
Propinquity drives the emergence of network
structure and density
Lazaros K. Gallosa,1,2, Shlomo Havlinb,1, H. Eugene Stanleyc,d,1,2, and Nina H. Feffermane,f,1

aCenter for Discrete Mathematics and Theoretical Computer Science (DIMACS), Rutgers University, Piscataway, NJ 08854; bDepartment of Physics, Bar-Ilan
University, Ramat Gan 52900, Israel; cPhysics Department, Boston University, Boston, MA 02215; dCenter for Polymer Studies, Boston University, Boston, MA
02215; eDepartment of Mathematics, University of Tennessee, Knoxville, TN 37996; and fDepartment of Ecology and Evolutionary Biology, University of
Tennessee, Knoxville, TN 37996

Contributed by H. Eugene Stanley, August 2, 2019 (sent for review February 20, 2019; reviewed by Gyorgy Korniss and Dashun Wang)

The lack of large-scale, continuously evolving empirical data usu-
ally limits the study of networks to the analysis of snapshots in
time. This approach has been used for verification of network
evolution mechanisms, such as preferential attachment. However,
these studies are mostly restricted to the analysis of the first links
established by a new node in the network and typically ignore
connections made after each node’s initial introduction. Here, we
show that the subsequent actions of individuals, such as their sec-
ond network link, are not random and can be decoupled from
the mechanism behind the first network link. We show that this
feature has strong influence on the network topology. Moreover,
snapshots in time can now provide information on the mecha-
nism used to establish the second connection. We interpret these
empirical results by introducing the “propinquity model,” in which
we control and vary the distance of the second link established
by a new node and find that this can lead to networks with tun-
able density scaling, as found in real networks. Our work shows
that sociologically meaningful mechanisms are influencing net-
work evolution and provides indications of the importance of
measuring the distance between successive connections.

network generation methods | network density | network evolution

The explosion in network research has been largely driven by
the availability of big social data, by the analysis of social sys-

tems, and by studying the mechanisms behind the emergence
of behavioral networks (1–10). Network generation methods
are central in modeling network evolution and have helped us
understand many properties of these systems, even when only
a static snapshot is available. A large variety of mechanisms
exist which have been proposed and verified (11), such as the
famous preferential attachment principle (12), where nodes con-
nect with higher probability to higher connected nodes. Different
requirements may be imposed, such as requiring an unbiased
configuration (13), and the mechanisms are usually adapted to
the empirical systems that they attempt to explain.

In a typical network evolution model, new nodes are intro-
duced into the system and they become connected to existing
nodes according to certain rules. It is also possible that further
changes can take place in the network, such as redirection of
existing links, introduction of new links among existing nodes,
etc. Recently, for example, Redner and coworkers (14, 15) stud-
ied a copying model, which is based on duplication-divergence
mechanisms (16), and showed that a new node that inherits
a fraction of connections from its first link can give rise to a
diversity of topologies, mainly in terms of network density.

In the majority of these models, the rules for attaching a node
specifically target the identification of the first connection. When
a new node creates more than 1 connection, then the same rules
are typically applied to identify each one of those connections;
e.g., a node connects to m nodes via preferential attachment
(12). However, in a real evolving system the agents continue
adding links for a long time after they are introduced in the
network and it is highly unlikely that the processes of initial

introduction are simply replicated over the complete lifespan of
a node. This process of adding additional links is probably too
complicated to observe in real networks or to model accurately.
However, there is a tractable important question about the dis-
tance between the first m connections of a new node which has
not been explicitly addressed, even though it may be a key fac-
tor in defining central network properties, such as the network
density.

Here, we present a first step that considers mechanisms that
influence the choice of the second connection for newly intro-
duced nodes. We suggest a model that can quite accurately
capture the behavior of real-world evolution in empirical net-
works. The mechanism that we introduce here restricts the
distance between the first and second connections of a new node,
as measured prior to the node’s introduction. As we show, the
resulting network topology depends on the proximity of these 2
connections; we therefore call this the “propinquity model.”

As a first demonstration that this metric can provide meaning-
ful insight, we show that this distance does not behave trivially
in empirical networks (Fig. 1). The network evolution in the 3
presented networks is known and we are therefore able to mea-
sure the distance between the first 2 connections for each new
node just prior to the node’s introduction. The resulting distance
distribution cannot be characterized by a uniform distribution
within the network; i.e., the distance of the second connection is
not a randomly chosen quantity. On the contrary, each network
seems to have its own characteristic distribution for these dis-
tances. In social networks, for example, shorter distances seem
to be significantly preferred.

