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DNA double-strand breaks (DSBs) are particularly challenging to repair in pericentromeric heterochromatin
because of the increased risk of aberrant recombination in highly repetitive sequences. Recent studies have
identified specialized mechanisms enabling ‘safe’ homologous recombination (HR) repair in heterochromatin.
These include striking nuclear actin filaments (F-actin) and myosins that drive the directed motion of repair sites
to the nuclear periphery for ‘safe' repair. Here, we summarize our current understanding of the mechanisms
involved, and propose how they might operate in the context of a phase-separated environment.

1. Heterochromatin repair challenges

Studies across different organisms have revealed that genomes are
hierarchically organized into distinct domains, from local loops, to
higher level topologically-associating domains (TADs), and large
chromosome territories (reviewed in [1,2]). On different scales, do-
mains represent regions of higher frequency contacts, while inter-do-
main interactions are more rare and highly regulated [1,2]. Compo-
nents maintaining the nuclear organization in domains include: CCCTC-
binding factor (CTCF) and cohesins that organize TADs [3-5]; the la-
mina, which stabilizes specialized TADs named lamina-associated do-
mains (LADs) [6]; and the nucleolus, which organizes nucleolus-asso-
ciated domains [7,8] (NADs) [9]. Additional interactions are transiently
established at transcription or replication ‘factories’ [10-12]. Biophy-
sical properties of phase-separated domains provide further constraints
to the movement of genomic sites, e.g., in pericentromeric hetero-
chromatin [13,14], nucleoli [15], nuclear pores [16], and repair sites
[15]. One of the most exciting challenges in recent years has been
understanding what forces promote intra- and inter-domain movements
for different functions like DNA replication, transcription, and repair.

One of the largest and better described phase-separated nuclear
domains is pericentromeric heterochromatin [13,14] (hereafter ‘het-
erochromatin’), which accounts for about 30% of fly and human gen-
omes [17-19], and is absent in budding yeast. Heterochromatin is

characterized by ‘silent’ histone marks (e.g, H3K9me2/3), and asso-
ciated proteins such as heterochromatin protein 1 (e.g, HP1a in flies
[20,21] and HP1o/f} in mammalian cells [22,23]), which contribute to
its compaction and phase separated state [13,14] (reviewed in [24]).
Notably, heterochromatin is functionally and structurally distinct from
LADs distributed along the chromosome arms, and in contrast to those,
it is not usually associated with the nuclear periphery (see for example
[9,25-30], reviewed in [31]). Heterochromatin is mostly composed of
repeated DNA sequences. In Drosophila, about half are ‘satellite’ repeats
(predominantly 5-base pair sequences repeated for hundreds of kilo-
bases to megabases) and the rest are transposable elements, scrambled
repeats, and about 250 isolated genes [17-19]. The abundance of re-
peated sequences in heterochromatin poses unique challenges to DSB
repair and genome stability [27,31-33].

The two main pathways for DSB repair are non-homologous end
joining (NHEJ) and homologous recombination (HR). NHEJ is char-
acterized by direct re-joining of the two ends, which frequently gen-
erates small mutations at the repair site [34]. HR initiates with resec-
tion to form single-stranded DNA (ssDNA), which invade ‘donor’
homologous templates for DNA synthesis and repair [35]. In single-
copy sequences, a unique donor is present on the sister chromatid or the
homologous chromosome, and HR is largely ‘error free’ [35]. In het-
erochromatin, however, the availability of up to millions of potential
donor sequences associated with different chromosomes can initiate
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Fig. 1. Model of the molecular mechanisms
for ‘safe’ HR repair of Drosophila hetero-
chromatin: DSB detection and resection oc-
curs efficiently inside the heterochromatin
domain, while Kdm4A and Su(var)3-9 con-
tribute to repair pathway choice (1).
Checkpoint kinases (ATR, ATM) and resection
components (Mrell complex MRN-CtIP, Blm,
Exol/Tosca) facilitate heterochromatin ex-
pansion (2), while Mrell and HPla promote
the recruitment of Arp2/3 and myosins to re-
pair sites. Smc5/6 subunits Nse2/Qjt and
Nse2/Cerv, and dPIAS, block Rad51 recruit-
ment inside the heterochromatin domain via
SUMOylation, while recruiting the myosin ac-
tivator Unc45. Scar and Wash activate Arp2/3,
inducing actin polymerization toward the nu-
clear periphery (3-4). The myosin-Smc5/6
complex associated with damaged DNA trans-
locates along actin filaments with directed
motions (5), and anchors repair sites to nuclear
pores or INMPs via STUbBL-RENi proteins. At
the nuclear periphery, STUbL might promote
Rad51 recruitment via ubiquitination and
proteasome-mediated degradation of
SUMOylated proteins, and ‘safe’ repair with
the sister chromatid or the homologous chro-
mosome that relocalized in concert with the
damaged DNA (7). Local chromatin changes
might contribute to relocalization and repair
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unequal sister chromatid exchanges or intra-/inter-chromosomal re-
combination, leading to deletions, duplications, translocations, release
of extra-chromosomal DNA circles (ECCs), and formation of dicentric or
acentric chromosomes [26-28,36-40]. Despite this danger, HR is a
primary pathway to repair heterochromatic DSBs in Drosophila and
mammalian cells [26,28,30,38,39,41-43], and specialized mechanisms
enable ‘safe’ HR in heterochromatin while preventing aberrant re-
combination.

