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Abstract

Covalent labeling mass spectrometry experiments are growing in popularity and provide important
information regarding protein structure. Information obtained from these experiments correlates with
residue solvent exposure within the protein in solution. However, it is impossible to determine protein
structure from covalent labeling data alone. Incorporation of sparse covalent labeling data into the protein
structure prediction software Rosetta has been shown to improve protein tertiary structure prediction. Here,
covalent labeling techniques were analyzed computationally to provide insight into what labeling data is
needed to optimize tertiary protein structure prediction in Rosetta. We have successfully implemented a
new scoring functionality that provides improved predictions. We developed two new covalent labeling
based score terms that use a “cone”-based neighbor count to quantify the relative solvent exposure of each
amino acid. To test our method, we used a set of 20 proteins with structures deposited in the Protein Data
Bank. Decoy model sets were generated for each of these 20 proteins and the normalized covalent labeling
score versus RMSD distributions were evaluated. Based on these distributions, we have determined an
optimal subset of residues to use when performing covalent labeling experiments in order to maximize the
structure prediction capabilities of the covalent labeling data. We also investigated how much false negative
and false positive data can be tolerated without meaningfully impacting protein structure prediction. Using
these new covalent labeling score terms, protein models were rescored and the resulting models improved
by 3.9 A RMSD on average. New models were also generated using Rosetta’s AbinitioRelax program under
the guidance of covalent labeling information and improvement in model quality was observed.

Introduction

Full understanding of protein function requires knowledge of protein tertiary structure. In cases
when high-resolution experimental structure determination techniques (such as X-ray crystallography,
NMR and cryo-EM) fail to comprehensively characterize protein structure, a plethora of more sparse
techniques can yield important structural information. One such set of tools are covalent labeling (CL)
experiments coupled with mass spectrometry (MS), a growing set of methods that yield valuable
information on the three-dimensional structure of proteins.' Experiments using covalent labeling techniques
involve either amino acid specific or non-specific probe molecules (labeling reagents) that are exposed to
the protein in solution and covalently bind to the side-chains that are solvent accessible and not involved in
any other inter- or intramolecular interactions. Structural information is derived from the assumption that a
residue that is exposed to the solvent will be accessible to the reagent and hence labeled, whereas a residue
that is buried within the protein (or occluded by a bound ligand or protein subunit) would be inaccessible
and hence unlabeled. For structural interpretation, the labeled protein is routinely mass analyzed using a
combination of proteolysis and mass spectrometry and information regarding the relative location of some
of the residues can be elucidated.”

Many different labeling reagents exist, each with their own advantages and disadvantages. For non-
specific amino acid labeling, one of the most commonly used methods is oxidative labeling (also known as
hydroxyl radical footprinting or HRF). This method utilizes hydroxyl radicals to label the solvated protein.™
" Theoretically, 19 of the 20 amino acid types can be labeled, but only a few types provide useful
information for structure determination.®'° Another reagent used to non-specifically label amino acids is
diethylpyrocarbonate (DEPC)."' DEPC primarily reacts with histidine, but is also capable of labeling lysine,



tyrosine, cysteine, threonine, and serine. Reagents that only modify specific amino acid types comprise the
other major class of covalent labels." '* '* In practice, only eight different amino acid types have been
predominantly used in conjunction with mass spectrometry techniques to study structure. These residues
are arginine, aspartic acid, glutamic acid, cysteine, histidine, lysine, tryptophan, and tyrosine. A large
variety of different reagents have been successfully used to label and probe tertiary structure for each of
those eight commonly labeled amino acid types. A few examples include: biotin N-hydroxysuccinimide
derivatives for labeling lysine;'* iodoacetamide and its derivatives along with iodacetic acid N-
alkylmaleimides have been used for cysteines;'> '® methylglyoxal and 1,2-cyclohexandione for arginines.*
1718 A more extensive overview of all the amino acid specific labeling techniques and their applications is
provided in a review by Mendoza and Vachet.!

