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In this paper we generalise the notion of extensional (functional) equivalence of programs to abstract equiva-

lences induced by abstract interpretations. The standard notion of extensional equivalence is recovered as the

special case, induced by the concrete interpretation. Some properties of the extensional equivalence, such as

the one spelled out in Rice’s theorem, lift to the abstract equivalences in suitably generalised forms. On the

other hand, the generalised framework gives rise to interesting and important new properties, and allows

refined, non-extensional analyses. In particular, since programs turn out to be extensionally equivalent if

and only if they are equivalent just for the concrete interpretation, it follows that any non-trivial abstract

interpretation uncovers some intensional aspect of programs. This striking result is also effective, in the sense

that it allows constructing, for any non-trivial abstraction, a pair of programs that are extensionally equivalent,

but have different abstract semantics. The construction is based on the fact that abstract interpretations are

always sound, but that they can be made incomplete through suitable code transformations. To construct

these transformations, we introduce a novel technique for building incompleteness cliques of extensionally

equivalent yet abstractly distinguishable programs: They are built together with abstract interpretations that

produce false alarms. While programs are forced into incompleteness cliques using both control-flow and

data-flow transformations, the main result follows from limitations of data-flow transformations with respect

to control-flow ones. A further consequence is that the class of incomplete programs for a non-trivial abstrac-

tion is Turing complete. The obtained results also shed a new light on the relation between the techniques of

code obfuscation and the precision in program analysis.
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1 INTRODUCTION

Motivation. The main tradition of theory of computation [Rogers 1992] has been concerned with
extensional aspects of computation, i.e., with properties of programs reduced to the functions that
they implement: Two programs (often represented as indices in an enumeration of all programs)
are extensionally equivalent if they produce the same outputs on the same inputs. Theory of
computation thus studies extensional properties of programs, which cannot tell apart any pair of
extensionally equivalent programs. In other words, it studies properties of computable functions.
Much less is known about the intensional properties of programs, which distinguish different
algorithms for computing the same function, different descriptions in programming languages, or
different executions [Abramsky 2014]. The intensional side of computation includes everything
that happens after the input data are read, and before the output data are written: All states
and state changes, how many steps are made, or how much memory is used. But besides the
objective properties such as program complexity, the intensional properties include relations of
programs with programmers, such as understandability and quality; or with other programs, such
as optimising compilers, static analysers, software debuggers; or with abstract interpreters. In any
case, intensional properties are the central concern of software design and maintenance, and they
lie at the heart of the process of software development in general.

The problem. Program analysis is concerned with intensional properties not just because semanti-
cally equivalent programs may exhibit different properties, but also because semantically different
programs may appear identical when analysed. This familiar phenomenon [Cousot and Cousot
2014; Laviron and Logozzo 2009] can be overcome by increasing the precision of program analysis;
but the incurred costs make it into one of the main challenges in program analysis, and into one of
the main obstacles to general-purpose program analysis.

Abstract interpretation [Cousot and Cousot 1977, 1979] has been developed as an effective
method for constructing sound-by-construction program analysis tools. The underlying idea of pro-
gram analysis by abstract interpretation is strikingly simple: Extracting a program property means

approximating its semantics. This idea is implemented by interpreting program structures in an
abstract domain. Such abstract interpretations usually approximate some extensional properties of
the computations. Static program analysis even imposes termination through its fixpoint extrapola-
tion techniques. In this way, abstract interpretation thus reduces reasoning about programs to total
computable functions, in contrast with the traditional, concrete interpretation, which associates
with each program the partial function that it computes, and reason about such functions1.

We illustrate the sensitivity of program analysis to code structure with an example. Consider
the abstract domain of intervals Int. Each element in the domain corresponds to an interval [𝑎, 𝑏],
where 𝑎 ∈ Z ∪ {−∞} and 𝑏 ∈ Z ∪ {+∞} and 𝑎 ≤ 𝑏. This domain is an abstraction of properties of
integer valued variables; i.e., Int abstracts the set ℘(Z) of sets of integers. Consider the programs
𝑃 and 𝑄 in Figure 1, where the symbol @ is used to mark some program points that interest us.
Suppose that we want to prove the Hoare triples {𝑥 ∈ Z}𝑃{𝑥 = 0} and {𝑥 ∈ Z}𝑄{𝑥 = 0}. It is easy
to see that the programs are extensionally equivalent, and that they always output 𝑥 = 0. However,
interpreted in Int, the programs 𝑃 and 𝑄 exhibit different abstract semantics. The reason is that
abstract interpreters approximate the sets of values that program variables may take during the
concrete executions. Abstract interpretations in the Int domain approximate these sets of values
with intervals. At the point @ of the program 𝑄 , the values will thus be approximated by the
increasing sequence of intervals: [10, 10] ⊂ [8, 10] ⊂ [6, 10] ⊂ [4, 10] ⊂ [2, 10] ⊂ [0, 10]. When the

1Here the tacit assumption is that the program is deterministic and effect-free. Otherwise, the reasoning is reduced to more

general families of functions, often captured by computational monads, which are in any case extensional objects.
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𝑃 :

𝑥 := 10;

while @ (𝑥 > 0 )

do 𝑥 := 𝑥 − 1;

𝑄 :

𝑥 := 10;

while @ (𝑥 > 1 )

do 𝑥 := 𝑥 − 2;

𝑅 :

𝑥 := −9;

while @ (𝑥 < 0 )

do 𝑥 := 𝑥 + 2;

Fig. 1. Some simple programs.

loop condition becomes false, and the execution exits the loop, the postcondition 𝑥 ≤ 1 ∧ 𝑥 ∈ [0, 10]

is reached, which is true if and only if 𝑥 ∈ [0, 1]. Intepreting 𝑄 in Int thus only allows proving
{𝑥 ∈ Z}𝑄{𝑥 ∈ [0, 1]}, whereas it is easy to see that interpreting 𝑃 in Int we can prove the stronger
postcondition {𝑥 ∈ Z}𝑃{𝑥 = 0}. This shows that the integer interval domain Int is incomplete for
abstract interpretation of the program 𝑄 , while it remains complete for the program 𝑃 .
It is well known that the abstract semantics of complete abstract interpretations produces the

same property approximations as the direct abstraction of the concrete semantics [Cousot and
Cousot 1979; Giacobazzi et al. 2000]. On the other hand, incomplete abstract interpretations give rise
to weaker properties than those encountered under direct inspections of effective computations
of the program, as in the case of program 𝑄 above. This means that, for instance in debugging,
abstract interpretations yield false alarms. And this is not a rare phenomenon, since incompleteness
is in program analysis more common than completeness [Giacobazzi et al. 2015].

For a different example, consider the programs 𝑄 and 𝑅 in Figure 1. These two satisfy the Hoare
triples {𝑥 ∈ Z}𝑄{𝑥 = 0} and {𝑥 ∈ Z}𝑅{𝑥 = 1}, so their extensional semantics is different; yet their
abstract semantics in Int are here the same: {𝑥 ∈ Z}𝑅{𝑥 ∈ [0, 1]}.
This striking disparity between abstract and concrete semantics gives rise to a basic question:

Can the extensional program equivalence be extended based on abstract semantics? If this is possible,
then it may be of great interest to explore the properties of this new notion of program equivalence.

Contribution. In this paper we explore abstract interpretation from the perspective of computable
functions. We introduce a new family Π

A of index sets for partial recursive functions which are
parameterised by a given abstractionA. The indices represent programs, assumed to be enumerated
in some way, as it is usually done in theory of computation. The family of index sets ΠA is obtained
by replacing the usual concrete program equivalence with an equivalence based on the abstract
semantics induced by A. The results are properties of programs captured by what an abstract
interpreter computes rather than what the actual programs compute. We call these properties
abstract program properties. The paper has three main contributions.

(1) We prove that abstract program properties are the union of equivalence classes, where two
programs are considered equivalent if they have the same abstract semantics. These classes are not
in general extensional, i.e., they are not closed w.r.t. standard semantic equivalence of programs.
Indeed, we prove that these equivalence classes are extensional if and only if the abstraction is
trivial (see Theorem 28), i.e., it is the identity abstraction (no approximation) making the abstract
semantics coincide with the concrete one, or it is the abstraction that is unable to distinguish any
pair of programs (the greatest possible approximation).

(2) We introduce two classes of programs called respectively completeness and incompleteness
cliques. The completeness (resp., incompleteness) clique C(𝑃,A) (resp., C(𝑃,A)) of a program
𝑃 and an abstraction A is the set of all programs that are semantically equivalent to 𝑃 and for
which A is complete (resp., incomplete). These two classes have interesting properties: C(𝑃,A)

represents the class of all variants of 𝑃 for which the analysis based onA is precise (no false alarms)
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while C(𝑃,A) is instead the class of all variants of 𝑃 for which A is imprecise. The connections

between C(𝑃,A) and C(𝑃,A) are the focus of the rest of the paper. In particular:

(2a) We prove that there is an infinity of non-trivial abstractions for which the systematic
computable removal of false alarms for all programs is impossible, namely under mild assumptions
on the abstraction A there is no many-to-one reducibility of C(𝑃,A) to C(𝑃,A) (see Theorem 16).

(2b) For a wide class of abstract domains, called variable finite (see Definition 9), we provide
a systematic reduction of C(𝑃,A) into C(𝑃,A), namely an effective transformation that maps

any program 𝑃 into another program 𝜏 (𝑃) which is equivalent to 𝑃 with respect to the concrete
semantics but that is distinguished from 𝑃 by the abstraction A (see Corollary 24). In this case,
although 𝜏 preserves the concrete semantics, the abstract semantics distinguishes any complete
program 𝑃 from 𝜏 (𝑃), because 𝜏 (𝑃) produces false alarms.
(2c) We observe that the above transformation can always be implemented by a control-flow

transformation, i.e, a semantically equivalent morph of the control-flow graph of the program, while
it cannot be in general obtained by a pure homomorphic data-flow transformation (see Theorem 33),
i.e., by a pure change in data structures manipulated by expressions. These results shed a new light
in the relation between the precision of abstract interpretation and code obfuscation.

(3) As a consequence of our construction we prove that the class of all programs that are
incomplete for a given non-trivial variable finite abstraction A is Turing complete.

Our results give new insights about the impossibility to automatically remove false alarms from
program analyses. In particular we expose the typical structure of incomplete programs. These
include predicates, i.e., Boolean-valued functions, that the abstract interpreter fails to evaluate in a
precise enough way, producing an undetermined result. The structure of these predicates turns out
to arise from the structure of the abstract domain from which the abstract interpreter is designed.
This result, together with the proof system in [Giacobazzi et al. 2015], may suggest a practical path
towards specific strategies for code refactoring with the goal to improve the precision of program
analysis. Moreover, the Turing completeness of the class of all programs that are incomplete for a
given non-trivial variable finite abstraction A, suggests specific code protecting transformations
against reverse engineering. Given any (non-trivial) abstract domainA, every computable function
can be implemented by a program that is incomplete on A, i.e., every computable function can be
intentionally obfuscated against a given non-trivial program analysis. This establishes a possibility
result concerning code obfuscation when the attack model is any non-trivial abstract interpreter.
Several constructive obfuscation strategies are proposed in this paper.

Structure of the paper. In Section 2 we discuss related works and in Section 3 we introduce the basic
set-theoretic notation for ordered structures, functions, and programs. In Section 4we recall the basic
concepts of Galois insertion-based abstract interpretations with particular emphasis on the notion
of complete and incomplete abstract semantics. In Section 5 we introduce the notion of abstract
extensional property of programs for a given abstract interpretation and prove the relation between
abstract extensionality and standard (later called Rice) extensionality. The notions of completeness
and incompleteness cliques are introduced in Section 6, while in Section 7 we define a general
control-flow transformation, applicable to a large class of abstract domains, called variable finite,
that allows us to transform any program in a completeness clique into a semantically equivalent
one in its incompleteness clique. In Section 8 we show that for non-trivial abstract domains we
can always build two programs that are semantically equivalent but different with respect to their
abstract semantics, therefore proving that any abstract semantics is Rice extensional if and only
if the abstraction is trivial. Section 9 defines a general data-flow transformation framework for
introducing incompleteness and shows the limitations of data-flow techniques with respect to
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control-flow transformations in mapping programs in a completeness cliques into an equivalent
one in its incompleteness cliques. Some final remarks are in Section 10.

2 RELATED WORK

Interesting results concerning the possibility of widening standard recursion theory towards
intensional aspects of code have been produced in the last decade. These include, among others,
the results in computational complexity via programming languages in [Ben-Amram and Jones
2000], the intentional contents of Rice theorem in the case of Blum’s complexity in [Asperti 2008],
the semantics of intensionality [Kavvos 2017], the field of implicit computational complexity (see
[Dal Lago 2011] for a short survey), until the results in Analyzing Program Analyses in [Giacobazzi
et al. 2015] and the comparison of the hardness of program analysis with respect to program
verification in [Cousot et al. 2018].