2. Choreography of heterochromatin repair mechanisms

Many of the molecular mechanisms responsible for heterochromatin
repair have been initially characterized in Drosophila cells, where the
organization of heterochromatin in a distinct nuclear domain greatly
facilitates cytological approaches [9,21,26]. The recruitment of repair
components to DSBs also results in cytologically visible foci, which can
be detected in the nucleus using live and fixed cell imaging [26,44,45].

These studies have revealed that HR repair is tightly regulated in space
and time (Fig.1): proteins required for resection are recruited to repair
sites inside the domain, while recruitment of strand invasion compo-
nents is temporarily halted [26,28,38]; next, the heterochromatin do-
main expands and repair sites move to the nuclear periphery, where HR
progresses [26,28,39]. Inactivating this pathway results in defective
heterochromatin repair and aberrant recombination among repeated
sequences, revealing its importance to genome integrity [26,28,36-40].
Relocalization likely promotes ‘safe’ repair by isolating DSBs and their
repair templates away from ectopic sequences before strand invasion
[27,31,33,46]. Notably, Drosophila homologous chromosomes are
paired in interphase [47], and accordingly both sister chromatids and
homologous chromosomes can provide repair templates in this system
[39,43]. Similar dynamic responses occur in mouse cells
[27,30,39,48,49], where heterochromatin is organized in several
‘chromocenters’ [50], suggesting conserved mechanisms for hetero-
chromatin repair [31,33]. Here we provide an overview of
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heterochromatin repair steps in Drosophila cells, conserved pathways in
mammalian cells, and interesting discoveries in plants. We will also
point out some of the most important unanswered questions in the field.

2.1. DSB detection and signaling

In response to ionizing radiation (IR), DSB detection and signaling
occurs promptly in heterochromatin [26,30,39,49]. In Drosophila, foci
of YH2Av (an early mark of DSB formation, corresponding to mam-
malian yH2AX [51]) and Mdcl/Mu2 (a signaling components that
binds to yH2Av [52]) form within seconds to minutes from IR
[26,40,52], and with kinetics surprisingly similar to those in eu-
chromatin [26]. Intriguingly, foci of proteins marking resected DNA
(e.g, ATRIP and TopBP1) form even faster and appear brighter in
heterochromatin than in euchromatin [26], suggesting that either re-
section or focus clustering (i.e., the non-elastic collision between repair
foci [27]) is more efficient in heterochromatin [26]. In mouse cells,
damage recognition and processing also occur inside the hetero-
chromatin domain, with the formation of yH2AX and RPA foci
[27,30,39,49]. By revealing high efficiency of early repair progression
in heterochromatin, these studies reversed the early assumption that
silencing or compaction of heterochromatin imposes a barrier to repair
initiation.

Notably, focus clustering might facilitate DSB signaling and repair
progression by increasing the local concentration of repair components
[27,53]. Studies in mouse cells suggest that clustering promotes re-
section, at least in euchromatin [53]. Focus clustering is also frequently
observed inside the heterochromatin domain [26], and might facilitate
early HR steps in this context. Resection is needed for relocalizing
heterochromatic DSBs in both Drosophila and mouse cells [26,30], and
having efficient resection might provide a signal for rapid relocalization
of heterochromatic DSBs, preventing accidental strand invasion of ec-
topic sequences. However, more studies are needed to understand the
efficiency of resection in heterochromatin, the mechanisms responsible
for focus clustering and resection in this domain, and the importance of
both in the spatial and temporal regulation of heterochromatin repair.