Despite the relative success of structure elucidation using covalent labeling techniques, many
challenges still exist. It can be difficult to find labeling reagents that successfully modify a protein but do
not cause conformational changes. In addition, reagents that are capable of labeling amino acid types
different from those listed above are crucial to successfully analyze tertiary structure. However, most
notably, the information obtained from covalent labeling experiments cannot directly provide tertiary
structure without interpretation utilizing computational protein structure algorithms (or further
experimentation). Two recent examples of hybrid computation-CL methods include our previous study on
HRF-guided modeling and the work of Xie and co-workers.® '° In our study, we showed that hydroxyl
radical footprinting MS data can be successfully used to predict tertiary structure when combined with the
computational macromolecular modeling tool Rosetta. We developed a new score term for the Rosetta
energy function that was used to rescore ab initio models for four benchmark proteins and improve the
accuracy of the predicted models. The work by Xie and co-workers successfully demonstrated a correlation
between experimental HRF data and the absolute average solvent exposure. Using this exposure measure,
it was possible to differentiate between low and high RMSD models for two benchmark proteins: lysozyme
and myoglobin. Over the years, Rosetta has also proven to be an excellent tool for the incorporation of other
sparse experimental data for use in structure prediction.'*?

So far, however, the computational methods have predominantly been used to interpret the covalent
labeling data, not to direct the experiments with the intention of improving their structure predictive
capabilities. Here we show that CL-guided protein structure prediction algorithms such as Rosetta have the
potential to inform on yet unanswered questions such as: Which amino acid types provide the most useful
structural information? How many labeled residues are needed to accurately discriminate between different
models? How much error can be tolerated? We argue that answering these questions has the potential to
design better covalent labeling experiments that yield optimal information for protein structure prediction
using covalent labeling techniques. Crecca and Roitberg performed a similar analysis regarding the utility
of inter-residue distances for protein structure prediction.”** Additionally, we are also exploring whether
a covalent labeling score term is more effective when used to bias the generation of models, rather than we
used to simply rescore pre-built models as demonstrated in our previous HRF modeling work.®

In this study, we developed the methodology to incorporate information from covalent labeling
experiments into Rosetta’s protein structure prediction protocol. To accomplish this, we have analyzed
6,165 proteins obtained from the Protein Data Bank with solvent exposure metrics with the goal of
identifying a measure of solvent exposure that accurately characterizes relative solvent accessibility of each
residue. Two new score terms for Rosetta were derived from this information and used to identify the ideal
subset of residue types to be used for model discrimination based upon a benchmark set of 20 proteins. The
tolerance of our prediction algorithm towards false negative and false positive data points was also



explored. Protein models were rescored with the new scoring framework and the resulting distributions
were analyzed. Finally, new sets of models were generated under the guidance of covalent labeling data.

Methods

Generation of a Protein Set from the Protein Data Bank

The proteinsused for the various aspects of this work consisted of protein structures extracted from
the Protein Data Bank (PDB). All monomer, single chain proteins, with at most 50% sequence identity were
downloaded (15,000 total). The goal was to create a set of protein structures that served as a non-redundant
representation of single chain monomers in the PDB. From this initial set, structures with missing residues
that were not part of either the C- or N- terminus were filtered out, due to potential problems when
calculating per residue solvent exposure. Not only would the solvent exposure of the missing residues be
impossible to determine, the exposure of neighboring residues would be calculated incorrectly. After
filtering, the protein set contained 6,185 protein structures. From this set, a benchmark set of 20 structures
was created. The 20 structures in the benchmark set were randomly selected from the total decoy set and
were between 50 and 200 amino acids in length. To confirm that the benchmark set was truly a
representative subset of the protein set, distributions of the total number of residues, secondary structure
content, and contact order (both absolute and relative) were analyzed. The distributions can be found in
Figure S1. The proteins that comprise the benchmark set are summarized in Table S1. From the original set
of 6,185 structures, a set of 6,165 structures were used to determine the correlation between various solvent
exposure metrics.

Solvent Exposure Metrics

The goal of this work is to provide insight into how the results of covalent labeling experiments
can improve protein tertiary structure prediction. For this purpose, a procedure of correlating relative
solvent exposure for a given residue to the data provided from experiment is necessary. Studies have
previously shown that residue solvent exposure correlates with experimentally derived protection factors.*
10.31.32 The general trend observed has been that a more solvent exposed residue is more likely to be labeled
whereas a more buried residue is less likely to be labeled. Several different approaches for assessing solvent
exposure from the tertiary structure have been reported.

