterize the frequency of internal violations of these
thresholds by the distribution of baseline traffic itself (e.g. hence the definition
in the normally distributed case in terms of ¢ as an estimate of expected
frequency of departure from the mean). Then the challenge becomes to select
a starting 77 that increases the performance on iterative re-definition based on
the algorithm’s feedback from network neighbors, rather than approximating
a random walk around the initial value. (Note: this naturally becomes more
difficult as the underlying distribution becomes harder to characterize.) This
is logically akin to searching a continuous curve for a local maximum from an
auspicious starting value, and therefore only meaningful in expectation rather
than concrete calculation for any given node/topology/distribution.
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Figure 7 Accuracy for different combinations of the parameters 71, and 7y on a ER network

with N = 5000 and (k) = 3. The fraction of compromised nodes in the attack is p = 0.3 and
the size of each packet is z = 20.

3 0.76
25 0.74
2 0.72

2 45 07
1 0.68
0.5 0.66
0.64

0.5 1 1.5 2 2.5 3
L
Figure 8 Accuracy for different combinations of the parameters 7, and 7y on a SF network

with N = 5000 and v = 2.5. The fraction of compromised nodes in the attack is p = 0.3 and
the size of each packet is z = 20.

In this model, we exhaustively explore the behavior of the algorithm under
different combinations of 7y, and r;; in order to determine which one gives
the more accurate results. Without loss of generality, we impose the simple,
definitional condition that 77, < 7. In Figures 7 and 8 we show the accuracy
of the DIAMOoND algorithm for an isolated Erdos-Rényi network (ER) and
a Scale Free (SF) network with v = 2.5 respectively, under a small attack
(30% of the nodes are compromised and the size of malicious packets is
z = 20). We found a maximum value for the pair r, = 0.2 and ry = 2
for both topologies. This can indicate that the most efficient combination of
parameters is independent from the topology on top of which the algorithm is
taking place.
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4 Alternative Measurements of Performance

Although algorithmic performance metrics in cybersecurity and anomaly
detection frequently focus on accuracy as the most relevant outcome, there
may also be cases in which other metrics are more critical to ensuring stability
or performance. We therefore, in addition to the already-presented results
for accuracy, consider the effect that interconnection between layers has on
algorithmic performance in terms of sensitivity, specificity, and precision.
Each one is defined as follows:

A TP+ TN 5)

ccuracy =

M T TPY TN+ FP+FN
TP

SenSitiVity = m (6)
TN
TP

Precision = m (8)

where T'P = true positive, I'N = true negative, F'P = false positive, and
F N = false negative.

In Figure 9, we analyze each of these four metrics of performance in the
context of Model 2, presented above (Section 3.2). In particular, we present
the results for an Erdos-Rényi (ER) network with average degree (k) = 3,
when it is connected to another ER network (black line), a SF network with
v = 2.5 (red line) or a SF network with v = 3.5 (blue line). The two
networks are connected using the rules explained in Section 3.2 (model 2).
We show how these quantities differ from the case of an isolated network.
It is important to point out that the precision and sensitivity corresponding
to the isolated network are already superior to 99%. Thus, it is not possible
to out-perform them considerably, limiting our potential for improvement to
approximately 1, which is consistent with the observed results. Further, in
analyzing the sensitivity of the algorithm (i.e. the fraction of true positive hits,
out of all the positive reported cases), we find an increase in the sensitivity
when the packets are small and when the network is connected either to another
ER network or a SF network with v = 2.5. Critically, however, we observe a
decrease when the packets are larger, or when the network is connected to a SF
network with v = 3.5. In both cases, the difference is around 3%. We therefore
note that, should sensitivity be the most critical performance metric in targeted
application, careful analysis of the network/traffic scenario is necessary to
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Figure 9 Performance of the DIAMoND algorithm as a function of the size of the packets
for an ER network with average degree (k) = 3, when it is connected to another ER network
(black line), a SF network with v = 2.5 (red line) or a SF network with v = 3.5 (blue line).
The networks are connected using the rules explained in Section 3.2 (Model 2). The rest of
the parameters are: N = 5000, compromised nodes p = 0.3, fraction of connected nodes
q=0.8.

determine whether or not DIAMoND-type, distributed algorithms should be
deployed.

5 Summary

We believe that it is time to shift the practices of the field of bio-inspired
algorithm design away from case-by-case analogue building and experimental
trial-and-error testing of minor design changes. Instead, we propose a method
where bio-inspired work starts with an analogue system, but rather than trying
to mimic that system, researchers focus on abstracting the fundamental com-
ponent features and the interactions among them that yield algorithmic success
across contexts. Once accomplished, these components and interactions may
be designed and tailored to the needs of human systems, rather than trying to
stretch analogies further and further from their initial context.
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In the specific case of extending DIAMoND to function on multilayer
networks, this approach (though still ongoing) has allowed us to eliminate
some axes of potential concern (e.g. ambiguity in lack of concern) while
instead directing our attention towards more potentially fruitful avenues of
design (e.g. weighting the contribution of information learned from network
neighbors depending on layer). We hope that, although we here focused on
a case study in which each next proposed component was still studied via
empirical manipulation, processes of abstraction may also enable the eventual
analytic optimization of such designed systems.

We believe these “mathematical experiments” in abstraction can lay the
groundwork for understanding what types of functional components determine
algorithmic behaviors of all bio-inspired systems, but in particular will
be critical in our understanding of distributed detection systems such as
DIAMoOND.
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