Significance

While many studies have focused on how new nodes make
connections as they enter a network, we instead consider
how choices of additional neighbors, after initial introduc-
tion, can shape patterns in emergent network structure. We
find the footprints of this type of emergence in real-world
networks and discuss how one could estimate the processes
driving topology by examination of static snapshots of net-
works through the lens of link density. Our approach yields
insight into network formation in applications ranging from
social behavior to drug discovery.
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Fig. 1. Probability that the second link connects to a node at a distance r
from the first node. We measure the probability distribution (Top) and the
cumulative distribution (Bottom) of the distance r between the first 2 neigh-
bors of a new node in a network. (Left to Right) Online social network in
University of California, Irvine (17) (N = 1, 893); high school friendship (18)
(N = 180); and Facebook wall messages (19) (N = 43, 953). Symbols repre-
sent the empirical results. The red lines correspond to the case where the
second node would be selected in random (q = 0 in the propinquity model)
(Fig. 2). The exponents q in the propinquity model that give the best fit to
the real data are shown in blue and represent the tendency of the distance
to be smaller than random. Note that propinquity does not explain well
the dynamics driving the Facebook wall messaging network for r = 1 and
r = 2, but works well for larger r. The origin for this could be that initiation
into a wall message network may be impacted more strongly by influence
external to the online network (i.e., alternative means of communicating
with friends and need for communication with friends of friends, apart from
Facebook wall messages) and thus slightly skewing the results. Note, how-
ever, that the total probability for r≤ 2 is still consistent with the model
prediction. Propinquity nevertheless offers meaningful and valuable insight
as r increases.

Using the underlying concept of our propinquity model, in this
paper we explain the observed distance distributions in Fig. 1
and use this insight to propose proximity as a metric for char-
acterizing the ongoing social dynamics of evolving networks in
meaningful behavioral ways. We show how this characterization
can lead to a systematic variation of network density, and we can
use this metric to distinguish between network structures even
when quantities such as the degree distribution and clustering
coefficient seem identical.

Model Description
Local Network Density. The underlying principle of network the-
ory is that link structure among nodes provides more information
than could be learned by examination of the nodes in isolation
(20). In other words, connectivity is the main factor that deter-
mines the network behavior and response. Typical methods used
to estimate the organization of links include, e.g., modularity
or community detection (21), fractal properties (22), transport
properties (23), percolation properties (24–26), etc. Surprisingly,
little work has been done on direct measurements of link density
in real networks [e.g., the concept of n-tangle density (27)]. How-
ever, the above approaches are mainly descriptive rather than
predictive and there is currently no generic framework to detect
potential mechanisms that explain the variation of local densities,
especially at different system scales.

In terms of characterizing emergent density properties, there
are 2 main families of growing network models. The most com-
mon mechanisms add a constant number of links for each node
and, as a result, the link density is also constant, easy to calcu-
late, and rarely given any further consideration [this is, e.g., the
case of the preferential attachment mechanism (12)]. The second

family of models uses a probabilistic mechanism of adding new
links and can lead to either sparse or dense networks, depending
on the model parameters [such as duplication-divergence mod-
els (28)]. In contrast to these 2 general cases, the propinquity
model leads to networks that have a known global density, but
(in contrast to earlier models) simultaneously enables a system-
atic variation of local density at different scales, as observed in
real networks.

By focusing on the time-ordered behavior of local links and
the resulting local density, and how this varies at different scales
within the network, we can explain the emergence of communi-
ties and understand differences in the types of social dynamics
that we observe in real-world networks. To quantify this local
link density, scale is determined by the number of nodes, n , in
a connected subgraph of the network. Formally, the link density
ρ in a graph with N nodes and L links is defined as the fraction
of the number of links over the maximum possible number of
links (29); i.e., ρ=L/[N (N − 1)/2]. To measure the local link
density we consider an induced connected subgraph of n nodes,
where we take into account all of the en existing links between
all pairs of nodes in the subgraph. We then define the local link
density as

ρn =
en

n(n−1)
2

. [1]