2.2. Heterochromatin expansion

Resection and checkpoint activation (particularly ATR [26]) are
required for global expansion of the heterochromatin domain in Dro-
sophila cells, which starts minutes after IR [26]. This corresponds to an
increase of up to 50% in domain size [26,40], and is followed by the
formation of dynamic protrusions from the domain during focus re-
localization [26]. Expansion might reflect global heterochromatin re-
laxation to facilitate damage processing or dynamics [26]. In agree-
ment, proteins required for expansion also mediate DSB signaling and
relocalization [26]. Heterochromatin relaxation also occurs in mam-
malian cells [30,48,54], where it has been linked to HP1f3 T51 phos-
phorylation by casein kinase 2 (CK2) [48]. Blocking this pathway af-
fects H2AX phosphorylation, revealing its importance in DSB signaling
[48]. In Arabidopsis, expansion following heterochromatic damage
generates ‘hollow’ chromocenters with repair sites in the center, still
isolating repair sites from the bulk of repeated sequences [55].

Of note, global heterochromatin expansion likely facilitates re-
localization, but is not sufficient for relocalization to proceed. In fact,
relocalization defects have even been observed in conditions when
expansion is normal (e.g., after Nse2/Qjt RNAIi in Drosophila cells) [38],
genetically separating heterochromatin expansion from relocalization.
Together, more studies are needed to understand the functions of global
expansion in heterochromatin repair, along with chromatin changes
promoting these responses in different organisms.

2.3. Block to Rad51 recruitment inside the heterochromatin domain

Recruitment of the strand invasion component Rad51 only occurs
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after relocalization of heterochromatic repair sites to the nuclear per-
iphery in Drosophila cells [26,28]. The initial block to HR progression is
dependent on Su(var)3-9 and HP1la [26], revealing the importance of
silencing in heterochromatin protection during repair. The block also
requires SUMOylation by three SUMO E3 ligases: dPIAS and the Smc5/
6 subunits Nse2/Qjt and Nse2/Cerv [26,28,38]. Smc5/6 recruitment to
heterochromatin relies on HP1la [26], revealing a role for Smc5/6 in
heterochromatin protection downstream from HPla. Removing these
components results in aberrant recombination in heterochromatin and
widespread chromosome rearrangements [26,28,38]. Rad51 is also
recruited after relocalization to outside the chromocenters in mouse
cells [30], but relocalization appears to end at the heterochromatin
domain periphery [30,39,49], which might provide a functionally iso-
lated environment similar to the nuclear periphery in Drosophila cells.
Additionally, losing Smc5/6 does not result in Rad51 foci inside mouse
chromocenters [30], suggesting alternative or redundant mechanisms
to block HR progression in this context. Together, these discoveries
revealed the importance of silencing and SUMOylation in blocking
Rad51 recruitment inside the heterochromatin domain to prevent
aberrant recombination between heterochromatic repeated sequences.
The targets of this regulation remain unknown.

2.4. Relocalization mechanisms

Smc5/6 and SUMOylation are also required for relocalizing het-
erochromatic DSBs to the nuclear periphery in Drosophila cells, and
recent studies revealed some of the components mediating these dy-
namics. Relocalization relies on a striking network of nuclear actin fi-
laments (F-actin) that start assembling at repair sites via Arp2/3 re-
cruitment [39]. Relocalization also requires MyolA, MyolB, and MyoV
nuclear myosins, and myosin's ability to 'walk' along the filaments [39].
Notably, Arp2/3 and myosins are recruited to DSBs independently from
Smc5/6 [39]. However, Smc5/6 interacts with these components
during repair [39], suggesting a regulatory role for this interaction.
Intriguingly, Arp2/3 and actin are known SUMOylation targets [56,57],
and it will be important to establish the role of Nse2- and dPIAS-de-
pendent SUMOylation in their activity during heterochromatin repair.
Smc5/6 is also required for the recruitment of the myosin activator
Unc45 to DSBs, suggesting Unc45 as a molecular switch that activates
myosins downstream from Smc5/6.