The most accurate method of determining solvent exposure is through the calculation of the solvent
accessible surface area (SASA). Despite its popularity, calculating the SASA for every residue in a protein
is computationally expensive.’> ** The amount of solvent exposure determinations needed for tertiary
structure prediction renders SASA impractical for these purposes. An alternative, and computationally less
expensive, method for solvent exposure determination comes in the form of a per residue neighbor count.
By counting the number of neighboring residues that are present surrounding a target residue, an inference
into the solvent exposure can be made. The more neighbors a residue has, the less solvent exposed it is.
Using this idea, we developed a neighbor count measure that is composed of both a distance criterion and
an angle criterion. A graphical schematic of this is shown in Figure 1. This is a more sophisticated version



of the neighbor count used in our previous work.® In this version, the directional approach of the label
through the solvent is taken into account, as opposed to accounting for neighbors in all directions equally
in the old neighbor count version. Two different versions of this neighbor count were developed: one that
utilizes a low-resolution centroid representation of the protein in Rosetta (all of the backbone atoms are
explicitly present, but the entire side-chain is represented as a single point referred to as a centroid) and a
full-atom representation (all atoms explicitly defined). To calculate the neighbor count for residue i
(NeighborCount;) in the centroid representation both the distance in Angstroms (r;;) between the Co of
residue i and the CEN of residue j with j # i and the angle in radians (8;;) enclosed by the CEN;-Co;-CEN;
vectors were assessed. The full atom version, depicted in Figure 1A, is similar to the centroid version in
that the CEN coordinates were replaced with the respective residue Cp coordinates (or Ha in the case of
glycine). The respective distance and angle were then used as functional inputs to a product of two
sigmoidal functions, defined as D(7;;) and A(Qi j) respectively, to determine each neighboring residue’s
overall contribution to the total neighbor count, NeighborCount; (ranging from O to 1). Details regarding
the definitions of D(r;;) and A(Qi j) can be found in Figures 1B and 1C respectively. Each product was
then summed over all the residues in the protein to yield a total neighbor count for residue i. Functionally,
this is represented in eq 1, where N is the total number of residues in the protein:
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In order to calculate the neighbor counts, we developed the
per residue solvent exposure Rosetta pilot application. This application takes a PDB as input
and calculates the neighbor count using eq 1. To examine the distribution of solvent exposure as a function
of residue type, both the per-residue SASA and neighbor counts were calculated for each of the 6,165
proteins downloaded from the Protein Data Bank. The SASA calculations were performed using
NACCESS.”

Decoy Model Generation from the Benchmark Set

In order to test the effectiveness of covalent labeling in improving Rosetta tertiary structure
prediction, decoy sets containing both low and high RMSD protein models were necessary. A total of 9,700
models were generated for each of the 20 benchmark set proteins using the following three methods: full-
atom relaxation of the PDB (5 models), ab initio structure prediction (5,000 models) and threading (4,695
models).

Five models were generated by relaxing the PDB structures for each of the 20 proteins. The
relaxation was performed with Rosetta using the Ref2015 score function.’® The relax application within
Rosetta provided a simple full-atom refinement that did not dramatically alter the backbone conformation
of the protein.*”



The 5,000 ab initio models per protein were generated using the standard Rosetta AbinitioRelax
protocol.** The fragment files were generated using the Robetta webserver.* The fragment assembly
stage is broken down into four separate stages that vary in the centroid-based score functions and the
fragment size applied. The final full-atom refinement stage used the Ref2015 score function.*

The 4,695 threaded models per protein were generated using RosettaCM.*® Each of the 20 target
protein sequences were threaded onto the tertiary structure of 4,695 template structures from the set of
6,165 proteins (only the proteins with a length greater than or equal to 90 residues were used for the
threading). EMBOSS Needle, which uses the Needleman-Wunsch alignment algorithm, was used to
generate the sequence alignments between the target protein sequence and each of the templates.*” A gap
open penalty of 10.0 and an end gap penalty of 10.0 were applied to the alignment in order to minimize the
gaps in the sequence alignments. Following the standard RosettaCM protocol, each of the target sequences
were threaded onto each of the template structures using the alignments and then the gaps were constructed
using the Rosetta Hybridize Mover followed a full-atom relaxation.