This allows us to study scaling of local link density as we vary the
size of the subgraph, n . As explained in detail in SI Appendix, the
behavior of this quantity is highly influenced by a trivial property.
This is because we restrict ourselves to connected subgraphs of
size n , which by definition requires all of the subgraphs to have
at least n − 1 links for connectivity. The simple solution that has
been suggested is to subtract n − 1 links from the numerator in
Eq. 1 (27). In real networks the density has been shown to scale
inverse linearly with the network size; i.e., ρn ∼n−1 +O(n−2)
(30, 31). This means that en ∼n +O(1+n−1) and the linear
term dominates the behavior of en . For sparse networks where
the prefactor of n is close to 1, if we simply subtract these links
from en , the density behavior will now depend on the higher-
order terms, which may scale in a different way than ρn . We
therefore apply here the recently defined metric (27) for the local
n-tangle (topological analysis of network subgraph link/edge)
density, tn , as

tn =
en − (n − 1)

n(n−1)
2
− (n − 1)

. [2]

The key feature in this definition is the removal of the n − 1 links
that are necessarily present in an induced subgraph to ensure
connectivity. We also remove the same number of links in the
denominator, so that tn remains properly normalized and ranges
from tn =0 in the case of a loopless tree subgraph to tn =1 for a
fully connected subgraph.

The Predictive Power of the Propinquity Model. For the model
to be useful as a predictive tool, we must be able to validate
hypotheses about the ways in which new nodes choose to con-
nect to the network by agreement with observations of real-world
network structures. There are already a large variety of network-
growing models in the literature (12, 32–35). Typically, starting
from a seed network, new nodes are introduced and attach
themselves according to certain rules, e.g., by connecting pref-
erentially to the most connected nodes. However, in many real
systems nodes have a restricted freedom or ability to reach all of
the available connections (36); thus the ability to create meaning-
ful, behavioral-hypothesis–driven growing models would vastly
expand our toolkit for understanding the mechanisms of ongoing
social dynamics.

To model the varying strength of preference as a function of
the network distance, we start with a small seed network of,
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e.g.,N0nodesconnectedtoeachother(indeed,anypossiblecon-
figurationofaconnectednetworkdoesnotinfluencetheresults).
Thenetworkgrowsbytheintroductionofanewnodeiateach
timestep,whenicreatesmlinkstowardtheexistingnetwork.
Thefirstlinkiscreatedrandomlybychoosinganodej(either
preferentiallyoruniformly).Thenewnodeithencreatesm−1
additionallinks,whereanodehisnowselectedtobeconnected
tonodeiwithprobabilityr−qjh.Thedistancerjhdenotesthe
shortestdistanceintheexistingnetworkbetweennodesjand
h,andqisaparameterthatcontrolshowclosethenewcon-
nectionswillremaintothefirstchoice.Aschematicdescription
ofthealgorithmisshowninFig.2A.InFig.2B–Dwepresent
sometypicalstructuresresultingfromthisalgorithmform=2,
aswevarythevalueofq.Therandomcharacterofthenetwork
atq=0startstobreakasweincreaseq,andfewerlarge-scale
loopsremain.Forlargevaluesofqthenewnodesattachonly
toneighboringnodes,andthelinearcharacterofthenetworkis
preserved,withnolong-rangeloops(Fig.2D

A B

C D

).
Thismodelcandescribeanumberofrealisticsituations.For

example,newmembersthatareinvitedintoasocialnetwork
willmostlikelyconnecttothecloseneighborhoodofthemem-
berwhoinvitedthem,andinspatiallyembeddednetworks,cost
optimizationmakesshorterlinkspreferable.Similarly,incopur-
chasenetworks,if2itemsarefrequentlyboughttogether,there
isalargerprobabilitythatabuyerwillpreferanewitemin
thesamecategory(37),whichwillremainwithintheextended
neighborhoodoftheseitems.Inthisway,weassumethatnew
connectionsfavortoremainclosetoalreadyexistingconnec-
tionsofthesamenode(hence,“propinquity”).Evenbeyond