The very first recursive theoretic account of complete abstract interpretations is in [Giacobazzi
et al. 2015], where the notion of completeness class for an abstract interpretation was introduced.
Given an abstract interpretation A, the completeness class of A, denoted C(A), is the set of all
programs for which A is complete, i.e., for which A produces no false alarms. The complement
set C(A) is instead the set of programs that are incomplete for A. These two classes have many
interesting properties but they fail to capture the extensional behaviour of programs, namely,
within C(A) and C(A) there may coexist programs that are semantically different, just because
they have complete or incomplete abstract semantics respectively.
We consider here the notion of completeness clique which is a transposition of the complexity

cliques introduced in [Asperti 2008] for Blum’s complexity to abstract interpretations. We prove
some recursion-theoretic properties of completeness and, in particular, incompleteness cliques. For
the latter case we provide effective transformations that allow to transform any program for which a
given abstract interpretation is complete (it belongs to a completeness clique) into an extensionally
equivalent one (i.e., preserving its concrete semantics) for which the same abstract interpreter
produces false alarms, i.e., it is in the corresponding incompleteness clique. As a consequence
this allows us to prove properties and limitations of control and data-flow semantics-preserving
obfuscating transformations [Collberg and Nagra 2009]. In particular we can go beyond [Drape
et al. 2007; Majumdar et al. 2006] and prove that semantics-preserving transformations cannot be
extended to all abstract domains when applied for data-flow obfuscations, hence formally justifying
the need of data-type complication in data-flow obfuscation of programs, as postulated in [Drape
et al. 2007], while they can always be implemented when dealing with control-flow obfuscations.
The systematic construction of generic abstraction-agnostic semantics-preserving obfuscators

for a given abstract interpreter or model checker was also considered in [Dalla Preda and Giacobazzi
2009; Giacobazzi 2008; Giacobazzi et al. 2012] and more recently in [Bruni et al. 2018]. Here we
generalise those approaches and consider the more general problem of correlating the completeness
and incompleteness cliques, therefore providing a more general setting to reason about the precision
of an abstract interpretation. In [Giacobazzi and Mastroeni 2012] and [Giacobazzi and Mastroeni
2016] the authors introduced model deformations making a semantics respectively complete
and incomplete, with the aim of giving a measure of the strength of obfuscation. None of these
approaches however considered extensional equivalence as requirement, i.e., the transformed code
may not have the same concrete semantics as the source.

The possibility of establishing a sound representation of the extensional equivalence of two pro-
grams by abstract interpretation was studied in [Partush and Yahav 2013]. The authors introduced
the notion of correlating program, i.e., a new program 𝑃 \ 𝑄 obtained as the combination of 𝑃
and 𝑄 , together with a correlating abstract domain such that the analysis of 𝑃 \ 𝑄 in this abstract
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domain gives information about the extensional equivalence of 𝑃 and 𝑄 . In the light of our results,
it is therefore always possible to morph 𝑃 \ 𝑄 in order to break the completeness of the proof of
equivalence, and hence to foil the equivalence analysis. We believe that this has reflections on the
structure of both 𝑃 and 𝑄 , i.e., when 𝑃 and 𝑄 have some specific shape, and include the predicates
that expose the incompleteness of the analysis, the differencing analysis is imprecise. The early
detection of these predicates may help in driving the use of the correlating program method in
[Partush and Yahav 2013] to achieve a more precise analysis.

3 BASIC NOTATION

Sets and order. Given two sets 𝑆 and 𝑇 , we denote with ℘(𝑆) the powerset of 𝑆 , with 𝑆 \ 𝑇 the
set-difference between 𝑆 and 𝑇 , with 𝑆 ⊂ 𝑇 strict inclusion, with 𝑆 ⊆ 𝑇 inclusion, with 𝑆 set

complementation, and with |𝑆 | the cardinality of 𝑆 . A set 𝑆 is finite if |𝑆 | < 𝜔 . A set 𝐿 with ordering
relation ≤ is a poset and it is denoted as ⟨𝐿, ≤⟩. A poset ⟨𝐿, ≤⟩ is a lattice, denoted ⟨𝐿, ≤,∨,∧,⊤,⊥⟩,
if for all 𝑥,𝑦 ∈ 𝐿 we have that the least upper bound (lub) 𝑥 ∨ 𝑦, the greatest lower bound (glb)
𝑥 ∧ 𝑦, the greatest element (top) ⊤, and the least element (bottom) ⊥ belong to 𝐿. It is complete
when for every 𝑋 ⊆ 𝐿 we have that

∨
𝑋,

∧
𝑋 ∈ 𝐿. We sometimes use subscripts, like in ⊥𝐿 , ⊤𝐿 , or∨

𝐿 𝑋 to disambiguate the underlying lattice when it is not evident from the context.

Functions. Given 𝑓 : 𝑆 → 𝑇 and 𝑔 : 𝑇 → 𝑄 we denote with 𝑔 ◦ 𝑓 : 𝑆 → 𝑄 their composition,
i.e., (𝑔 ◦ 𝑓 )𝑥 = 𝑔(𝑓 (𝑥)). Function application 𝑓 (𝑥) is sometimes denoted 𝑓 𝑥 . id𝑆 : 𝑆 → 𝑆 is the
identity function over 𝑆 , and we omit the subscript 𝑆 when clear from the context. 𝑓 : 𝐿 → 𝐷

on complete lattices is additive (resp. co-additive) if for any 𝑌 ⊆ 𝐿, 𝑓 (
∨

𝐿 𝑌 ) =
∨

𝐷 𝑓 (𝑌 ) (resp.
𝑓 (
∧

𝐿 𝑌 ) =
∧

𝐷 𝑓 (𝑌 )). Continuity holds when 𝑓 preserves lubs of chains. If 𝑓 : 𝐿 → 𝐷 we
overload the notation by writing 𝑓 : ℘(𝐿) → ℘(𝐷) for the additive extension of 𝑓 to sets of
values (i.e., for any 𝑆 ∈ ℘(𝐿) we have 𝑓 (𝑆) = {𝑓 (𝑣) | 𝑣 ∈ 𝑆}). For a continuous function 𝑓 :
lfp(𝑓 ) =

∧ {
𝑥
�� 𝑥 = 𝑓 (𝑥)

}
=
∨

𝑛∈N 𝑓 𝑛 (⊥) where 𝑓 0 (⊥) = ⊥ and 𝑓 𝑛+1 (⊥) = 𝑓 (𝑓 𝑛 (⊥)). Note that
additive functions are continuous.

Programs. We will consider a basic deterministic while-language Imp with arithmetic and Boolean
expressions, as defined, e.g., in [Winskel 1993], whose syntax is as follows:

AExp ∋ a ::= 𝑣 ∈ Z | 𝑥 ∈ Var | 𝑓 (𝑎)

BExp ∋ b ::= tt | ff | a = a | a > a | b ∧ b | ¬b

Imp ∋ 𝑃 ::= skip | 𝑥 := a | P ; P | if b then P else P | while b do P

where Z denotes the set of integers, Var is a denumerable set of program variables, 𝑓 ranges over
total recursive functions, and 𝑎 denotes a list of arithmetic expressions. As usual we denote by
var (𝑃) the finite set of variables that occur in the program 𝑃 .

4 ABSTRACT INTERPRETATION

In the following we consider program analysers as specified by Galois insertion-based abstract
interpreters (see [Cousot and Cousot 1977, 1979] for details). Our results are based on some
hypotheses that are often left implicit in the context of program analysis. Here, in order to emphasise
their role, we prefer to name them explicitly as [H1], [H2] and [H3] in the text that follows.

4.1 Abstraction

Abstract domains. Let 𝐶 and 𝐴 be complete lattices, a pair of monotone functions 𝛼 : 𝐶 → 𝐴 and
𝛾 : 𝐴 → 𝐶 forms an adjunction or a Galois connection between 𝐶 and 𝐴 if for any 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐴

we have 𝛼 (𝑐) ≤𝐴 𝑎 ⇔ 𝑐 ≤𝐶 𝛾 (𝑎). The function 𝛼 (resp. 𝛾 ) is the left-adjoint (resp. right-adjoint) to
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𝛾 (resp. 𝛼) and it is additive (resp. co-additive). A Galois connection such that 𝛼 ◦ 𝛾 = id𝐴 is called
a Galois insertion.

Given a Galois insertion 𝛼 : 𝐶 → 𝐴 and 𝛾 : 𝐴 → 𝐶 , we callA = ⟨𝐴, ≤,⊔, 𝛼,𝛾⟩ an abstract domain,
with join operator ⊔. We say thatA is strict if 𝛾 (⊥𝐴) = ⊥𝐶 . We say that an element 𝑐 ∈ 𝐶 is exactly
represented in A if (𝛾 ◦ 𝛼)𝑐 = 𝑐 . A satisfies the ascending chain condition (ACC) if ⟨𝐴, ≤⟩ has no
infinite ascending chains. In such cases the fixpoint of any monotone function can be effectively
computed in a finite number of steps. We say that an abstract domain is trivial if it is isomorphic
to the concrete domain, i.e., 𝛾 ◦𝛼 = id𝐶 , or if it consists of only one element 𝐴 = {⊤𝐴}, i.e., for
all 𝑐 ∈ 𝐶 , (𝛾 ◦𝛼)𝑐 = ⊤𝐶 . The former is called identity abstraction and the latter top abstraction, in
which case we denote A = ⊤⊤ and 𝛾 ◦𝛼 = ⊤⊤

def
= 𝜆𝑥 .⊤𝐶 .

In the rest of the paper we will only consider Galois insertions over strict or trivial abstract

domains. [H1]

As a consequence of [H1], any non-trivial abstract domain is assumed strict (e.g., ⊤⊤ is not strict).

Sound and complete abstractions. Given an abstract domain A = ⟨𝐴, ≤,⊔, 𝛼,𝛾⟩ and a monotone
operator 𝑓 : 𝐶 → 𝐶 , we say that a function 𝑓 ♯ : 𝐴 → 𝐴 is a correct abstract interpretation of 𝑓 if

𝛼 (𝑓 (𝑐)) ≤ 𝑓 ♯ (𝛼 (𝑐)) for any 𝑐 ∈ 𝐶 . Note that if 𝑓 ♯ is a correct abstract interpretation of 𝑓 then we

have also fixpoint correctness, i.e., 𝛼 (lfp(𝑓 )) ≤ lfp(𝑓 ♯). An abstract function 𝑓 𝛼 is the best correct

approximation of 𝑓 in A iff 𝑓 𝛼
def
= 𝛼 ◦ 𝑓 ◦𝛾 : 𝐴 → 𝐴, because for any correct abstract interpretation

𝑓 ♯ it holds that 𝑓 𝛼 (𝑎) ≤ 𝑓 ♯ (𝑎) for any 𝑎 ∈ 𝐴.

We say that 𝑓 ♯ is complete if 𝛼 ◦ 𝑓 = 𝑓 ♯ ◦ 𝛼 . We say that A is a complete abstraction for 𝑓 if

there exists a complete abstract interpretation 𝑓 ♯ of 𝑓 . Completeness of 𝑓 ♯ intuitively encodes the

greatest achievable precision when abstracting the concrete behaviour of 𝑓 on A. In complete
abstractions the only loss of precision is due to the abstract domain and not to the abstract functions
𝑓 ♯. If 𝑓 ♯ is complete for 𝑓 then we have fixpoint completeness (also called fixpoint transfer):

𝛼 (lfp(𝑓 )) = lfp(𝑓 ♯), which follows from 𝛼 ◦ 𝑓 = 𝑓 ♯ ◦𝛼 . It turns out that completeness 𝛼 ◦ 𝑓 = 𝑓 ♯ ◦𝛼

holds iff 𝛼 ◦ 𝑓 = 𝛼 ◦ 𝑓 ◦𝛾 ◦𝛼. Thus, the possibility of defining a complete approximation 𝑓 ♯ of 𝑓

on some abstract domain A only depends upon the best correct approximation of 𝑓 in A, i.e.,
completeness is a property of the concrete semantics and of the abstract domain only [Giacobazzi
et al. 2000].Wewill say both łA is complete for 𝑓 ž and ł𝑓 is complete onAž to refer to completeness.
Note that the identity and the top abstractions, id and ⊤⊤, are both complete for any 𝑓 .
It is also worth noting that by replacing the abstract join operator ⊔, defined in the abstract

domainA, with a widening operator ∇ : 𝐴×𝐴 → 𝐴, such that for any 𝑎, 𝑏 ∈ 𝐴: 𝑎 ⊔𝑏 ≤ 𝑎∇𝑏 and ∇
extrapolates the possibly infinite chain of the iterates of 𝑓 ♯ to a finite chain, see [Cousot and Cousot

1977], we always reduce the precision of the fixpoint computed in A, i.e., lfp(𝑓 ♯) ≤ ∇𝑛<𝜔 𝑓
♯𝑛 (⊥𝐴).

This means that if a widening-based program analysis on the abstract domainA is fipoint complete
for 𝑓 ♯, i.e., 𝛼 (lfp(𝑓 )) = ∇𝑛<𝜔 𝑓

♯𝑛 (⊥𝐴), then A is obviously fixpoint complete for 𝑓 . Because we are
interested in the recursive properties of the class of programs for which an abstract interpreter
defined on an abstract domain A is incomplete, in the following we do not consider widening-
based fixpoint extrapolating operators to enforce termination in program analysis, and consider
the tighter condition of incompleteness caused only by the Galois insertion specifying A. This will
produce the smallest class of programs for which a given abstract domain produces false alarms.

4.2 Program Semantics

Our denotations are stores, i.e., partial functions m in S
def
= Var → Z that assign values only to a

finite set of variables. We will often represent a store m ∈ S as a tuple ⟨𝑥1/𝑣1, . . . , 𝑥𝑛/𝑣𝑛⟩ of its
defined values, i.e., such that m(𝑦) = $ if 𝑦 ∉ {𝑥1, . . . , 𝑥𝑛} and m(𝑥𝑖 ) = 𝑣𝑖 for all 𝑖 ∈ [1, 𝑛]. As usual
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we let var (m) =
{
𝑥 ∈ Var

�� m(𝑥) ≠ $
}
. Without loss of generality, in the following instead of

dealing with values in the set Z∪ {$} we assume that the default value $ is just a chosen element of
Z. In this sense a store m is seen as a total function where $ is the default value for unused variables.
For 𝑆 a set of stores, we denote by var (𝑆) the set

⋃
m∈𝑆 var (m) =

{
𝑥 ∈ Var

�� ∃m ∈ 𝑆 ∧ m(𝑥) ≠ $
}
.