covalent labeling cenand covalent labeling fa Score Terms

Two new Rosetta score terms, covalent labeling cenand covalent labeling fa,
were developed to calculate the agreement between a model’s solvent exposure (evaluated as a neighbor
count) and the corresponding native structure’s solvent exposure. The native structure was defined as the
experimental structure of the protein as deposited in the PDB. The neighbor counts were evaluated using
eq. 1 and calculations were performed in both a centroid and full atom representation of the structure. The
need for two separate forms of the score term arose from Rosetta’s AbinitioRelax protocol. The protocol is
divided into two primary stages: a low-resolution centroid fragment assembly stage and a high-resolution
full atom refinement/relaxation. In order to use the score term in both stages, two separate forms were
necessary. The centroid version of the score term was evaluated as shown in eq 2:

# labeled residues
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where |dif f|; is the absolute difference of the neighbor count for residue i (calculated using a centroid
representation) of the model and the corresponding input average centroid and full-atom native neighbor
counts. Each labeled residue contributes a score ranging from -1 (perfect agreement between the model and
experiment) and 0 (complete disagreement). The score as shown in eq. 2 is represented as the sum of the
score contributions calculated as a sigmoidal function for the labeled residues. A tolerance neighbor count
of +/- 2 was included to allow for experimental error. In other words, for values of 0 < |diff|; < 2 a full
per residue score value of -1 was assigned. The other score term, covalent labeling fa, was
defined functionally identically to eq 2 with the only difference being that |dif f|; was evaluated using the
full atom representation.

Summary of Validation Methods



In order to validate the ability of our new score terms to discriminate between low and high RMSD
models, three different methods were used. The first was an evaluation of the performance (defined by the
shape, discriminatory power, and funnel-like quality) of the score term (covalent labeling cen)
itself, in the absence of any other Rosetta score terms. This involved calculating the size normalized
covalent labeling score for all 9,700 benchmark decoy models. We refer to this method as the analysis of
the “covalent labeling score distribution” throughout the remainder of this work. The second validation
method was a rescoring of decoy models generated with Rosetta using covalent labeling fa.
Unlike the previous method, this “rescoring” method results in a score that is a linear combination of the
Rosetta Refl5 score and our newly developed covalent labeling score. Finally, the third validation method
we employed was using the score term in conjunction with Rosetta to generate new models, which is
referred to as “folding in the presence of covalent labeling”.

As part of the analysis of the covalent labeling score distribution, several different metrics were
used to evaluate the performance of our new score terms, covalent labeling cen and
covalent labeling fa. The simplest metric used was the RMSD of the best scoring model. If the
score terms were able to accurately predict the native model, the best scoring model should have a low
RMSD relative to the native structure. This metric corresponded to what is typically done when evaluating
distributions generated using Rosetta. In practice, the native structure is unknown, so one way to
differentiate between models is to compare their Rosetta score.

The second evaluation metric utilized was a goodness-of-energy-funnel metric, developed by
Bhardwaj and co-workers, dubbed Pyg,.** The value of Py, is a single value that represents the overall
“funnel-ness” of a Rosetta score vs. RMSD distribution. Py, ranges from 0 (no funnel like character) to
1 (perfect funnel). It is defined as shown in eq 3.:
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where N is the total number of models in the distribution and E,;, and RMSD,, are the score and RMSD of
model m, respectively. The two remaining parameters, A and kgT, represent how similar the RMSD of a
model to the native to be considered native-like and the depth of the funnel, respectively. The values used
for these parameters follow the conventions set forth by Bhardwaj and co-workers in their work developing
this metric.*® For all evaluations of Py, a value of 2.0 A was used for A. The value used for k5T depended
on the type of distribution being analyzed. For total Rosetta score vs. RMSD distributions (as seen in the
rescoring and refolding validation tests), kgT was assigned a value of 1.0. As part of the analysis of the
covalent labeling score distributions, the normalized covalent labeling cen score (dividing the
score by the total number of labeled residues) vs. RMSD distributions for the set of models were evaluated
and kT was assigned an empirically determined value of 0.001, to account for the change in relative scale
of the scores.