Fig.2. Thepropinquitymodel.(A)Thepropinquitymodelcancreatenet-

works withvaryinglinkdensityatdifferentscales.Thenetworkgrows

viathesuccessiveadditionofnodes(green) whichlinktoarandomly

selectedexistingnode(thickline).Thegreennodethenselectsanewnode

withprobabilityrq,whereristhedistancefromthepreviouslyselected

neighbor.Thenetworktopologyiscontrolledbyvaryingthevalueofthe

parameterq.(B–D)Examplesofsmallnetworks(N=130)createdbyvary-

ingtheparameterqinthepropinquitymodel.Theseednetworkincludes

30nodesinaline,whichareshowninred,and100nodesareadded,shown

ingreen,accordingtothepropinquitystrategywithm=2links.Thestruc-

turaldifferencesareevidentasweincreaseqfromq=0(randomrecursive

network)tolargervalues,suchasq=8(wherenewnodesremainlocally

connectedandalwaysformatrianglewith2existingneighbors).

therealmsofassociationasindividualchoice,biologicalnet-
worksresultfromthegradualaccrualofsmallmutationsthat
alterfunctionalpathways1changeatatime.Alteringthevia-
bilityofanorganism1 mutationatatimecansimilarlybe
consideredasapropinquity-drivenprocesswiththepotentialto
explaindynamicsofconservedcomplexes(38)andofferfounda-
tionalframeworksforconsiderationofsuchnetworkbehaviors
forapplicationsincludingdevelopmentalbiology(39)anddrug
discovery(40).
Thelimitingcasesq=0andq=∞ correspondtorandom

selectionsovertheentirenetworkandstrictlyneighboringselec-
tions,respectively.Asqincreasesweexpectthatthemodelwill
resultinanincreasinglymodularstructure,sincethelinksremain
localandthereareveryfewlinksthatconnectdistantpartsof
thenetwork.Atthesametime,thevalueofqcontrolsthelocal
densityscaling,withdirectimpactonnetworktopology.

Results

Resultsofthe Model.Wehavestudied2mainvariantsofthe
model,whichdifferintheattachmentmechanismofthefirst
connection.Inthefirstvariant,anewnodeselectsitsfirstcon-
nectionrandomly,whileinthesecondvariant,theselectionis
preferential,i.e.,proportionaltothedegreeofanexistingnode.
Itisquitestraightforwardtocalculatethedegreedistribution
forthelimitingcasesofbothvariants(SIAppendix).Forran-
domattachment,thedistributionofthedegreekgoesfrom
exponentialatq=0,P(k)∼(1+1/m)−k,toapower-lawdis-
tributionP(k)∼k−λwithanexponentλ=2m+1;i.e.,P(k)∼

k−(2m+1),forlargeq.Forpreferentialattachment,thedegree
distributionremainsapowerlawwithanexponentchanging
fromλ=2m+1atq=0toanexponentλ=3atlargevalues
ofq[wherethepropinquitymodelbecomessimilartoagrowing
Barabasi–Albertmodel(12)].Notethatform=1theexponent
isλ=3;i.e.,thepropinquitymodelgeneralizestheBAnetwork
generationmethod.Critically,eventhoughthe2variants(ran-
domfirstselectionwithq=8andpreferentialfirstselectionwith
q=0)leadtotheexactsamedegreedistribution,theyarestruc-
turallydifferent.Inthefirstcase,weselectarandomnodeand
thesecondselectionconnectstoaneighborofthefirstnode,
whichleadstoaneffectivepreferentialattachmentmechanism
forthesecondchoice,wherethenetworkevolvesbyformingnew
trianglesleadingtoalargeclusteringcoefficient.Inthesecond
case,thefirstnodeisselectedpreferentiallyandthesecondnode
isselectedrandomly,sothatthenumberoftriangles(andthere-
foretheclusteringcoefficient)ispractically0.Inthisexample,
thegloballinkdensityandthedegreedistributionareidentical,
sotheclusteringcoefficientcanbeusedtoseparatethese2cases.
However,theclusteringcoefficientcountsonlyloopsof3nodes
andbyvaryingqwecanfindexampleswhereloopsoflargersizes
arefavoredovertriangles,whiletheclusteringcoefficientisstill
verycloseto0.Thenetworksinthiscaseseemstatisticallysimi-
larundermostofthestandardnetworkmeasures,maskingtheir
fundamentaldifferencesinlocaldensity.
Inthecurrentstudy,wecalculatethedependenceofρnand

tn(Eqs.1and2)onthesamplesize,n,byrandomlysampling
differentpartsofthenetworkandaveragingoverthesamples
(seeSIAppendixfordetails). Westudiedthepossiblescaling
of tn vs.nandfoundthat,typically,werecoverapower-law
behavior.Thispower-lawformisdescribedbythevalueofthe
exponent,x,in

tn ∼An
−x. [3]