Programs represent partial recursive functions from input stores to output stores. Store update
is written m[𝑥 ↦→ 𝑣] with

m[𝑥 ↦→ 𝑣] (𝑦) =

{
𝑣 if 𝑦 = 𝑥

m(𝑦) otherwise

As a matter of notation, for a set of values𝑉 , we write m[𝑥 ↦→ 𝑉 ] for the set of stores where 𝑥 is
updated with values in 𝑉 : m[𝑥 ↦→ 𝑉 ] = {m[𝑥 ↦→ 𝑣] | 𝑣 ∈ 𝑉 }. Similarly, for a set of stores 𝑆 we let
𝑆 [𝑥 ↦→ 𝑉 ] = {m[𝑥 ↦→ 𝑣] | m ∈ 𝑆 ∧ 𝑣 ∈ 𝑉 }. The semantics of arithmetic and boolean expressions
are the functions LaM : S → Z and LbM : S → {tt,ff} defined as usual.

Abstract interpretations consider collecting semantics of programs, which are the additive exten-
sion of the standard semantics, defined as partial recursive functions on stores, to functions on prop-
erties of stores. The collecting semantics of arithmetic expressions a ∈ AExp, JaK : ℘(S) → ℘(Z),
is defined as JaK𝑆

def
= {LaMm | m ∈ 𝑆} for any set of stores 𝑆 . Similarly, for boolean expressions

b ∈ BExp, JbK : ℘(S) → ℘(S) is defined as JbK𝑆
def
= {m ∈ 𝑆 | LbMm = tt}, i.e., JbK𝑆 filters the stores

of 𝑆 which make 𝑏 true. The collecting semantics of a program 𝑃 is the function J𝑃K : ℘(S) → ℘(S),
defined inductively as follows:

JskipK𝑆
def
= 𝑆

J𝑥 := aK𝑆
def
= { m[𝑥 ↦→ LaMm] | m ∈ 𝑆 }

J𝑃1; 𝑃2K𝑆
def
= J𝑃2K(J𝑃1K𝑆)

Jif b then P1 else P2K𝑆
def
= J𝑃1K(JbK𝑆) ∪ J𝑃2K(J¬bK𝑆)

Jwhile b do PK𝑆
def
= J¬bK

(
lfp(𝜆𝑇 . 𝑆 ∪ J𝑃K(JbK𝑇 ))

)
.

In this case 𝜆m ∈ S . J𝑃K{m} is the partial recursive function computed by 𝑃 , where J𝑃K{m} = ∅
means non-termination of program 𝑃 when evaluated in the store m. Conversely, when a program
terminates on a store m we have J𝑃K{m} = {m′} for a suitable store m′. Note that, when 𝑃 does not
contain any assignment to a variable 𝑥 , if J𝑃K{m} = {m′} then m′(𝑥) = m(𝑥).

Despite the definition of collecting semantics applies to any subset of S, in the following we
consider only sets of stores that predicate over a finite set of variables, as is always the case in
abstract interpretation. This still allows the same variable 𝑥 to be assigned infinitely many different
values by the stores in a set 𝑆 ⊆ S.

Definition 1 (Variable finite sets of stores). We say a set of stores 𝑆 ⊆ S is variable finite if
|var (𝑆) | < 𝜔 . We denote by ℘̂(S) the powerset of variable finite sets of stores, together with the top

element S, i.e.,

℘̂(S)
def
=
{
𝑆 ⊆ S

�� |var (𝑆) | < 𝜔 ∨ 𝑆 = S
}
.

Lemma 2. ⟨℘̂(S), ⊆,∪,∩,S,∅⟩ is a complete lattice.

Proof. Obviously the bottom is∅ and the top is S. The fact that ℘̂(S) is closed under intersection
follows from the fact that countable intersection of variable finite sets is also variable finite. For
countable union, if the ordinary union is not variable finite, then we take S as its lub. q.e.d.
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Because programs always manipulate a finite set of variables, the concrete collecting semantics
J·K : ℘(S) → ℘(S) defined above can be seen as restricted to ℘̂(S), that is J·K : ℘̂(S) → ℘̂(S)2. We
will often abuse notation and represent with J𝑃K both the above mentioned collecting semantics
(i.e., a total function from set of stores to set of stores) and the ordinary denotational semantics of
𝑃 (i.e., a partial function 𝜆𝑥. J𝑃K{𝑥} from stores to stores).

Some points of the concrete domain are particularly important because their membership can be
effectively tested with computable predicates. We call such sets of stores recursive.

Definition 3 (Recursive set of stores). Let m |𝑉 : Var → Z be the restriction of m to the set

𝑉 ⊆ Var defined as

m |𝑉 (𝑥)
def
=

{
m(𝑥) if 𝑥 ∈ 𝑉

$ otherwise

and similarly let 𝑆 |𝑉
def
= {m |𝑉 | m ∈ 𝑆}. We say that 𝑆 ∈ ℘̂(S) is recursive iff there exists a total

recursive function 𝑓𝑆 that decides membership in
{

m ∈ S
�� m |var (𝑆) ∈ 𝑆 |var (𝑆)

}
.

Note that, if 𝑉 is finite the set of stores S |𝑉 belongs to ℘̂(S) and for any 𝑆 ∈ ℘̂(S): 𝑆 ⊆ S |var (𝑆) .

4.3 Abstract Semantics

We now define the abstract semantics for a generic abstract domain A =⟨𝐴, ≤,⊔, 𝛼,𝛾⟩. As usual in
abstract interpretation, we are interested in abstract domains whose elements represent recursive
properties (sets) of stores. This is because membership, i.e, whether any concrete computed store
satisfies the property detected by the analyser at a given program point, must be decidable in order
for the analysis to be useful.

Definition 4 (Recursive abstract domain). Given an abstract domain A, an abstract store

𝑆♯ ∈ A is recursive if 𝛾 (𝑆♯) is recursive (according to Definition 3). A is recursive if all its elements

are recursive.

In the following we only consider recursive or trivial abstractions of ℘̂(S). [H2]

Note that ⊤⊤ is recursive while id is not.

It is well known that abstract interpretation is not compositional, namely the composition of
two best correct abstract semantics may not be the best correct abstraction of the semantics of
the two components. This is indeed the main source of imprecision in program analysis. In the
following, for the sake of simplicity, we will focus only on loss of precision induced by the inductive
composition of commands. Therefore, for arithmetic or boolean expressions 𝑒 ∈ AExp∪ BExp, we
consider as abstract semantics their best correct approximating semantics inA, i.e., we assume that
the function J𝑒KA

def
= 𝛼 ◦ J𝑒K ◦𝛾 is computable in our language. This way the abstract semantics of

expressions is computed independently from their syntax, allowing us to focus on the composition
of commands as the main source of imprecision in our presentation. This assumption can be of
course weakened by composing the abstract semantics of sub-expressions, at the price of further
loss of precision, which is superfluous for our purposes.

The abstract semantics J𝑃KA : 𝐴 → 𝐴 of a program 𝑃 ∈ Imp is therefore inductively defined
on the syntax of commands as the composition of the the abstract semantics of their components.

2Our focus is on recursive-theoretic properties of false alarm removal and injection, therefore we consider here the simplest

possible Turing complete language Imp where programs manipulate a finite set of variables. Richer languages manipulating

an unbound number of variables, e.g., by recursion, can be considered at the price of complicating the model and replacing

variable finiteness with abstract domains defined as functions from natural numbers 𝑛 ∈ N to Galois connections on a

concrete domain with 𝑛 variables (e.g., see [Venet 1996]).
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As above, we assume that the best correct approximation of assignments is computable in our
language. In particular, in any Galois insertion the abstract join ⊔ is by definition the best correct
approximation of the concrete join ∪. If 𝑆♯ ∈ 𝐴 is an abstract store:

JskipKA𝑆♯
def
= 𝑆♯

J𝑥 := aKA𝑆♯
def
= 𝛼 ({ m[𝑥 ↦→ LaMm] | m ∈ 𝛾 (𝑆♯) })

J𝑃1; 𝑃2K
A
𝑆♯

def
= J𝑃2K

A
(J𝑃1K

A
𝑆♯)

Jif b then P1 else P2K
A
𝑆♯

def
= J𝑃1K

A
(JbKA𝑆♯) ⊔ J𝑃2K

A
(J¬bKA𝑆♯)

Jwhile b do PKA𝑆♯
def
= J¬bKA

(
lfp(𝜆𝑇 ♯ . 𝑆♯ ⊔ J𝑃KAJbKA𝑇 ♯)

)

Note that the best correct approximation of an assignment J𝑥 := aKA does not rely on the best
correct abstract semantics JaKA of the arithmetic expression a. Moreover in the least fixpoint
definition of Jwhile b do PKA , the abstract function 𝜆𝑇 ♯ . 𝑆♯ ⊔ J𝑃KA (JbKA𝑇 ♯) turns out to be the

best correct approximation on A of the concrete function 𝜆𝑇 . 𝑆 ∪ J𝑃KJbK𝑇 . Because the abstract
semantics J·KA above is fully determined by the abstract domain A, we often abuse notation and
indicate A as abstract semantics or abstract interpretation.

In the following we assume that the best correct approximation in A of expressions and

assignments are computable in our language. [H3]

Example 5. As a running example of an abstract interpretation, consider the abstract domain

of intervals Int on the integers Z, already mentioned in the introduction. Elements of Int are finite

intervals [𝑎, 𝑏] with 𝑎 ≤ 𝑏, or infinite intervals of the form [−∞, 𝑏] or [𝑎,∞], together with the empty

interval ∅ (the bottom element). The top element is [−∞,∞]. Intervals are ordered by inclusion. The

concretisation function 𝛾 is defined as expected, while the abstraction function 𝛼 maps a set of integers

to the smallest interval that contains it (see [Cousot and Cousot 1977]).

In this example, let the default value $ be 0, so that in the abstract store the default value is the

interval [0, 0]. Moreover, since the abstraction is non-relational, an abstract store 𝑆♯ maps a finite

number of variables to (non-default) intervals of the form [𝑎, 𝑏] with

𝛾 (𝑆♯) = { m | ∀𝑦, 𝑎, 𝑏. 𝑆♯ (𝑦) = [𝑎, 𝑏] ⇒ 𝑎 ≤ m(𝑦) ≤ 𝑏 }

and for any set of stores 𝑆 we let

𝛼 (𝑆) (𝑦) = [min
m∈𝑆

m(𝑦),max
m∈𝑆

m(𝑦)]

Let us consider the program

𝑃
def
= if 𝑥 = 1 then 𝑦 := 1

else 𝑦 := 3

and the concrete set of stores 𝑆 = {⟨𝑥/1⟩, ⟨𝑥/2⟩}. In the collecting semantics we have of course

J𝑃K𝑆 = {⟨𝑥/1,𝑦/1⟩, ⟨𝑥/2,𝑦/3⟩}. Let 𝑆♯ = 𝛼 (𝑆). Clearly 𝑆♯ (𝑥) = [1, 2]. Then, we have

J𝑃KA𝑆♯ = J𝑦 := 1KA (J𝑥 = 1KA𝑆♯) ⊔ J𝑦 := 3KA (J𝑥 ≠ 1KA𝑆♯)

Now let J𝑥 = 1KA𝑆♯ = 𝑆
♯
1 and J𝑥 ≠ 1KA𝑆♯ = 𝑆

♯
2 , then 𝑆

♯
1 (𝑥) = [1, 1] and 𝑆

♯
2 (𝑥) = [2, 2]. Therefore

J𝑃KA𝑆♯ = (J𝑦 := 1KA𝑆♯1) ⊔ (J𝑦 := 3KA𝑆♯2) = 𝑇 ♯

with 𝑇 ♯ (𝑥) = [1, 2] and 𝑇 ♯ (𝑦) = [1, 3]. Thus, in this particular case we have 𝛼 (J𝑃K𝑆) = J𝑃KA𝛼 (𝑆).
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Below we list some technical lemmas about the abstract semantics of programs that will be used
in the proofs of our main results. The proofs of these results are quite standard since they are
derived directly from the definitions.

Lemma 6. For any arithmetic expression a ∈ AExp, boolean expression b ∈ BExp, and program

𝑃 ∈ Imp, we have that JaKA , JbKA and J𝑃KA are monotone.

Lemma 7. For any boolean expression b ∈ BExp and any abstract store 𝑆♯ ∈ 𝐴,

JbKA (JbKA𝑆♯) = JbKA𝑆♯ .

Lemma 8. For any program 𝑃 ∈ Imp and any 𝑆♯,𝑇 ♯ ∈ 𝐴, if 𝑆♯ ≤ 𝑇 ♯ we have

J𝑃KA𝑆♯ ⊔ J𝑃KA𝑇 ♯
= J𝑃KA𝑇 ♯ .

Lemma 8 follows clearly by monotonicity of J𝑃KA (see Lemma 6).
Some abstract domains preserve, in the abstraction, the variable finiteness condition of the con-

crete domain. We will exploit this condition to prove some important properties of the abstraction.

Definition 9 (Variable finite abstract domains). We say that an abstract domain A is

variable finite if for any 𝑆 ∈ ℘̂(S) we have var ((𝛾 ◦ 𝛼)𝑆) = var (𝑆).

The condition of variable finiteness amounts to require that the abstraction does not introduce
information about unused variables and therefore preserves the variable finiteness of any concrete
set 𝑆 ≠ S. Note that, except for the top abstraction, most standard abstract domains in abstract
interpretation are variable finite. This is because programs manipulate a finite set of variables and it
is always possible to increase the number of interesting variables making a new program. Abstract
domains are therefore usually defined having variables as parameter (e.g., see [Venet 1996]).