Residue Type Sets



To answer the question of which residue type exposures provided the most structural information
for protein structure prediction, we broke down the set of 20 amino acid types into several subsets. The
subsets are summarized in Figure 2. A total of six subsets were used for this study. The first consisted of
all 20 amino acid types. This set represents the ideal scenario where information regarding the solvent
exposure of every amino acid type could be utilized. The next two subsets consisted of the amino acid types
that are typically labeled and analyzed with hydroxyl radical footprinting and DEPC respectively.*'' The
hydroxyl radical (HRF) set contained the following amino acids: I, L, P, F, W, Y, E, and H. The DEPC set
contained Y, H, K, S, T, and C. The fourth subset was made up of the amino acid types that are most
commonly targeted in covalent labeling experiments.' This subset, which we denote the “common” subset,
contained W, Y, D, E, R, H, K, and C. In order to experimentally label all of these amino acids, several
different labeling reagents would have to be used. We generated the final two subsets ourselves. The “most
varied” subset consisted of the eight amino acid types (A, L, V, F, W, Y, C, and M) that were identified
during the neighbor count calculations of the 6,165 PDB structures. These amino acids exhibited the
greatest variation (i.e. had wide neighbor count distributions; at least 50% of those residues had neighbor
counts ranging from 15 to approximately 30 neighbors). The final subset was identified as being the most
optimal subset of residue types based on their ability to discriminate between low and high RMSD models
in our covalent labeling score distribution analysis. This “optimal” subset was composed of G, L, V, F, D,
R, H, S, and T.

To determine the subset of amino acids for the “optimal” type set, the size normalized version of
covalent labeling cen was calculated for the 194,100 decoy models ((5,000 ab initio models +
4,695 threaded models + 5 relaxed native models) x 20 proteins) along with the RMSD for each model to
its respective native. The normalized version was used so that the scores could be compared across the 20
proteins, regardless of their size. The residue types used to evaluate the scores were systematically varied
and the value of Py, Was calculated for the resulting distributions. Starting with all of the combinations
of pairs of amino acids as different subsets (190 total combinations), the covalent labeling score vs. RMSD
distributions were generated and evaluated using Py,q,-. The top 5, based upon Py,,,-, combinations (GS,
GY, GV, ER, and GR) were used as seeds for the various combinations of 3 amino acids. The top 5
combinations of 3 were used as seeds for combinations of 4, and so on. This process was continued until a
subset of amino acids yielded a size-normalized covalent labeling score vs. RMSD distribution and Pyq
that was comparable to the distribution of the set containing all 20 amino acids.

Incorporation of Experimental Noise

From a modeling standpoint, one of the main issues with data obtained from covalent labeling
experiments is that it contains noise, as does all experimental data. In an ideal situation, every solvent
exposed residue that could be labeled (i.e. that is not participating in any non-covalent interactions, and that
is of the type that can be labeled with the given reagent) would be labeled and provide structural
information. In practice, this rarely occurs, and thus solvent-exposed residues sometimes appear to be
unlabeled. This can be thought of as an incomplete experimental sampling or false negative data points.
The other type of experimental noise exists in the form of false positive data where buried residues appear
to be labeled.



False Negative Data

In order to simulate false negative data (the noise due to incomplete sampling) and also to determine
how many labeled data points are needed to differentiate between low and high RMSD models, different
percentages of the total number of potential data points were removed from the total set of data points. For
each of the 20 proteins, percentages ranging from 0-50% of the total number of residues that could be
labeled were removed from the total set of residues. To determine which residues to remove from the data
set, we utilized inverse transform sampling of the native neighbor count solvent exposed residue (centroid
based neighbor count < 15) distribution. By doing this, we effectively simulated what occurs experimentally
when residues that are solvent exposed provide ambiguous data or are not labeled and are thus not used for
any further analysis. The resulting set of residues were used as simulated experimental inputs for the
covalent labeling score distribution validation method. covalent labeling cen vs. RMSD
distributions were generated and analyzed using the metrics described in the Summary of Validation
Methods section. This was done for all of the residue type sets defined in the previous section. The
maximum percentage of removed data points that demonstrated model discrimination that was comparable
to the case of no removed points was identified.

False Positive Data

The other type of experimental noise examined was that of false positive or incorrect data points.
These are residues that should not have been labeled due to low solvent exposure but were experimentally
labeled. To determine the percentage of false positive data points that could be tolerated, a similar approach
to the incorporation of false negative data was taken. Various percentages ranging from 0-25% of the total
number of buried residues (neighbor count > 15) were selected using inverse transform sampling from the
native neighbor count distribution for each protein. These residues were then assigned a new neighbor count
obtained by performing inverse transform sampling on the neighbor count distribution ranging from a
neighbor count of 0 to 15. This procedure simulated a buried residue providing incorrect labeling
information suggesting that it should be solvent exposed. Along with the set of labeled data points
determined after incorporating false negative data points, these false positive data points were used as
covalent labeling inputs to validate the covalent labeling score distributions.