Thisscalingismoreprominentforsmallervaluesofn,when
thesubgraphsizeissignificantlysmallerthanthenetworksize,
N.Thisissinceourapproach,duetotheattractiveinterac-
tionbetweensuccessivelinks,issensitivetolocaltopologies
wheren N.Asweincreasen,thereisacrossoverpointafter
which tn decaysmuchfasterwithn,typicallyastn ∼n

−1.

20362 |www.pnas.org/cgi/doi/10.1073/pnas.1900219116 Gallosetal.
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This approximate pattern is true for most cases that we stud-
ied, but the exact behavior of 〈tn〉 can vary, depending on the
structure.

Eq. 3 describes how the density of links changes as we increase
the scale of observation, through the value of the exponent x .
If x is close to 0, this means that the n-tangle density remains
constant at any size, while for larger values of x the density
decays faster, suggesting that larger areas of the network tend
to become more tree-like. The variation of the exponent makes
it also possible to monitor a possible transition of the struc-
ture in a given scale, from a tree to a denser graph, or vice
versa. Note that the magnitude of the density is controlled by
the value of the prefactor, A, independently of the scaling with
the size.

The calculation of the exponent x is straightforward for sim-
ple structures, such as Erdos–Renyi (ER) networks and lattices
(SI Appendix). In ER networks, there is no variation of the den-
sity with n , so that x =0. In lattices, as we discuss in the next
section, the asymptotic value of the exponent is x =1. In gen-
eral, the exponent x can vary between 0 and 1, and therefore the
lattice and the random network are representative of 2 extreme
behaviors of how density can scale with size. Clearly, this means
that we can characterize networks in this way as being closer to,
or farther from, particular structures, such as in the case of lattice
or random networks (28). Note that using the standard definition
of local density ρn in Eq. 1, we always retrieve the trivial behavior
ρn ∼n−1, which does not carry any useful information on local
density.

We used the case of m =2 links per new node. As expected,
when q =0, the connections are all random and we recover the
result for random ER networks, where tn does not change sig-
nificantly with n . As we increase the value of q the density starts
to change systematically with n , following a power-law behavior
(Fig. 3A). This is reflected in the value of the exponent x which
starts at x =0 when q =0 and increases monotonically until it
reaches values close to x ∼ 1 (Fig. 3B).

Interestingly, while the local density changes drastically with q ,
and we can therefore deduce that large structural changes take
place, we would not be able to observe these changes by using
standard network measures, such as clustering and distances. In
Fig. 3C, the clustering coefficient remains almost 0 for values
between q =0 and q ∼ 4, but the local density behavior is drasti-
cally different, as can be seen in the results of Fig. 3A and the
slope calculations in Fig. 3B. Similarly, the network diameter
remains unchanged in the range of q from 0 to 4 (Fig. 3D). In
the same q range, the slope of the density increases from 0 to
0.6. These results show that even though the relative distances
remain constant, the links reorganize themselves in a systematic
way with larger local densities at small subgraphs. The local link
density exponent can therefore be used to characterize changes
in network structures that cannot be predicted by the study of
the clustering coefficient or shortest paths. When q assumes large
values, both the clustering coefficient and the network diameter
increase significantly as a result of highly localized connections
and the removal of practically all network shortcuts. However,
in this range there is very little variation in the local density,
tn (Fig. 3B).

Real Networks. In real systems, when a node creates a new link,
there are obviously many possible mechanisms in action, e.g.,
homophily and collective action (41), consensus dynamics (42),
etc. The propinquity model, however, allows us to isolate the
influence of the neighbor’s proximity to network density. It then
provides a simple model by which to predict the variation of link
density at different scales, even though the use of the typical link
density definition would falsely indicate that the extent of the
propinquity concept (through the parameter q) should have no
influence on the results.