A simple consequence of Definition 9 is that for any variable finite abstract domain A we have
that 𝛼 (𝑆) = 𝛼 (S) implies 𝑆 = S. This is because for any 𝑆 ≠ S it holds 𝑆 ⊆ S |var (𝑆) and therefore
we have 𝛼 (𝑆) ≤ 𝛼 (S |var (𝑆) ) < 𝛼 (S). The following lemma says that when A is variable finite, then
J𝑃KA cannot map to top an abstract element which is different from top.

Lemma 10. If A is variable finite, for any 𝑃 ∈ Imp and 𝑆♯ ≠ 𝛼 (S), we have that J𝑃KA𝑆♯ ≠ 𝛼 (S).

The proof of Lemma 10 is by structural induction on the program 𝑃 , exploiting the variable
finiteness condition on the abstract domain and the fact that 𝑃 can only manipulate a finite number
of variables.
It is worth noting that, as a consequence of [H2], if a domain is variable finite and recursive

then it is not trivial. In fact the identity abstraction is not recursive and the top abstraction is not
variable finite.

Completeness classes. The notion of completeness class of programs has been introduced in [Gia-
cobazzi et al. 2015] as the set of all programs for which an abstract interpretation is complete:

C(A)
def
=

{
𝑃 ∈ Imp

�� 𝛼 ◦ J𝑃K = J𝑃KA ◦ 𝛼
}
.

Roughly, the completeness class C(A) is defined to be the set of all programs whose static analysis
on a given abstraction A will never produce false alarms. By complement notation, we denote by
C(A) the set of all programs whose abstract analysis can produce false alarms. This is a property
of programs with respect to a fixed abstraction. It is worth noting that the number of programs
that meet this property is always infinite. For any abstract domain A whose abstraction function is
computable we have that |C(A)| = 𝜔 . This is shown by a straightforward padding argument by
observing that skip ∈ C(A) for any A and because the composition of two complete functions
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is complete, therefore the sequential composition of complete commands is still complete, i.e., if
𝑃 ∈ C(A) then skip; 𝑃 ∈ C(A). In [Giacobazzi et al. 2015] the authors proved that C(A) = Imp if
and only ifA is trivial, moreoverC(A) is a non recursive enumerable set for non-trivial abstractions.
In the following of this paper we will focus our attention on the structure of C(A).

5 ABSTRACT EXTENSIONALITY

A set (i.e., a property) of programs Π ⊆ Imp, or an index set for partial recursive functions, is
Rice-extensional when

𝑃 ∈ Π ∧ J𝑃K = J𝑄K =⇒ 𝑄 ∈ Π (1)

In this case 𝑃 ∈ Π is the index of the partial recursive function J𝑃K. We recall that an index set Π is
recursive if and only if it is trivial, i.e., Π = ∅ or Π = Imp. This is the well known Rice theorem [Rice
1953]. In the following we generalise this notion by replacing the concrete semantics J·K with a

generic abstract semantics J·KA for an abstract domain A. This allows us to introduce a parametric
notion of extensionality, called abstract extensionality which depends upon the abstraction A.

Definition 11. Let A be an abstract domain. An (abstract) A-index set for partial recursive

functions or abstract program property is any Π
A ⊆ Imp such that

𝑃 ∈ Π
A ∧ J𝑃KA = J𝑄KA =⇒ 𝑄 ∈ Π

A

Abstract program properties are properties of programs that are closed by abstract semantics.
All properties in program analysis as formalised by abstract interpretation are abstract semantic
properties, or equivalently induce an abstract index set for partial recursive functions. This models
precisely program analysis as an equivalence relation on programs.

Theorem 12. If A is trivial then Π
A is Rice-extensional.

Proof. If A = ⟨𝐴, ≤,⊔, 𝛼,𝛾⟩ is trivial then 𝛾 ◦𝛼 = id or 𝛾 ◦𝛼 = ⊤⊤. In the first case any abstract

program property Π
id satisfies the notion of Rice-extensionality, as J𝑃Kid = J𝑄Kid iff J𝑃K = J𝑄K.

In the second case, if Π⊤⊤
= ∅ then Π

⊤⊤ is vacuously Rice-extensional. If instead Π
⊤⊤

≠ ∅ then
Π
⊤⊤

= Imp, because for any 𝑃,𝑄 ∈ Imp: J𝑃K⊤⊤ = J𝑄K⊤⊤, and therefore Π⊤⊤ is Rice-extensional. q.e.d.

We know that, in general, an abstract program property ΠA can be non Rice-extensional and that
a Rice-extensional property may not be an abstract program property, so that the two notions of
Rice-extensional property of programs and abstract program property are in general incomparable
(e.g., see the simple examples 𝑃 , 𝑄 , and 𝑅 in the introduction).

Given an abstraction A, we consider the following similarity relation on programs based on the
equivalence of the analysis performed by the abstract interpreter induced by A:

𝑃 ≈A 𝑄 iff J𝑃KA = J𝑄KA

In the same way that Rice-extensional properties of programs are the union of equivalence classes of
programs, where two programs are equivalent if they represent the same partial recursive function,
abstract program properties are union of similar classes, where two programs are considered
equivalent if they have the same abstract semantics, i.e., the same analysis. The following proposition
comes straight from the definitions.

Proposition 13. For any abstraction A = ⟨𝐴, ≤,⊔, 𝛼,𝛾⟩:

• ≈A is an equivalence relation.

• For any Π
A there exists 𝐹 ⊆ 𝐴 → 𝐴 such that ΠA

=
⋃

𝑓 ∈𝐹

{
𝑃 ∈ Imp

�� J𝑃KA = 𝑓
}
.

• Π
A

=
⋃

𝑃 ∈ΠA [𝑃]≈A .
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In order to understand the structure of abstract program properties as sets of indices of partial
recursive functions we need to study the structure of the equivalence classes of programs as
induced by an abstract semantics J·KA . In particular we are interested in determining whether such
equivalence classes are Rice-extensional, namely, if they are closed under the Rice-extensional
equivalence. We will prove that a partition of programs into Rice-extensional equivalence classes
induced by an abstract semantics is possible if and only if the abstraction is trivial, i.e., all the
equivalence classes of programs induced bymeaningful abstract interpretations are not Rice-extensional.

This formalises the widely accepted folklore for which in program analysis it is always possible
to transform a program into a semantically equivalent one for which the abstract semantics (i.e.,
the analysis) of the source is different from the one of the transformed program [Giacobazzi 2008;
Laviron and Logozzo 2009]. In order to prove this result we need to find a program 𝑄 such that for

a given 𝑃 ∈ Π
A : J𝑃K = J𝑄K but J𝑄KA ≠ J𝑃KA .

In the following we prove that for any non-trivial (recursive) abstraction there exist such 𝑃,𝑄 .
Moreover, for a large class of abstractions, those based on variable finite abstract domains (see
Definition 9), we prove the stronger result that for any complete program 𝑃 we can always find a

program 𝑄 and an abstract store 𝑆♯ such that J𝑃K = J𝑄K and J𝑃KA𝑆♯ < J𝑄KA𝑆♯ (Theorem 23). This
can be formalised in terms of incompleteness of𝑄 , i.e.,𝑄 is an incomplete version of 𝑃 with respect
to a non-trivial program analysis A (Corollary 24). In the case of non variable finite domains we

just provide two sample programs 𝑃 and 𝑄 such that 𝑃 ∈ Π
A : J𝑃K = J𝑄K but J𝑄KA < J𝑃KA (see

Theorem 27).

6 COMPLETENESS AND INCOMPLETENESS CLIQUES

Given an abstract interpretation A, the incompleteness (resp. completeness) clique of a program
𝑃 ∈ Imp is the set of all programs that compute the same partial function as 𝑃 and whose abstract
semantics is incomplete (resp. complete). Hence in a clique every two distinct programs are
semantically equivalent on the concrete domain of stores. In an incompleteness clique these
programs produce, when analysed, false alarms, while in a completeness clique they produce no
false alarms.

Definition 14 (Completeness cliqe). The completeness clique of 𝑃 ∈ Imp w.r.t. A is

C(𝑃,A)
def
=
{
𝑄
�� J𝑃K = J𝑄K

}
∩ C(A).

Definition 15 (Incompleteness cliqe). The incompleteness clique of 𝑃 ∈ Imp w.r.t. A is

C(𝑃,A)
def
=
{
𝑄
�� J𝑃K = J𝑄K

}
∩ C(A).

Completeness (incompleteness) cliques model precisely the notion of semantically equivalent
programs for which completeness (incompleteness) holds with respect to a given abstract semantics
A. Note that C(𝑃,A) ≠ C(𝑃,A), because C(𝑃,A) only contains programs that compute the same

partial function as 𝑃 , while this is not the case for C(𝑃,A). The cliques C(𝑃,A) and C(𝑃,A) form

a partition of the set [𝑃]≈id of extensively equivalent programs to 𝑃 , therefore C(𝑃,A) and C(𝑃,A)

cannot be both empty. Whenever A is trivial we have that C(A) = Imp and thus C(𝑃,A) = ∅
and C(𝑃,A) = [𝑃]≈id . Also note that it may well happen that 𝑃 ∉ C(𝑃,A) or that 𝑃 ∉ C(𝑃,A),

because A can be either complete or incomplete for 𝑃 . Moreover for any 𝑃 ∈ Imp: (1) if 𝑃 ∈ C(A)

then |C(𝑃,A)| = 𝜔 and (2) if 𝑃 ∈ C(A) then |C(𝑃,A)| = 𝜔 . This is indeed obvious in both cases

by padding 𝑃 with skip.
As well as complexity cliques [Asperti 2008], completeness and incompleteness cliques are not in

general extensional and enjoy interesting recursive properties that show the nature of false alarms
in program analysis and the limit of their systematic removal. In particular, there are infinitely
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many abstract domains for which it is impossible to systematically remove false alarms by effective
code transformations. This is proved by the following theorem, where we denote by 𝑋 ⪯𝑚 𝑌 the
many-to-one reducibility [Rogers 1992], i.e., the existence of a total recursive function 𝑓 such that
𝑥 ∈ 𝑋 ⇔ 𝑓 (𝑥) ∈ 𝑌 .

Theorem 16. For any strict ACC abstract domainA, there exists 𝑃 ∈ Imp such that if C(𝑃,A) ≠ ∅
then C(𝑃,A) ⪯̸𝑚 C(𝑃,A).

Proof. Note that any strict ACC abstract domain A is non-trivial: The identity abstraction is
not ACC and the topmost abstraction is such that 𝛾 (⊥𝐴) = S contradicting the strictness condition
𝛾 (⊥𝐴) = ∅. Assume by contradiction that for all 𝑃 ∈ Imp: C(𝑃,A) ≠ ∅ and C(𝑃,A) ⪯𝑚 C(𝑃,A).

C(𝑃,A) ⪯𝑚 C(𝑃,A) implies that if C(𝑃,A) = ∅ then also C(𝑃,A) = ∅, which contradicts the

hypothesis. Then we can conclude that C(𝑃,A) ≠ ∅. By the above assumption, for any 𝑃 ∈ Imp

there exists 𝑓𝑃 : Imp → Imp which is total recursive and 𝑄 ∈ C(𝑃,A) ⇔ 𝑓𝑃 (𝑄) ∈ C(𝑃,A). Hence

for any 𝑃 ∈ Imp, any program𝑄 ∈ C(𝑃,A) is such that J𝑃K = J𝑓𝑃 (𝑄)K and 𝑓𝑃 (𝑄) ∈ C(A). Because

A is strict then 𝛼 (𝑆) = ⊥𝐴 iff 𝑆 = ∅, therefore because 𝑓𝑃 (𝑄) ∈ C(A), for any 𝑆 :

J𝑃K𝑆 = J𝑓𝑃 (𝑄)K𝑆 = ∅ ⇔ 𝛼 (J𝑓𝑃 (𝑄)K𝑆) = ⊥𝐴 ⇔ J𝑓𝑃 (𝑄)K
A
𝛼 (𝑆) = ⊥𝐴 .

We know that A is ACC, therefore it is decidable whether J𝑓𝑃 (𝑄)K
A
𝛼 (𝑆) = ⊥𝐴, namely whether

J𝑃K𝑆 = ∅, for any 𝑆 ∈ ℘̂(S). Therefore it would be possible to effectively transform any program 𝑃

into an equivalent one 𝑓𝑃 (𝑄) for which termination is decidable, which is impossible. q.e.d.

Our goal now is to show that, when A is variable finite and not trivial, for any program
𝑃 ∈ Imp we can always effectively generate a program 𝜏 (𝑃) ∈ C(𝑃,A), therefore for any 𝑃 ∈ Imp:
C(𝑃,A) ≠ ∅. In the light of the previous theorem, this result would have relevant consequences
on the structure of the class of incomplete programs C(A). In the above case, C(A) includes at
least a program for all computable functions, i.e., it is a Turing complete language.

7 REDUCING COMPLETENESS TO INCOMPLETENESS

In this section we design the code transformation aiming at making the analysis of a program
incomplete for a given non-trivial abstract domain, still preserving the concrete semantics. As
observed above, trivial abstract domains A, being complete for any program, cause C(𝑃,A) to be
empty, making the definition of a transformation in these cases unfeasible. For non-trivial abstract
domains, our goal is to define a transformation function 𝜏 : Imp → Imp that must satisfy the
following conditions:

(1) Semantics preservation: For each 𝑃 ∈ Imp : J𝑃K = J𝜏 (𝑃)K.

(2) Incompleteness: There exists 𝑆 ∈ ℘̂(S) : 𝛼 (J𝜏 (𝑃)K𝑆) < J𝜏 (𝑃)KA𝛼 (𝑆).

The first condition states that transformed programs must have the same functional behaviour on
every variable. The second condition requires that the abstract analysis is incomplete for at least
one set of stores. All this means that 𝜏 : C(𝑃,A) → C(𝑃,A).