Rescoring of Rosetta ab initio Models

As the second test for evaluating the effectiveness of the covalent labeling based score term, the
method of “rescoring” was used. Two separate sets of proteins were used for this validation: six of the
proteins whose ab initio distribution contained sub 5 A RMSD models and nine of the proteins whose
threaded distributions contained sub 5 A models. The rationale behind our decision to truncate the 20-
protein set and only focus on six and nine proteins, respectively, with high quality models was that the
covalent labeling score term should be able to distinguish between high quality models (RMSD < 5A) and
low-quality models (RMSD > 10A). The covalent labeling score term was not designed to distinguish
between two low quality models. For rescoring to be able to theoretically select a high-quality model, at



least one of those had to be present in the set of models that were rescored. The six proteins selected from
the ab initio set were PDB ID 1tpm, 2klx, 2nc2, 2y4q, 3iql, and 4omo. The nine proteins selected from the
threaded set were the six from the ab initio with the addition of 1fgy, 2kr9, and 4k47.

For each model (5,000 total for the six ab initio proteins and 4,695 total for the nine threaded
proteins), the covalent labeling fa score was evaluated using a simulated experimental input file
containing the average neighbor counts (average of the centroid and full atom versions of the neighbor
count as defined in eq 1) for 65% of the solvent exposed residues (randomly selected). Additionally, 10%
of the buried residues (randomly selected) were included as false data points. Input files were created in
triplicate for each of the residue type sets defined in Residue Type Sets. The resulting input files were used
to calculate the covalent labeling fa score for each model and the score was added to the overall
Rosetta Refl5 score with a weight of 6.0.

Generating Rosetta ab initio Models with covalent labeling cen and
covalent labeling fa

In addition to rescoring existing models, a new set of models for each of the 20 proteins were
generated using the standard Rosetta AbinitioRelax protocol with the addition of the two new score terms:
covalent labeling cenand covalent labeling fa. The Rosetta AbinitioRelax protocol is
divided into two main stages: a low-resolution fragment assembly stage where all backbone atoms are
expressed explicitly with the side-chains represented as single spheres and a high-resolution full-atom
refinement where the side-chain coordinates are explicitly accounted for. The centroid version of the score
term was used in the fragment assembly stages of the protocol. A weight of 0.3 was assigned to
covalent labeling cen in all five centroid scoring phases. The full-atom version was used only in
the refinement/relaxation stage with a weight of 6.0. Input files were generated using the average neighbor
counts (average between centroid and full atom neighbor counts per residue) including 65% of the solvent
exposed residues (or 35% false negatives) and 10% of the buried residues (with false positive neighbor
counts). Input files were generated in triplicate for the following residue type sets: all, common, and
optimal. A total of 5,000 models were generated and scored with the Rosetta Ref15 score function plus
covalent labeling fa foreach protein using each of the triplicate input files. This resulted in a total
ensemble of 15,000 models for each of the residue type sets. In addition, 15,000 models were generated
using the standard Rosetta protocol as a control. In addition to using RMSD to quantify the accuracy of the
predicted models, the fraction of correctly predicted contacts was calculated using a Python script with a
distance threshold between CP atoms (Ca. for Glycine) of 8A.

Results and Discussion

Cone-Based Neighbor Count Provided a More Consistent, Computationally Inexpensive
Measure of Solvent Exposure than SASA