A B

C D

Fig. 3. Results for the propinquity model. Here, the first link of a new node
attaches preferentially to the existing network. (A) Scaling of n-tangle den-
sity as a function of n. From bottom to top, the value of q increases from 0 to
8 in steps of 1. Dashed lines correspond to regular density 〈ρn〉, where there
is no observable effect of q (the slope remains constant). (B) Calculation of
the exponents x for the lines in B, as a function of q. The green circles indi-
cate the corresponding values for the empirical networks analyzed in Fig.
1. (C) Clustering coefficient as a function of q. (D) Even though the expo-
nent x increases with q, the network diameter (as well as the clustering) in
the propinquity model remains constant up to q = 4 and increases only for
larger values of q.

In Fig. 4 we calculate the n-tangle density scaling for the 3
empirical networks analyzed in Fig. 1. Each network leads to
a different slope, x . Using the optimal value for q from Fig. 1
and the exponent x from Fig. 4, we can compare the propin-
quity metrics for these networks. Of course, as mentioned above,
the empirical data cannot be assumed to be fully described by 1
mechanism alone. However, it is clear from Fig. 3B that there is a
consistent trend in both the model and empirical data that larger
local density variations appear at larger q values. This observa-
tion is important because it provides a link between the analysis
of a static network snapshot and the network generation mech-
anism, which is difficult to observe directly. In practice, we have
shown that measurements of the scaling of local link density pro-
vide a systematic way to understand network growth mechanisms
which are based on the distance between 2 nodes, added one
after another as friends.

As a comparison, network properties such as the clustering
coefficient or the network diameter (shown in Fig. 3 C and D)
do not suggest any clear trends with q . However, this may also
be attributed to the small size of these networks, such as the
high school network, which contains only 180 students and is an
unusual, dense network.

Discussion
Our work demonstrates the importance of incorporating mech-
anisms of attachment that allow the tailoring of local network
densities to achieve realistic network structures in generative
growing models. We have studied the simple case where the sec-
ond link depends on the in-network distance and we have shown
that this leads to very different topologies. This finding was con-
firmed by studying the distance between the first 2 neighbors of
new nodes in empirical networks.

We establish a family of network generation models where
the subsequent connections depend on the distance between 2
nodes. To detect the influence of this mechanism on topology we
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Fig. 4. Density scaling of the real networks in Fig. 1. The exponent, x, that
characterizes the density scaling in the empirical networks of Fig. 1 is consis-
tent with the propinquity model exponents q. These exponents (x = 0, 0.16,
and 0.5) are shown in Fig. 3C and follow the same trend, increasing with q,
as the propinquity model in that plot.

study the scaling of local density. If we use the standard defini-
tion of local density, then the scaling is dominated by a trivial
structure. However, we show that a redefinition of local density,
Eq. 2, provides a direct way of studying this scaling and the local
density can probe the structure at different scales.

From a theoretical point of view, the power-law behavior in
Eq. 3 can also be seen as the definition of an additional frac-
tal dimension for complex networks, albeit within the range
from x =0 to x =1. The traditional definition of a fractal
object detects how the mass scales with distance. In complex
networks, this definition becomes problematic because of the
natural restriction of distances in usually just 1 decade. For exam-
ple, the maximum distance in the 3 empirical networks used in

Fig. 1 ranges from 4 to 19, which does not allow a reliable eval-
uation of network dimensions (see also related discussion in SI
Appendix). There are many methods in the literature that have
introduced possible modifications on how fractal features can be
measured in networks (43, 44), but even then there are many
nonfractal networks (e.g., ER networks) whose structural differ-
ences cannot be captured by fractal dimension. As an alternative
to these methods, the present link density method can provide
a natural interpretation of the self-similar properties of a net-
work. In this definition, the important quantity is the “mass” of
the links instead of the number of nodes (12), while the “length”
corresponds to the number of nodes, instead of a distance met-
ric. Self-similarity in this study shows how the fraction of the
excessive links scales with the number of nodes. A small expo-
nent means that any part of the network will have similar link
density, independently of the sampled size, but a large exponent
shows that larger samples of the network become sparser. The
rate at which the density decreases is then determined by this
fractal exponent x .

In conclusion, the propinquity model provides another class
of generative models, rooted in features of real networks, and
is leading us to understanding how individuals become inte-
grated into communities at different scales. It enables us to
test meaningful hypotheses about which scales of social inter-
actions are important in an evolving network as a metric for
isolated analysis and comparison between systems. Most impor-
tantly, it allows us to make behaviorally driven predictions about
the emergent structure of networks based on single snapshot
observations.
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