We introduce a simple control-flow transformation that injects in the source program some
dead code that cannot be recognised by the abstract semantics. The main idea is to exploit the
dead code assigning fixed values to unused variables of the program so that the abstract semantics
of the transformed program would report that change. We use a conditional statement with an
opaque predicate [Collberg and Nagra 2009] that depends upon the abstract domain. The opacity
of this predicate enforces the abstract interpreter to consider both branches into account in the
control-flow, even if only one of them is actually taken in any concrete execution.
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In order to define our control-flow transformation we just require that the abstract domain is
variable finite (see Definition 9) and recursive (see Definition 4). Equivalently, these are the variable
finite abstract domains that are not trivial because of our hypothesis [H2].

The next lemma guarantees that recursive abstract domains cannot be the identical abstraction
on recursive sets, i.e., there exists a concrete recursive set 𝑆 that is not exactly represented in
the abstract domain. The main results in this section, namely, Theorems 22ś23 and Corollary 24,
additionally require that the abstract element 𝛼 (𝑆) is different than S, which is a consequence of
the variable finiteness condition (see Corollary 18). We will exploit this 𝑆 to inject incompleteness
in arbitrary programs in Imp.

Lemma 17. For any recursive abstract domain A there exists a recursive set 𝑆 ∈ ℘̂(S) that is not

exactly represented in A.

Proof. Towards a contradiction, assume that all recursive sets in ℘̂(S) are exactly represented in
A, i.e., (𝛾 ◦ 𝛼)𝑆 = 𝑆 for any recursive set 𝑆 ∈ ℘̂(S). Let𝑈𝑘 be the set of indices of Turing machines
that after 𝑘 steps on input 0 do not terminate. For any 𝑘 ∈ N:𝑈𝑘 is a recursive set. With each𝑈𝑘 we
can associate a variable finite set of stores 𝑆𝑘 =

{
⟨𝑥/𝑣⟩

�� 𝑣 ∈ 𝑈𝑘

}
. Clearly the set 𝑈 =

⋂
𝑘 𝑈𝑘 is

the set of indices of Turing machines that on input 0 do not terminate, which is not recursive. Let
𝑆 =

{
⟨𝑥/𝑣⟩

�� 𝑣 ∈ 𝑈
}
. Because the pair ⟨𝛼,𝛾⟩ forms a Galois insertion:

∧
𝑘 𝛼 (𝑆𝑘 ) ∈ A. Being A

recursive, the set 𝑇 = 𝛾 (
∧

𝑘 𝛼 (𝑆𝑘 )) is also recursive. Since 𝛾 is co-additive in any Galois insertion,
we have𝑇 = 𝛾 (

∧
𝑘 𝛼 (𝑆𝑘 )) =

⋂
𝑘 𝛾 (𝛼 (𝑆𝑘 )). Since we have assumed that all recursive sets are exactly

represented, we have 𝑇 =
⋂

𝑘 𝛾 (𝛼 (𝑆𝑘 )) =
⋂

𝑘 𝑆𝑘 = 𝑆 , which yields a contradiction, because 𝑇 is
recursive while 𝑆 is not. q.e.d.

Corollary 18. If A is variable finite and recursive, then there exists a recursive set 𝑆 ∈ ℘̂(S) such

that 𝑆 ⊂ (𝛾 ◦ 𝛼)𝑆 ⊂ S.

Proof. The existence of a recursive set 𝑆 such that 𝑆 ⊂ (𝛾 ◦ 𝛼)𝑆 is guaranteed by Lemma 17.
Since A is variable finite it follows that for any 𝑉 ⊂ 𝑉𝑎𝑟 :

|𝑉 | < 𝜔 =⇒ 𝛼 (S |𝑉 ) < 𝛼 (S).

This means that, for any finite set of variables 𝑉 , the abstract domain has to represent the set S |𝑉

of all stores defined at most on 𝑉 , and this abstract object 𝛼 (S |𝑉 ) cannot represent the set of all
stores. Clearly, 𝑆 ⊆ S |var (𝑆) , and thus (𝛾 ◦ 𝛼)𝑆 ≤ (𝛾 ◦ 𝛼) (S |var (𝑆) ) < S, by the properties of Galois
insertions and because the abstract domain is variable finite. q.e.d.

Let 𝑆 be a set satisfying the condition in Corollary 18. Let 𝑉 = var ((𝛾 ◦ 𝛼)𝑆) = var (𝑆), by the
variable finiteness condition. Since 𝑆 is recursive, there exists a total recursive function 𝑓 such that

𝑓 (m) =

{
1 if m ∈

{
m

��� m |𝑉 ∈ 𝑆 |𝑉

}

0 otherwise

Since 𝑓 is at most concerned with only a finite list of variables 𝑥 ⊆ 𝑉 it can be expressed as an
arithmetic expression 𝑓 (𝑥) such that L 𝑓 (𝑥) Mm = 1 if m ∈

{
m
�� m |𝑉 ∈ 𝑆 |𝑉

}
and L 𝑓 (𝑥) Mm = 0

otherwise. We let the predicate In(𝑆) be defined as 𝑓 (𝑥) = 1. We prove that In(𝑆) is an opaque
predicate for the abstract interpreter, i.e., the abstract interpreter cannot decide whether In(𝑆) is
true or false on some input property of memories. In this way In(𝑆) may drive the injection in the
abstract semantics of values that are not computed in the concrete semantics. We design this by
an assignment that will produce some store outside the scope of 𝑃 . Since (𝛾 ◦ 𝛼)𝑆 ⊂ S, then there

exists at least one store m′
∉ (𝛾 ◦ 𝛼)𝑆 . Moreover, for any program 𝑃 , we have J𝑃KA𝛼 (𝑆) < 𝛼 (S)

by Lemma 10, because (𝛾 ◦ 𝛼)𝑆 ⊂ S. Therefore, without loss of generality, we can find a store
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m′
∉ (𝛾 ◦ 𝛼)𝑆 such that var (m′) is disjoint from var ((𝛾 ◦ J𝑃KA ◦ 𝛼)𝑆), because the (non-top) points

of our concrete domain ℘̂(S) predicate over finite set of variables. Suppose m′
= ⟨𝑥1/𝑣1, . . . , 𝑥𝑛/𝑣𝑛⟩

with var ((𝛾 ◦ 𝛼)𝑆) \ var (m′) = {𝑥𝑛+1, ..., 𝑥𝑛+𝑘 } we let Set(m
′, 𝑆) be the program

𝑥1 := 𝑣1; . . . ;𝑥𝑛 := 𝑣𝑛 ;𝑥𝑛+1 := $; . . . ;𝑥𝑛+𝑘 := $

We transform 𝑃 into:

𝜏m′,𝑆 (𝑃)
def
= if In(𝑆) then

if ¬In(𝑆) then Set(m′, 𝑆)

else 𝑃

else 𝑃

The intuition of the transformation is the following: Since 𝑆 ⊂ (𝛾 ◦𝛼)𝑆 there will be at least one set
of stores that can go through both branches in the abstract semantics. As a consequence Set(m′, 𝑆)

is dead code for the concrete semantics but it is not dead code for the abstract one, marking 𝜏m′,𝑆 (𝑃)

incomplete for A.
Note that in 𝜏m′,𝑆 (𝑃), the choice of 𝑆 may be independent of 𝑃 , while that of m′ is not, i.e., the

opaque predicate depends on the abstract domain while the dead code depends on the source code.
For brevity we denote by 𝜏 (𝑃) the code injection transformation 𝜏m′,𝑆 (𝑃) for suitable m′ and 𝑆 .

Proposition 19. Let be 𝜏 defined as above. For any 𝑃 ∈ Imp we have J𝜏 (𝑃)K = J𝑃K.

Proof. In the following we let

𝑄
def
= if ¬In(𝑆) then Set(m′, 𝑆)

else 𝑃

such that 𝜏 (𝑃) = if In(𝑆) then 𝑄 else 𝑃 . Then, for any m ∈ S we have:

J𝜏 (𝑃)Km = J𝑄K(JIn(𝑆)Km) ∪ J𝑃K(J¬In(𝑆)Km)

= JSet(m′, 𝑆)K(J¬In(𝑆)K(JIn(𝑆)Km))

∪ J𝑃K(JIn(𝑆)K(JIn(𝑆)Km)) ∪ J𝑃K(J¬In(𝑆)Km)

= J𝑃K(JIn(𝑆)Km) ∪ J𝑃K(J¬In(𝑆)Km)

= J𝑃Km

since J¬In(𝑆)K(JIn(𝑆)Km) = ∅ and either JIn(𝑆)Km = {m} and J¬In(𝑆)Km = ∅ or JIn(𝑆)Km = ∅
and J¬In(𝑆)Km = {m}. q.e.d.

We show in Theorem 22 that the above control-flow transformation makes any program incom-
plete. In the proof we exploit the following two technical lemmas.

Lemma 20. Let A be variable finite and let 𝑆 ∈ ℘̂(S) be a recursive set such that 𝑆 ⊂ (𝛾 ◦ 𝛼)𝑆 ⊂ S.

Then JIn(𝑆)KA𝛼 (𝑆) = 𝛼 (𝑆).

Proof. By definition, JIn(𝑆)KA = 𝛼 ◦ JIn(𝑆)K ◦𝛾 . Thus JIn(𝑆)KA𝛼 (𝑆) = (𝛼 ◦ JIn(𝑆)K ◦ 𝛾 ◦ 𝛼)𝑆

= 𝛼 ({LIn(𝑆) Mm | m ∈ (𝛾 ◦ 𝛼)𝑆}). Let 𝑉 = var ((𝛾 ◦ 𝛼)𝑆) = var (𝑆). We recall that LIn(𝑆) Mm = tt iff
m ∈ {m | m |𝑉 ∈ 𝑆 |𝑉 }. Now, for m ∈ (𝛾 ◦ 𝛼)𝑆 , we have m |𝑉 ∈ 𝑆 |𝑉 iff m ∈ 𝑆 . Therefore we have that

{LIn(𝑆) Mm | m ∈ (𝛾 ◦ 𝛼)𝑆} = 𝑆 and JIn(𝑆)KA𝛼 (𝑆) = 𝛼 (𝑆). q.e.d.

Lemma 21. Let A be variable finite and let 𝑆 ∈ ℘̂(S) be a recursive set such that 𝑆 ⊂ (𝛾 ◦ 𝛼)𝑆 ⊂ S.

Then ⊥ < J¬In(𝑆)KA𝛼 (𝑆) ≤ 𝛼 (𝑆).
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Proof. By definition, J¬In(𝑆)KA = 𝛼 ◦ J¬In(𝑆)K ◦𝛾 . Thus

J¬In(𝑆)KA𝛼 (𝑆) = (𝛼 ◦ J¬In(𝑆)K ◦ 𝛾 ◦ 𝛼)𝑆

= 𝛼 ({L¬In(𝑆) Mm | m ∈ (𝛾 ◦ 𝛼)𝑆})

Let 𝑆 ′ = {L¬In(𝑆) Mm | m ∈ (𝛾 ◦ 𝛼)𝑆} ⊆ (𝛾 ◦ 𝛼)𝑆 . By monotonicity 𝛼 (𝑆 ′) ≤ (𝛼 ◦ 𝛾 ◦ 𝛼)𝑆 = 𝛼 (𝑆)

(because the abstract domain defines a Galois insertion). Let 𝑉 = var ((𝛾 ◦ 𝛼)𝑆) = var (𝑆). We recall
that L¬In(𝑆) Mm = tt iffm ∉ {m | m |𝑉 ∈ 𝑆 |𝑉 }. Since (𝛾◦𝛼)𝑆 ⊃ 𝑆 , there exists somem′′ ∈ (𝛾◦𝛼)𝑆 and
m′′

∉ {m | m |𝑉 ∈ 𝑆 |𝑉 }. It follows that m′′ ∈ 𝑆 ′ ≠ ∅. Since A is strict we have 𝛼 (𝑆 ′) > 𝛼 (∅) = ⊥.
q.e.d.

Theorem 22. Let A be variable finite and recursive and let 𝑆 ∈ ℘̂(S) be a recursive set such that

𝑆 ⊂ (𝛾 ◦ 𝛼)𝑆 ⊂ S. If 𝜏 is defined as above then for any 𝑃 ∈ Imp: 𝛼 (J𝜏 (𝑃)K𝑆) < J𝜏 (𝑃)KA𝛼 (𝑆).

Proof. We have:

J𝜏 (𝑃)KA𝛼 (𝑆) = JSet(m′, 𝑆)KA (J¬In(𝑆)KA (JIn(𝑆)KA𝛼 (𝑆)))

⊔ J𝑃KA (JIn(𝑆)KA (JIn(𝑆)KA𝛼 (𝑆)))

⊔ J𝑃KA (J¬In(𝑆)KA𝛼 (𝑆))

By Lemma 7 and 20: JIn(𝑆)KA (JIn(𝑆)KA𝛼 (𝑆)) = JIn(𝑆)KA𝛼 (𝑆) = 𝛼 (𝑆). Moreover, since

J¬In(𝑆)KA𝛼 (𝑆)) ≤ 𝛼 (𝑆),

by Lemma 8: J𝑃KA (J¬In(𝑆)KA𝛼 (𝑆)) ⊔ J𝑃KA (JIn(𝑆)KA𝛼 (𝑆)) = J𝑃KA𝛼 (𝑆). Thus

J𝜏 (𝑃)KA𝛼 (𝑆) = JSet(m′, 𝑆)KA (J¬In(𝑆)KA𝛼 (𝑆))

⊔ J𝑃KA𝛼 (𝑆)

By Lemma 21 there exists 𝑆 ′ with ⊥ < 𝛼 (𝑆 ′) ≤ 𝛼 (𝑆) such that J¬In(𝑆)KA𝛼 (𝑆) = 𝛼 (𝑆 ′) and thus

JSet(m′, 𝑆)KA𝛼 (𝑆 ′) = 𝛼 ({m′}), because Set(m′, 𝑆) sets to $ all variables in var ((𝛾 ◦𝛼)𝑆) \ var (m′)

and 𝛼 (𝑆 ′) ≤ 𝛼 (𝑆). Hence J𝜏 (𝑃)KA𝛼 (𝑆) = 𝛼 ({m′}) ⊔ J𝑃KA𝛼 (𝑆). By hypothesis var (m′) is disjoint

from the set of variables manipulated by J𝑃KA𝛼 (𝑆), therefore we have:

J𝜏 (𝑃)KA𝛼 (𝑆) = 𝛼 ({m′}) ⊔ J𝑃KA𝛼 (𝑆) > J𝑃KA𝛼 (𝑆) ≥ 𝛼 (J𝑃K𝑆) = 𝛼 (J𝜏 (𝑃)K𝑆)

where the last equality follows from Proposition 19. q.e.d.