In order to use the information from CL-based experiments to aid protein structure prediction, it is
necessary to efficiently and accurately determine the per residue solvent exposure for a given protein model.
The most common method for calculating residue solvent exposure is evaluating the residue SASA.
However, we found in our previous work with HRF experimental data that the neighbor count provided a
stronger correlation to experimentally derived protection factors and was less computationally expensive.®
Using the 6,165-protein set as a representative set of non-redundant protein subunit structures, we evaluated
the solvent exposure for all residues in each protein using both SASA and a cone-based neighbor count, as
defined in eq 1. The distributions of the SASA and a cone-based neighbor count for each amino acid type
are shown in Figure S2. Larger neighbor counts or lower SASA values indicate a higher solvent exposure,
as shown by the correlation in Figure S2 panel C. The overall solvent exposure trends per residue match
expectations. The charged residues (D, E, R, K), which most commonly appear on the protein surface, do
have among the highest solvent exposure. This trend is most pronounced in the SASA distribution and can
also be seen with the neighbor count metric. The percentage of charged residues (D, E, R, and K) that have
a neighbor count less than 15 were 79.6%, 82.1%, 75.2%, and 82.6%, respectively, indicating a relatively
high solvent exposure. Indeed, the charged residues constituted four of the six most solvent exposed residue
types, with the remaining two being N and Q. Based upon the overall distribution of the neighbor counts, a
threshold of 15 was determined as a cutoff for differentiating between a residue being solvent exposed
(neighbor count less than 15) or buried (neighbor count greater than 15).

Ultimately, we decided to use the neighbor count as the metric to define solvent exposure. The
computational cost of calculating SASA would be too expensive to calculate for every residue at each step
of the Rosetta AbinitioRelax protocol.>*** Using the neighbor count distributions as a guide, a set of residue
types were selected that had the most even distribution of residues that were considered solvent exposed
and buried. The residues selected were A, L, V, F, W, Y, C, and M. In the following, we are referring to
this residue type set as the “most varied” type set. Our hypothesis was that labeling information on residues
that had an equal likelihood of being solvent exposed and buried should provide the most guidance with
regards to tertiary structure prediction.

In practice, when evaluating covalent labeling experiments, information is generally only used from
the residues that are labeled. Data on protein residues that are not labeled (but are of the type of amino acid
that can be labeled by the reagent being used) is generally not used to deduce protein structure. These
unlabeled residues could either be buried within the protein and not exposed to solvent, or, the residues
could be participating in some type of non-covalent interaction such as a salt bridge or hydrogen bond.
Because it is not obvious how to interpret the lack of labeling in terms of the proteins structure, we decided
to not include information from what could be considered buried residues based upon their neighbor counts.
This decision was made to better simulate what is actually obtained from experiment. Any residue whose
neighbor count was above the determined threshold of 15 was excluded from any further analysis.

Optimal Subset of Nine Amino Acid Types that Provided the Most Discriminatory Information
for Structure Prediction

One of the primary questions that arises in conjunction with covalent labeling experiments for
protein structure determination is which amino acid types should be labeled to obtain structural information.
Ideally, all 20 residue types would be labeled. To test this presumption, we calculated the normalized
covalent labeling score for each of 194,100 decoy models and calculated the resulting score versus RMSD
distributions Py,q,. The distributions for all of the investigated residue type sets can be found in Figure S3.



An important observation from these distributions is that regardless of the residue type set used, the covalent
labeling score was able to score poorly very high RMSD models (RMSD > 20A). These poor-quality
models did not agree with the residue exposure pattern of even a subset of the residues and could be easily
discarded by the score term. The ideal case of using all 20 residue types exhibited a Py,q,- of 0.87 (as
shown in both Figure S3 and Figure 3A). However, there is currently not a single reagent that can reliably
label all protein side chains. Hence, either a single reagent that can label a limited number of residues can
be selected with the hope that the residues that are labeled provide enough information or multiple reagents
can be used to label a larger number of amino acid types. The most commonly labeled residues (W, Y, D,
E, R, H, K, and C) that would require multiple reagents make up the “common” residue type set whose
normalized covalent labeling distribution had a Py, of 0.81. Thus, the discriminatory power of the
covalent labeling score of the “common” residue type set was almost as high as that of the “all” residue
type set. In order to obtain labeling information for all eight residues in the “common” residue type set, as
few as four different labeling reagents could be used (for example: phenylglyoxal for arginine; EDC for
aspartic and glutamic acids; DEPC for histidine, lysine, tyrosine, and cysteine; Koshland’s reagent for
tryptophan).' Two of the residue type sets we examined, HRF and DEPC, both utilize a single reagent to
label multiple residue types. HRF and DEPC gave Py, values of 0.78 and 0.60, respectively. Although
these were lower than those observed for “all” and “common”, the results are still encouraging given that
both only require a single labeling reagent, which minimizes experimental labeling effort. The “common”
and HRF residue type sets were almost as accurate as the ideal case of using all 20 residue types, but there
is still room for improvement. The final residue type set that we identified as the “most varied” (A, L, V,
F, W, Y, C, and M) provided a Py,q;- of 0.50. The “most varied” and DEPC residue sets performed the
worst with the lowest Py,,,-. The results for the “most varied” set were surprising, since the residues in that
set were selected solely based on their highly variable solvent exposure observed in trends from the Protein
Data Bank. Upon further investigation, we found that these amino acid types only cover 36.2% of the
average protein sequence.”’ This implies that the low sequence coverage of the “most varied” set
outweighed the highly variable solvent exposure of its constituent residues.