Theorem 23. Let A be variable finite and recursive and let 𝑆 ∈ ℘̂(S) be a recursive set such that

𝑆 ⊂ 𝛾 ◦ 𝛼 (𝑆) ⊂ S. If 𝜏 is defined as above then for any 𝑃 ∈ C(𝑃,A): J𝑃KA𝛼 (𝑆) < J𝜏 (𝑃)KA𝛼 (𝑆).

Proof. We have

J𝑃KA𝛼 (𝑆) = 𝛼 (J𝑃K𝑆) (because 𝑃 ∈ C(𝑃,A))
= 𝛼 (J𝜏 (𝑃)K)𝑆 (by Proposition 19)

< J𝜏 (𝑃)KA𝛼 (𝑆) (by Theorem 22)

q.e.d.

As a straight consequence, the semantics-preserving transformation described above can be used
to define an effective transformation 𝜏 : C(𝑃,A) → C(𝑃,A).

Corollary 24. IfA is variable finite and recursive andC(𝑃,A) ≠ ∅ then there exists a computable

code transformation 𝜏 : C(𝑃,A) → C(𝑃,A).
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It follows immediately that if A is variable finite and recursive then for any program 𝑃 ∈ Imp:
|C(𝑃,A)| = 𝜔 . This is because the control-flow transformation introduced above is semantics-

preserving. Therefore for any 𝑃 ∈ Imp, 𝜏 (𝑃) ∈ C(𝑃,A). Then by padding with skip, or by applying
any number of further transformation steps, we obtain infinitely many programs that are equivalent
to 𝑃 but incomplete for A.

Example 25. Consider the abstract domain of intervals Int on integer numbers Z already discussed

in the Example 5. Clearly Int is strict, recursive, variable finite and of course non-trivial. A simple Imp

program belonging to C(Int) is for example 𝑥 := 𝑥 + 𝑛 for any 𝑛 ∈ Z. Indeed for any store m we have

J𝑥 := 𝑥 + 𝑛Km = m[𝑥 ↦→ m(𝑥) + 𝑛] and for any set of stores 𝑆

𝛼 (J𝑥 := 𝑥 + 𝑛K𝑆) (𝑦) =

{
[min
m∈𝑆

m(𝑦),max
m∈𝑆

m(𝑦)] if 𝑦 ≠ 𝑥

[min
m∈𝑆

(m(𝑥) + 𝑛),max
m∈𝑆

(m(𝑥) + 𝑛)] if 𝑦 = 𝑥

while

J𝑥 := 𝑥 + 𝑛KA𝛼 (𝑆) = 𝛼 ({ m[𝑥 ↦→ m(𝑥) + 𝑛] | m ∈ 𝛾 (𝛼 (𝑆)) })

= 𝛼 ({ m[𝑥 ↦→ m(𝑥) + 𝑛] | ∀𝑦. m(𝑦) ∈ 𝛾 ( [min
m′∈𝑆

m
′(𝑦),max

m′∈𝑆
m

′(𝑦)]) })

= 𝛼 ({ m[𝑥 ↦→ m(𝑥) + 𝑛] | ∀𝑦. min
m′∈𝑆

m
′(𝑦) ≤ m(𝑦) ≤ max

m′∈𝑆
m

′(𝑦) }).

Thus: (J𝑥 := 𝑥 + 𝑛KA𝛼 (𝑆)) (𝑦) =

{
[min
m∈𝑆

m(𝑦),max
m∈𝑆

m(𝑦)] if 𝑦 ≠ 𝑥

[min
m∈𝑆

(m(𝑥) + 𝑛),max
m∈𝑆

(m(𝑥) + 𝑛)] if 𝑦 = 𝑥

Therefore 𝑥 := 𝑥 +𝑛 ∈ C(Int) and therefore C(𝑥 := 𝑥 +𝑛, Int) is not empty. Let 𝑃 = 𝑥 := 𝑥 +1 ∈ C(Int).

We plan to apply our control-flow transformation to derive a program 𝜏 (𝑃) that is equivalent to 𝑃 but

such that 𝜏 (𝑃) ∈ C(Int) or, in other terms, 𝜏 (𝑃) ∈ C(𝑥 := 𝑥 + 1, Int). To this aim, let us take the set of

stores 𝑆 = {⟨𝑥/1⟩, ⟨𝑥/3⟩} and m′
= ⟨𝑦/2⟩. We have in this case In(𝑆) = (𝑥 = 1) ∨ (𝑥 = 3). 𝑃 is then

transformed into, where @ is an annotation for program points introduced to ease the presentation:

𝜏 (𝑃)
def
= if In(𝑆) then

if ¬In(𝑆) then (𝑦 := 2;𝑥 := 0)

else 𝑥 := 𝑥 + 1 (@1)

else 𝑥 := 𝑥 + 1 (@2)

We show that program 𝜏 (𝑃) is incomplete for the abstract domain Int. We have 𝛼 (J𝜏 (𝑃)K𝑆) =

𝛼 (J𝑥 := 𝑥 + 1K𝑆) = 𝛼 (𝑆 [𝑥 ↦→ {2, 4}]) = 𝛼 (𝑆) [𝑥 ↦→ [2, 4]] . Moreover because 𝛼 (𝑆) (𝑥) = [1, 3]
and for each 𝑧 ≠ 𝑥 : 𝛼 (𝑆) (𝑧) = [0, 0], we have:

JIn(𝑆)KA𝛼 (𝑆) = 𝛼 (𝑆)

J¬In(𝑆)KA𝛼 (𝑆) = 𝛼 (𝑆) [𝑥 ↦→ [2, 2]]

J𝜏 (𝑃)KA𝛼 (𝑆) = J𝑦 := 2;𝑥 := 0KA (J¬In(𝑆)KA (JIn(𝑆)KA𝛼 (𝑆)))

⊔ J𝑥 := 𝑥 + 1 (@1)KA (JIn(𝑆)KA (JIn(𝑆)KA𝛼 (𝑆)))

⊔ J𝑥 := 𝑥 + 1 (@2)KA (J¬In(𝑆)KA𝛼 (𝑆))

= J𝑦 := 2;𝑥 := 0KA (J¬In(𝑆)KA𝛼 (𝑆))

⊔ J𝑥 := 𝑥 + 1 (@1)KA𝛼 (𝑆)

⊔ J𝑥 := 𝑥 + 1 (@2)KA (𝛼 (𝑆) [𝑥 ↦→ [2, 2]])

= J𝑦 := 2;𝑥 := 0KA (𝛼 (𝑆) [𝑥 ↦→ [2, 2]]) ⊔ 𝛼 (𝑆) [𝑥 ↦→ [2, 4]] ⊔ 𝛼 (𝑆) [𝑥 ↦→ [3, 3]]

= 𝛼 (𝑆) [𝑦 ↦→ [2, 2], 𝑥 ↦→ [0, 0]] ⊔ 𝛼 (𝑆) [𝑥 ↦→ [2, 4]] = 𝛼 (𝑆) [𝑥 ↦→ [0, 4], 𝑦 ↦→ [0, 2]])
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This shows that the interval abstraction Int is incomplete for the program 𝜏 (𝑃), because e.g.,

𝛼 (J𝜏 (𝑃)K𝑆) (𝑦) = (𝛼 (𝑆) [𝑥 ↦→ [2, 4]]) (𝑦) = [0, 0] < [0, 2] = (JIn(𝑆)KA𝛼 (𝑆)) (𝑦).

Example 26. As a second example, we consider a simple relational domain formed by two-variables

inequalities: A = {⊥, 𝑥 − 𝑦 < 0, 𝑥 − 𝑦 > 0, 𝑥 − 𝑦 = 0, 𝑥 − 𝑦 ≶ 0}, where ⊥ is the bottom element,

𝑥 − 𝑦 ≶ 0 is the top element, and the other three elements are pairwise incomparable. The concrete

denotation of an abstract element 𝑆♯ is the set of stores satisfying all the relationships in 𝑆♯. For example,

given the singleton 𝑆 = {⟨𝑥/1,𝑦/2⟩} we have:

𝛼 (𝑆) = {∀𝑧 ≠ 𝑦. 𝑦 − 𝑧 > 0, ∀𝑧 ≠ 𝑥,𝑦. 𝑥 − 𝑧 > 0, ∀𝑧1, 𝑧2 ≠ 𝑥,𝑦. 𝑧1 − 𝑧2 = 0 } .

Then we take m′
= ⟨𝑤/3⟩ and consider the (complete) program 𝑃

def
= 𝑢 := 𝑥 . We have:

𝜏 (𝑃)
def
= if (𝑥 = 1 ∧ 𝑦 = 2) then

if (𝑥 ≠ 1 ∨ 𝑦 ≠ 2) then (𝑤 := 3;𝑥 := 0;𝑦 := 0)

else 𝑃

else 𝑃

By some simple calculation we get

J𝑃K = J𝜏 (𝑃)K

J𝑥 = 1 ∧ 𝑦 = 2KA𝛼 (𝑆) = 𝛼 (𝑆)

J𝑥 ≠ 1 ∨ 𝑦 ≠ 2KA𝛼 (𝑆) = 𝛼 (𝑆)

𝛼 (J𝑃K𝑆) = J𝑃KA𝛼 (𝑆) = { ∀𝑧 ≠ 𝑦. 𝑦 − 𝑧 > 0, ∀𝑧 ≠ 𝑥,𝑦,𝑢. 𝑥 − 𝑧 > 0,

∀𝑧 ≠ 𝑥,𝑦,𝑢. 𝑢 − 𝑧 > 0, ∀𝑧1, 𝑧2 ≠ 𝑦. 𝑧1 − 𝑧2 = 0 }

J𝜏 (𝑃)KA𝛼 (𝑆) = J𝑤 := 3;𝑥 := 0;𝑦 := 0KA (J𝑥 ≠ 1 ∨ 𝑦 ≠ 2KA (J𝑥 = 1 ∧ 𝑦 = 2KA𝛼 (𝑆)))

⊔ J𝑃KA (J𝑥 = 1 ∧ 𝑦 = 2KA (J𝑥 = 1 ∧ 𝑦 = 2KA𝛼 (𝑆)))

⊔ J𝑃KA (J𝑥 ≠ 1 ∨ 𝑦 ≠ 2KA𝛼 (𝑆))

= J𝑤 := 3;𝑥 := 0;𝑦 := 0KA𝛼 (𝑆)

⊔ J𝑃KA𝛼 (𝑆)

= { ∀𝑧 ≠ 𝑤. 𝑤 − 𝑧 > 0, ∀𝑧1, 𝑧2 ≠ 𝑤. 𝑧1 − 𝑧2 = 0 } ⊔ J𝑃KA𝛼 (𝑆)

= { ∀𝑧 ≠ 𝑦,𝑤 . 𝑦 − 𝑧 ≶ 0, ∀𝑧 ≠ 𝑥,𝑦,𝑢,𝑤 . 𝑥 − 𝑧 ≶ 0,

∀𝑧 ≠ 𝑥,𝑦,𝑢,𝑤 . 𝑢 − 𝑧 ≶ 0, ∀𝑧 ≠ 𝑤. 𝑤 − 𝑧 ≶ 0,

∀𝑧1, 𝑧2 ≠ 𝑦,𝑤 . 𝑧1 − 𝑧2 = 0 }

This shows that A is incomplete for 𝜏 (𝑃) because J𝜏 (𝑃)KA𝛼 (𝑆) ≠ 𝛼 (J𝑃K𝑆) = 𝛼 (J𝜏 (𝑃)K𝑆) .

8 RICE EXTENSIONALITY OF THE ABSTRACT SEMANTICS

The top trivial abstraction ⊤⊤ is an example of non variable finite abstraction. The next theorem
proves that whenever A is neither variable finite nor trivial, there exists a pair of programs 𝑃 and
𝑄 such that they have the same concrete semantics J𝑃K = J𝑄K, but different abstract semantics

J𝑃KA < J𝑄KA .
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Theorem 27. If A is neither variable finite nor trivial then there exist 𝑃,𝑄 ∈ Imp such that

J𝑃K = J𝑄K, and J𝑃KA < J𝑄KA .

Proof. Since A = ⟨𝐴, ≤,⊔, 𝛼,𝛾⟩ is not trivial, it must be strict, and since A is not variable finite
then there exists a set of stores 𝑆 ∈ ℘̂(S) such that var (𝑆) ⊂ var ((𝛾 ◦ 𝛼)𝑆). Thus, there exists a
store m ∈ (𝛾 ◦ 𝛼)𝑆 and a variable 𝑥 ∈ var ((𝛾 ◦ 𝛼)𝑆) \ var (𝑆) with m(𝑥) = 𝑣 ≠ $. Moreover, we
have that 𝛾 (𝛼 (∅)) = ∅, because A is strict. We can now build 𝑃 and 𝑄 such that J𝑃K = J𝑄K, and

J𝑃KA < J𝑄KA in the following way:

𝑃
def
= while tt do skip

𝑄
def
= if 𝑥 ≠ 𝑣 then

if 𝑥 = 𝑣 then skip

else 𝑃

else 𝑃

Clearly J𝑃K = J𝑄K. Next we prove that J𝑃KA𝛼 (𝑆) < J𝑄KA𝛼 (𝑆). In fact, for any abstract store 𝑆♯

(including 𝛼 (𝑆)): J𝑃KA𝑆♯ = ⊥ ≤ J𝑄KA𝑆♯ . Moreover, as far as 𝛼 (𝑆) is concerned we have:

J𝑄KA𝛼 (𝑆) = JskipKA (J𝑥 = 𝑣KA (J𝑥 ≠ 𝑣KA𝛼 (𝑆)))

⊔ J𝑃KA (J𝑥 ≠ 𝑣KA (J𝑥 ≠ 𝑣KA𝛼 (𝑆)))

⊔ J𝑃KA (J𝑥 = 𝑣KA𝛼 (𝑆))

= JskipKA (J𝑥 = 𝑣KA (J𝑥 ≠ 𝑣KA𝛼 (𝑆)))

⊔ ⊥

= JskipKA (J𝑥 = 𝑣KA (J𝑥 ≠ 𝑣KA𝛼 (𝑆)))

Note that all the memories in 𝑆 are such that m(𝑥) ≠ 𝑣 , thus J𝑥 ≠ 𝑣KA𝛼 (𝑆) = 𝛼 (𝑆). Thus

J𝑄KA𝛼 (𝑆) = JskipKA (J𝑥 = 𝑣KA𝛼 (𝑆))

= JskipKA𝛼 (𝑆 ′)
= 𝛼 (𝑆 ′)

for some 𝑆 ′ ⊃ {m} ⊃ ∅. Since A is strict, 𝛼 (𝑆 ′) > ⊥. Hence, we have that J𝑃KA𝛼 (𝑆) < J𝑄KA𝛼 (𝑆)

and therefore J𝑃KA < J𝑄KA . q.e.d.

We are now in the position of proving that the equivalence classes [𝑃]≈A , e.g., those forming a
non-trivial abstract program property Π

A , are Rice-extensional if and only if A is trivial.

Theorem 28. An abstract domain A is trivial iff [𝑃]≈A is Rice-extensional, for any 𝑃 ∈ Imp.

Proof. Let A = ⟨𝐴, ≤,⊔, 𝛼,𝛾⟩. If A is trivial then by Theorem 12 for any 𝑃 ∈ Imp: [𝑃]≈A is
Rice-extensional. For the converse implication, assume A is non-trivial. If A is variable finite then

consider 𝑃 ∈ [𝑃]≈A . By Proposition 19: J𝑃K = J𝜏 (𝑃)K, and by Theorem 22: J𝑃KA ≠ J𝜏 (𝑃)KA , which
proves that [𝑃]≈A is not Rice-extensional. If instead A is not variable finite then by Theorem 27 we

have that there exist 𝑃,𝑄 ∈ Imp such that 𝑃 ∈ [𝑃]≈A , J𝑃K = J𝑄K and J𝑃KA ≠ J𝑄KA , which implies
that [𝑃]≈A is not Rice extensional. q.e.d.
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9 MAKING ABSTRACTIONS INCOMPLETE BY DATA-FLOW TRANSFORMATIONS

The control-flow transformation used in the previous sections to make a program incomplete for an
abstraction is an instance of a common transformation widely used to protect code against reverse
engineering [Collberg et al. 1998]. It is well known that simple control-flow transformations are
not resilient against dynamic attacks. While a static analyser may not be able to detect the presence
of dead code, repeated concrete executions of the program can suggest that some instructions will
be never executed, i.e., they are dead code. This is a well known phenomenon in code-protecting
transformations (see for instance [Collberg and Nagra 2009] for a survey) where dynamic attacks
are often sufficient to break pure control-flow transformations like opaque predicates and code
flattening. By pure control-flow transformation we indicate any code transformation that alters the
topology of the control flow graph of the program yet keeping the standard semantics unchanged
[Majumdar et al. 2006]. All the constructions in the previous sections are based on pure control-flow
transformations, keeping the concrete semantics unchanged and transforming complete programs
into incomplete ones for a fixed non-trivial abstraction.
Nevertheless, other forms of obfuscations are known in code-protecting methods. Data-flow

transformations, for instance, focus on data manipulation rather than altering the control structure
of the program. By a pure data-flow transformation of programs we mean any transformation
that modifies the values of program variables in an homomorphic way, i.e., keeping the concrete
semantics unchanged. Of course data-flow and control-flow may be combined in very effective
transformations, but the analysis of their combination is outside the scope of this paper.

The relevance of data-flow transformations was first witnessed in [Drape et al. 2007], where the
authors characterise the class of data refinements by means of injective functions from an original
data-type 𝐷 to an obfuscated data-type 𝑂 . Injectivity guarantees the existence of a left-inverse
function, which is needed for semantic preservation on the original program variables.
In this section we explore the scope of pure data-flow transformations in making programs

incomplete for an abstraction. We introduce in Theorem 31 a general data-flow transformation
framework for injecting incompleteness and we establish in Theorem 33 the limit of applicability of
pure data-flow transformations. This is achieved by finding the exact conditions that the abstract
domains have to meet in order to have incompleteness by data-flow transformations.

For simplicity, in the following we assume that the abstraction on stores is induced by variables-
wise abstraction, i.e., the store abstraction we consider is the one obtained by applying the same
abstraction on all variable values separately. This implies that the abstract domain is variable finite.
Given an abstract domain A = ⟨𝐴, ≤,⊔, 𝛼,𝛾⟩ for the concrete domain of values ℘(Z), we overload
the symbolA to denote also the abstract domain of stores induced by the abstraction on values. For
example, the interval abstraction considered in Example 25 falls in this category: An abstract store
maps each variable to an interval of integers. Abstractions of this kind are called non-relational, as
they are not expressive enough to catch mutual dependencies between variable. As any (finite) set of
variables can always be encoded by a single one, the restriction to non-relational abstractions does
not seem a real limitation, at least theoretically, to the applicability of data-flow transformations as
presented here.
The idea of data-flow transformations is to define a pair of computable functions 𝑔, ℎ : Z → Z

such that ℎ ◦ 𝑔 = id but, when their code is interpreted in A, they fail to be one the inverse of the
other, namely the abstract semantics 𝑔# of 𝑔 and ℎ# of ℎ are such that 𝑔# ◦ℎ# ≠ id. In the context of
program analysis, injecting ℎ ◦ 𝑔 into the program by implementing 𝑔 and ℎ makes the program
analysis incomplete for the abstract domain of stores induced by A.

Because of the assumption [H3], all expressions are computed as their best correct approximation
semantics in A. Therefore, in order to inject incompleteness we need to split the computation of
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ℎ ◦𝑔 into two separated commands in Imp. To explain how 𝑔 and ℎ can be injected in the program,
let us consider any program 𝑃𝑥,𝑓 that computes function 𝑓 for a given variable 𝑥 , i.e., such that for
any m ∈ S: J𝑃𝑥,𝑓 Km = m[𝑥 ↦→ 𝑓 (m(𝑥))]. An example of such a program is, of course, 𝑥 := 𝑓 (𝑥),
but any equivalent program will do fine. Since ℎ ◦ 𝑔 = id we can inject in any program point and
for any variable 𝑥 the sequence of instructions 𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ without changing the concrete semantics
of the program.

Proposition 29. Given a program 𝑃 and two functions 𝑔 and ℎ as above, let 𝜏 (𝑃) be the transfor-

mation of 𝑃 obtained by inserting the command 𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ in the program 𝑃 at any point, any number

of times and for any program variable 𝑥 ∈ var (𝑃). Then, for all m ∈ S: J𝑃Km = J𝜏 (𝑃)Km holds.

Proof. For all m ∈ S, we have that

J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎKm = J𝑃𝑥,ℎK(J𝑃𝑥,𝑔Km)

= J𝑃𝑥,ℎK(m[𝑥 ↦→ 𝑔(m(𝑥))])

= m[𝑥 ↦→ ℎ(𝑔(m(𝑥)))]

= m[𝑥 ↦→ m(𝑥)]

= m

Therefore for all m ∈ S, J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎKm = JskipKm. Then it is immediate to check that for any
program 𝑃 one has J𝑃Km = Jskip; 𝑃Km = J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃Km and since the denotational semantics is
compositional we get the thesis. q.e.d.

We design the functions 𝑔 and ℎ in such a way that we have

𝛼 ◦ JskipK = 𝛼 ◦ J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK < J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A

◦𝛼.

This allows us to transform any program 𝑃 into the program 𝜏 (𝑃) = 𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃 with

J𝜏 (𝑃)K = J𝑃K but 𝛼 ◦ J𝜏 (𝑃)K < J𝜏 (𝑃)KA ◦𝛼.

To prove that our transformation introduces incompleteness, as required by the condition
𝛼 ◦ J𝜏 (𝑃)K < J𝜏 (𝑃)KA ◦𝛼 , the functions 𝑔 and ℎ need to be defined in such a way that

𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK𝑆) < J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A𝛼 (𝑆)

for some exactly represented element 𝑆 (i.e., 𝑆 = (𝛾 ◦ 𝛼)𝑆). The variable 𝑥 must be chosen in
such a way that J𝑃KA is strictly monotone on 𝑥 . Formally, let 𝑆 (𝑥) = {m(𝑥) | m ∈ 𝑆} denote the
set of values that can be assigned to 𝑥 by stores in 𝑆 . We say that J𝑃KA is strictly monotone on

𝑥 for 𝑆♯ ∈ A if, taken any abstract store 𝑇 ♯ ∈ A such that 𝑆♯ < 𝑇 ♯ and 𝛾 (𝑆♯) (𝑥) ⊂ 𝛾 (𝑇 ♯) (𝑥),

we have J𝑃KA𝑆♯ < J𝑃KA𝑇 ♯. Note that this is always the case for a variable 𝑥 not occurring in 𝑃

when J𝑃KA𝑆♯ converges, since J𝑃KA acts as the identity function on 𝑥 because we assume that
A is non-relational, and therefore variable finite. The next theorem shows that this is a sufficient
condition to derive the incompleteness of 𝜏 (𝑃).

Theorem 30. Let 𝑔 and ℎ be such that J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A𝛼 (𝑆) > 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK𝑆) holds for some exactly

represented element 𝑆 . If J𝑃KA is strictly monotone on variable 𝑥 for 𝛼 (𝑆) then

J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃KA𝛼 (𝑆) > 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃K𝑆).

Proof. First notice that by Proposition 29 we have 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK𝑆) = 𝛼 (𝑆). Thus by hypothesis

J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A𝛼 (𝑆) > 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK𝑆) = 𝛼 (𝑆)

and thus
(𝛾 ◦ J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK

A ◦ 𝛼)𝑆 ⊃ (𝛾 ◦ 𝛼)𝑆.
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Since 𝑃𝑥,𝑔 and 𝑃𝑥,ℎ leaves the variables different from 𝑥 unchanged, it must be the case that

((𝛾 ◦ J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A ◦ 𝛼)𝑆) (𝑥) ⊃ ((𝛾 ◦ 𝛼)𝑆) (𝑥) .

Since J𝑃KA is strictly monotone on 𝑥 for 𝛼 (𝑆), we have J𝑃KA (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A𝛼 (𝑆)) > J𝑃KA𝛼 (𝑆). By

definition of the best correct abstraction, J𝑃KA𝛼 (𝑆) ≥ (𝛼◦J𝑃K◦𝛾◦𝛼)𝑆 . Since 𝑆 is exactly represented
we have (𝛼 ◦ J𝑃K ◦𝛾 ◦ 𝛼)𝑆 = 𝛼 (J𝑃K𝑆). By Proposition 29 we get 𝛼 (J𝑃K𝑆) = 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃K𝑆). Thus
by the previous inequalities we obtain the result J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃KA𝛼 (𝑆) > 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃K𝑆). q.e.d.

There are many kinds of data-flow transformations applicable under different assumptions on
the abstract domain. Here we present one transformation that is applicable in the most general
case. It requires one recursive set𝑊 ′ ∈ ℘(Z) such that𝑊 ′ is not exactly represented but there
exists an exactly represented set 𝑊 such that 𝑊 ≃ 𝑊 ′ (i.e., 𝑊 and 𝑊 ′ are isomorphic) and
0 < |Z \𝑊 | ≤ |Z \𝑊 ′ |.
Given𝑊,𝑊 ′ as above, we show how to define 𝑔 and ℎ. Assume that 𝑔1 is any (computable)

bijective correspondence from𝑊 into𝑊 ′ and 𝑔2 is any (computable) injective correspondence
from Z \𝑊 into Z \𝑊 ′ such that also 𝑔2 (Z \𝑊 ) is recursive. Then 𝑔 can be defined as follows

𝑔(𝑥)
def
=

{
𝑔1 (𝑥) if 𝑥 ∈𝑊

𝑔2 (𝑥) otherwise (𝑥 ∉𝑊 )

The function ℎ must behave as the left-inverse to 𝑔:

ℎ(𝑥)
def
=




𝑔−11 (𝑥) if 𝑥 ∈𝑊 ′

𝑔−12 (𝑥) if 𝑥 ∈ 𝑔2 (Z \𝑊 )

𝑣 otherwise

where 𝑣 can be any element in Z \𝑊 . The following theorem shows that 𝑔 and ℎ defined as above
satisfy the requirements for the application of Theorem 30.