Labeling experiments are costly and time-consuming, making it desirable to perform experiments
with a labeling strategy optimized to maximize the amount of structural information obtained. Using
computational methods, here we identified an optimized set of residue types, referred to as the “optimal”
type set, that provided the best discriminatory behavior in terms of tertiary structure prediction. In order to
identify this “optimal” residue type set, the covalent labeling score distribution was evaluated for all 20
residues types. This distribution, as shown in Figure 3A, exhibited a Py, value of 0.87 and was used as
the baseline. The goal of our analysis was to find the combination of the fewest residue types that gave a
Pyear comparable to 0.87. By following the procedure described in Materials and Methods, an optimal
subset of nine residue types was identified. The amino acid types that comprise this “optimal” subset were
G,R,K,L, T,F, S, V,and D. The corresponding normalized covalent labeling score vs RMSD distribution
is depicted in Figure 3B and had a Py, of 0.87, identical to that of the baseline. With just nine amino acid
types, we are able to generate a distribution that was just as funnel-like as the total set. The “optimal” type
set is composed of charged (R, K, D), hydrophobic (L, F, V), polar uncharged (T, S) amino acid types and
glycine (G). There are amino acid types in this set that represent the various different groups of amino acids.
Because of this, we speculate that because of the wide spread of representation of amino acid types, this
subset provided structural information on par with using all amino acid types. Based upon the average
distribution of amino acid types, these nine amino acid types make up 56.2% of the average protein
sequence.*’ For the 20 protein benchmark set used for this work, the respective amino acids made up 53.9%
of the sequences. The fact that they cover over half of the average protein sequence makes these amino acid
types very attractive for use in covalent labeling experiments. Out of this set of nine amino acid types, we



identified two subsets of just four residues that provided the most information: 1) L, S, G, and R and 2) L,
S, G, and V. These two subsets gave distributions with Py, values of 0.70 and 0.64 respectively. The
subset of five amino acid types composed of the union of these two subsets (L, S, G, R, V) had a distribution
with a Py,q,- 0of 0.77. In addition to providing Py, values close to that of the total optimal set, these five
residues account for 35.3% of the average protein sequence coverage. These five amino acids are also
among the top seven most prevalent amino acid types in the average proteins (the other two being A and
Q). Because of this, we hypothesize that these core amino acids are the most useful to label for structure
prediction.

In order to demonstrate that not all subsets of nine amino acids provided equally useful information,
the same procedure was performed again, but this time taking the top five worst sets at each iterative step.
The final result was a subset that had a Py, 0f 0.03 and was comprised of the following amino acid types:
C,LF,M, W, P, V, A, and S. This distribution can be found in Figure S4. Clearly, the ability of subsets of
nine amino acids varies widely in their abilities to produce funnel-like distributions.

Up to 35% of Solvent Exposed Residues can be Tolerated as False Negatives in Tertiary
Structure Prediction

In an ideal scenario, all 20 amino acid types could be labeled and data was collected on every
residue in the protein. This would provide the most information regarding protein tertiary structure. In
practice, this rarely occurs and solvent-exposed residues frequently appear to be unlabeled. One of the main
questions we sought to answer in this work was the question of how many unlabeled residues can be
tolerated while still accurately differentiating between low and high RMSD protein models. To do this, a
normalized covalent labeling score was calculated for the 194,100 decoy models. The normalized neighbor
score was defined as the covalent labeling cen score divided by the total number of residues in
the given protein. By normalizing the score in this way, the covalent labeling cen scores of the
20 different benchmark proteins could be compared to each other.

Starting with the “all” residue type set (containing