Theorem 31. Let𝑊 ′ ∈ ℘(Z) be a recursive set that is not exactly represented inA and let𝑊 be an

exactly represented set isomorphic to𝑊 ′ and such that 0 < |Z \𝑊 | ≤ |Z \𝑊 ′ |. Let 𝑆 = m[𝑥 ↦→𝑊 ]

for some store m and 𝑔 and ℎ be defined as above. Then: J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A𝛼 (𝑆) > 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK𝑆).

Proof. By definition of the best correct abstraction we have

J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A𝛼 (𝑆) = (J𝑃𝑥,ℎK

A ◦ J𝑃𝑥,𝑔K
A)𝛼 (𝑆)

≥ (J𝑃𝑥,ℎK
A ◦ 𝛼 ◦ J𝑃𝑥,𝑔K ◦ 𝛾 ◦ 𝛼)𝑆.

Since𝑊 is exactly represented and letting 𝑆1 = (𝛾 ◦ 𝛼)m

(J𝑃𝑥,ℎK
A ◦ 𝛼 ◦ J𝑃𝑥,𝑔K ◦ 𝛾 ◦ 𝛼)𝑆 = (J𝑃𝑥,ℎK

A ◦ 𝛼 ◦ J𝑃𝑥,𝑔K) (𝑆1 [𝑥 ↦→𝑊 ])

= J𝑃𝑥,ℎK
A𝛼 (𝑆1 [𝑥 ↦→ 𝑔(𝑊 )])

= J𝑃𝑥,ℎK
A𝛼 (𝑆1 [𝑥 ↦→𝑊 ′])

≥ (𝛼 ◦ J𝑃𝑥,ℎK ◦ 𝛾 ◦ 𝛼) (𝑆1 [𝑥 ↦→𝑊 ′]).

Since𝑊 ′ is not exactly represented there exists 𝑣 ′ ∈ Z \𝑊 ′ such that (𝛾 ◦ 𝛼)𝑊 ′ ⊇𝑊 ′ ∪ {𝑣 ′}. Thus

(𝛼 ◦ J𝑃𝑥,ℎK ◦ 𝛾 ◦ 𝛼) (𝑆1 [𝑥 ↦→𝑊 ′]) ≥ 𝛼 (J𝑃𝑥,ℎK𝑆1 [𝑥 ↦→𝑊 ′ ∪ {𝑣 ′}])

= 𝛼 (𝑆1 [𝑥 ↦→ ℎ(𝑊 ′) ∪ {ℎ(𝑣 ′)}])

= 𝛼 (𝑆1 [𝑥 ↦→𝑊 ∪ {ℎ(𝑣 ′)}])

> 𝛼 (𝑆)

because ℎ(𝑣 ′) ∈ Z \𝑊 , the set𝑊 is exactly represented and 𝛼 (𝑆1) = (𝛼 ◦ 𝛾 ◦ 𝛼)m = 𝛼 (m). q.e.d.
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Example 32. Consider again the non-relational abstract domain of intervals Int on the integers Z

from Example 25. The abstraction is induced by abstract values on the interval Int. LetN+
= {𝑛 | 𝑛 > 1}.

We apply our data-flow transformation considering the set𝑊 ′
= N+ \ {2} which is not exactly

represented in Int. Indeed, on this abstract domain𝑊 ′ ⊂ 𝛾 (𝛼 (𝑊 ′)) = N+. We also fix𝑊 = N+ that is

exactly represented using the interval [1,∞]. The function 𝑔 can be defined as

𝑔(𝑘)
def
=

{
𝑘 if 𝑘 < 2,

𝑘 + 1 if 𝑘 ≥ 2 .

Note that the function 𝑔 defines an isomorphism from𝑊 to𝑊 ′ and an injection from Z \𝑊 to Z \𝑊 ′

(the value 2 is not in the range of 𝑔). The function ℎ can be defined as

ℎ(𝑘)
def
=




𝑘 if 𝑘 ≤ 1,

−10 if 𝑘 = 2,

𝑘 − 1 if 𝑘 > 2.

Here the image of 2 can be set to any number in Z \𝑊 , we choose −10.

Consider again the program 𝑃 = 𝑥 := 𝑥 + 1 ∈ C(Int) that we have already shown to be complete in

Example 25. Let 𝜏 (𝑃) be the program obtained by injecting 𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ before the code of 𝑃 , where:

𝑃𝑥,𝑔 = if (𝑥 ≥ 2) then 𝑥 := 𝑥 + 1

else skip

𝑃𝑥,ℎ = if (𝑥 = 2) then 𝑥 := −10

else if (𝑥 > 2) then 𝑥 := 𝑥 − 1

else skip

Let us now prove that program 𝜏 (𝑃) is incomplete for the abstract domain of stores induced by the

abstraction Int on variables values. Consider 𝑆 = m[𝑥 ↦→ N+] for some store m, we have

𝛼 (J𝜏 (𝑃)K𝑆) = 𝛼 (J𝑥 := 𝑥 + 1K(J𝑃𝑥,ℎK(J𝑃𝑥,𝑔K𝑆)))

= 𝛼 (J𝑥 := 𝑥 + 1K(J𝑃𝑥,ℎKm[𝑥 ↦→ {𝑔(𝑖) | 𝑖 ∈ N}]))

= 𝛼 (J𝑥 := 𝑥 + 1K𝑆)

= 𝛼 (m) [𝑥 ↦→ [2,∞]] .

On the other hand, we have 𝛼 (𝑆) = 𝛼 (m) [𝑥 ↦→ [1,∞]] and

J𝜏 (𝑃)KA𝛼 (𝑆) = J𝑥 := 𝑥 + 1KA (J𝑃𝑥,ℎK
A
(J𝑃𝑥,𝑔K

A
𝛼 (𝑆)))

= J𝑥 := 𝑥 + 1KA (J𝑃𝑥,ℎK
A
(J𝑃𝑥,𝑔K

A
𝛼 (m) [𝑥 ↦→ [1,∞]]))

= J𝑥 := 𝑥 + 1KA (J𝑃𝑥,ℎK
A
𝛼 (m) [𝑥 ↦→ [1,∞]])

= J𝑥 := 𝑥 + 1KA𝛼 (m) [𝑥 ↦→ [−10,∞]]

= 𝛼 (m) [𝑥 ↦→ [−9,∞]] .

As a final result, we show the impossibility of obtaining an incomplete program with respect
to a non-relational non-trivial abstract domain A by applying pure data-flow transformations
whenever the conditions of the above theorems are not satisfied. This proves that the conditions of
Theorem 31 are tight for pure data-flow transformations.

Theorem 33. It is not possible to define 𝑃𝑥,𝑔 and 𝑃𝑥,ℎ such that, for every 𝑃 ,

(1) J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃K = J𝑃K, and

(2) J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃KA𝛼 (𝑆) > 𝛼 (J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎ ; 𝑃K𝑆) for some 𝑆 ,
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if there does not exist an exactly represented set𝑊 and a non exactly represented element𝑊 ′ with

|𝑊 | = |𝑊 ′ | and |Z \𝑊 | < |Z \𝑊 ′ |.

Proof. Since the conditions 1ś2 must hold for every program 𝑃 , in particular they must hold
for 𝑃 = skip. Therefore the conditions subsume:

(1) J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎKm = m for every m, and

(2) J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A
𝛼 (𝑆) > 𝛼 (𝑆) for some 𝑆 .

From (1), it follows that 𝑔 must be total and injective and that ℎ must be injective over the range of
𝑔. Since (2) must hold, 𝛼 (𝑆) cannot be S. Moreover, since the condition (2) is about the abstraction
𝛼 (𝑆), and 𝛾 (𝛼 (𝑆)) is always exactly represented, without loss of generality we can consider 𝑆 to be
exactly represented, i.e., 𝑆 = 𝛾 (𝛼 (𝑆)). Let us consider the best correct abstraction

J𝑃𝑥,𝑔 ; 𝑃𝑥,ℎK
A
𝛼 (𝑆) ≥ (𝛼 ◦ J𝑃𝑥,ℎK ◦ 𝛾 ◦ 𝛼 ◦ J𝑃𝑥,𝑔K ◦ 𝛾)𝛼 (𝑆)

= (𝛼 ◦ J𝑃𝑥,ℎK ◦ 𝛾 ◦ 𝛼 ◦ J𝑃𝑥,𝑔K)𝑆.

Let𝑊 = 𝑆 (𝑥), 𝑆 ′ = J𝑃𝑥,𝑔K𝑆 and𝑊 ′
= 𝑔(𝑊 ), so that 𝑆 ′ = 𝑆 [𝑥 ↦→𝑊 ′]. Remember that 𝑔 is injective.

If𝑊 ′ was exactly represented then (𝛾 ◦ 𝛼)𝑊 ′
= 𝑊 ′, (𝛾 ◦ 𝛼)𝑆 ′ = 𝑆 ′ and J𝑃𝑥,ℎK𝑆

′
= 𝑆 because ℎ

is injective on the range of 𝑔 and left-inverse to it. Thus𝑊 ′ cannot be exactly represented and
is isomorphic to𝑊 . Moreover, as 𝑔 is total and injective, the image of Z \𝑊 must be in Z \𝑊 ′,
meaning that |Z \𝑊 | < |Z \𝑊 ′ |. But this contradicts the hypothesis that such𝑊 and𝑊 ′ do not
exist. q.e.d.

10 CONCLUSION

In this paper we proved that the equivalence induced by the abstract semantics on programs is
an index set of partial recursive functions if and only if the abstraction is trivial. We considered
the strongest possible scenario in order to establish when incompleteness can be injected. In
particular the assumptions [H1] and [H3] ensure the existence of the best correct approximation
for expressions and assignements, so that making this approximation incomplete would make
incomplete any other weaker approximations, i.e., we proved that incompleteness can be injected
in every program also when the abstraction is designed to be the most precise one. Note that
we propose effective (control-flow and sometimes data-flow) program transformations to inject
incompleteness and that these transformations are all based on the structure of the abstract domain.
This result has important consequences in program analysis and abstract interpretation:

(1) It shows that any non-trivial abstraction of extensional (functional) properties of programs is
susceptible to their intensional structure. This means that any non-trivial abstract interpretation
always unveils implicitly also properties concerning the way programs are written. While true
alarms only concern the extensional (functional) behaviour of the program, false alarms always
concern their intensional structure. Stated in a different way: We can look at the log of alarms
generated by an abstract interpreter to classify programs according to extensionalÐwhat they
compute, and intensionalÐhow they are implemented, similarity. This log is a footprint of the code
analysed which, to the best of our knowledge, has never been used for program analysis, e.g., in
the context of program similarity by encompassing both semantic and implementation similarity.

(2) Program analysis behaves precisely as other well known intensional properties of programs,
like computational complexity [Asperti 2008]. This relates program analysis with computational
complexity in an unexpected and remarkable way. The question whether these two fields can be
unified under a unique formal setting and what properties and structures are shared by both is still
an open question. Our paper is in this sense another step towards this ambitious goal: What is left

of the standard model of recursive functions when intensional aspects of computation are considered?
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(3) We concentrated our attention on the class C(𝑃,A). This is the space of action of any
code protecting transformations whose aim is to foil program analysis and therefore foil any tool
supporting reverse engineering. We proved that the set of all programs that are incomplete for any
non-trivial abstraction A, i.e., the set C(A), is a very rich structure: A Turing complete language!
This means that it is possible to build a compiler that compiles any program 𝑃 into an equivalent
program in C(𝑃,A), therefore justifying code transformations that protect code against program

analysis. On the other side, the expressivity of the class C(A) of all programs that are complete for
a non-trivial abstractionA is still obscure. We know by Theorem 16 that for terminating non-trivial
program analyses we cannot find a many-to-one reduction of C(𝑃,A) into C(𝑃,A). This implies

that C(A) cannot be always Turing complete, otherwise by the first Futamura projection (e.g.,
see [Futamura 1999; Jones 2004]), we could build inside C(A) a compiler 𝜏 mapping any program
in C(𝑃,A) into C(𝑃,A), and conversely any program outside C(𝑃,A) into a program outside

C(𝑃,A). The question: Given a non-trivial abstractionA, what are the functions that we can program

in C(A)? is still open. This question may have relevant applications in automating systematic false
alarm removal by refactoring code snippets.

(4) The proofs of our results show that effective program transformations can be derived under a
very weak hypothesis, what we called variable finiteness of an abstraction. The connection with
code obfuscation is particularly interesting here. We gave the minimal conditions for the existence
of universal (i.e., working for any program) control-flow transformations and proved that homo-
morphic data-flow obfuscations require strictly stronger hypothesis even for non-relational abstract
domains. This shows an asymmetry in the fundamental code obfuscation strategies that deeply
relies upon the foundations of abstract interpretation and computability. Abstract interpretation
is not compositional, i.e., we typically lose precision when composing the abstract semantics of
programs. For instance the composition of the best correct approximations of the semantics two
programs is not the best correct approximation of the composition of their semantics. This is not
the case when the abstract semantics is complete. Injecting incompleteness therefore exploits this
fundamental aspect of abstract interpretation. Moreover pure control-flow transformations exploit
dead code injection, i.e., the undecidability of termination, making any non-trivial abstraction to
fail in detecting dead code. Pure data-flow transformations instead simply act on data homomor-
phically, without necessarily encroaching on undecidability. Of course hybrid control/data-flow
transformations are used in practice in order to strengthen protection and avoid easy removal of
dead code and opaque predicates. This is nothing else than finding a suitable program in C(𝑃,A)

that maximises some metrics. Being C(𝑃,A) Turing complete, we believe that code obfuscation,

which is nowadays mostly considered a cryptographic concept [Barak et al. 2012], can be fully
reconciled with recursion theory and programming languages.
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