By interacting with both DSBs and myosins [39], Smc5/6 might also
provide a physical link between resected DNA and transport mechan-
isms, translating myosin-driven pulling forces into repair focus move-
ment. Recruitment of Arp2/3 and myosins to repair sites requires the
early DSB signaling and processing factor Mrell, and the hetero-
chromatin protein HPla [39], suggesting the combination of these
components as a mechanism for targeting the relocalization machinery
specifically to heterochromatic DSBs. Downstream from Mrell, other
repair/checkpoint components might mediate Arp2/3 and myosin re-
cruitment, and this still needs to be determined. Together, these data
support a model where nuclear F-actin assembles at heterochromatic
DSBs to guide their relocalization to the nuclear periphery via myosin-
driven ‘walk’ along actin filaments. Arp2/3, actin polymerization, and
myosins are also required to relocalize and repair heterochromatic DSBs
in mouse cells [39], suggesting conserved pathways.

2.5. Local chromatin changes

Heterochromatin is characterized by a unique chromatin environ-
ment, including high levels of H3K9me2/3, H3K56me3, H4K20me3,
and H3K64me3 [58-60], which likely influence repair responses in this
domain. How this environment contributes to repair and is affected by
DSB formation is just starting to emerge. Studies at I-Scel induced site-
specific DSBs using the repair cassette DR-white in flies, support the
model that H3K9me3 and H3K56me3 increase at heterochromatic DSBs
to promote HR repair [61]. The histone demethylase Kdm4A
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counteracts this response by increasing H3K9mel and H3K56mel, and
favoring NHEJ [61]. Kdm4A is also required for relocalization of het-
erochromatic DSBs in Drosophila cells [62], and this function might be
independent from its role in NHEJ, given that NHEJ inactivation does
not affect focus relocalization [26]. An interesting possibility is that
Kdm4A promotes relocalization by increasing local or global chromatin
mobility through a local reduction of silencing marks. In agreement
with this, imaging studies show low levels of HP1a at HR repair foci
[26], suggesting HP1 is removed, or heterochromatin is loosened, to
enable repair progression in Drosophila cells.

Additional studies in mammalian cells support this local chromatin
'loosening' model. Specifically, 53BP1-dependent recruitment of
KaplpS824 to repair sites promotes Chd3 release from chromatin,
chromatin relaxation, and heterochromatin repair downstream from
yH2AX [42,63-66]. Notably, blocking Kap1pS824 does not impair re-
localization of DSBs but it affects heterochromatin repair [25,30],
consistent with a later function of chromatin relaxation in DSB pro-
cessing. Kap1pS824 might also play a role in global heterochromatin
expansion, given that this modification has been linked to a large-scale
increase in chromatin accessibility [67]. Arabidopsis does not have
Kapl, but the ATM-dependent phosphorylation of the heterochromatin-
specific H2A variant H2A.W.7, has been proposed to facilitate chro-
matin accessibility during repair [68]. While the molecular details re-
main to be established for Kdm4A, Kap1pS824, and H2A variants in
repair pathway choice, repair progression, and dynamics, these studies
have begun unraveling heterochromatin-specific changes for DSB re-
pair. A general model is that heterochromatin loosening facilitates early
and late heterochromatin repair steps through the regulation of distinct
chromatin components.

2.6. Nuclear periphery anchoring and repair progression

In Drosophila cells, DSBs move to nuclear pores or inner nuclear
membrane proteins (INMPs) of the SUN family Koi and Spag4, where
Rad51 is recruited and repair continues [28]. Interaction with the pore
is mediated by the ‘Y complex’ subunit Nup107 [28]. In the absence of
these anchoring structures, damaged sites continue exploring the nu-
cleoplasm, eventually returning to the heterochromatin domain [28].
This results in defective heterochromatin repair and gross chromosomal
rearrangements [28], revealing the importance of DSB anchoring for
‘safe’ HR progression. Anchoring also appears to be mediated by the
SUMO-targeted ubiquitin ligase (STUbL) Dgrn and its partner dRad60
of the RENi (Rad60-Esc2-Nip45) family protein [28], which are en-
riched at nuclear pores and INMPs [28]. Dgrn and dRad60 also physi-
cally interact with Smc5/6 in response to damage, suggesting that the
three components establish a docking complex for repair sites at the
nuclear periphery [28].

What restarts repair at the nuclear periphery remains unclear, but a
likely possibility is that STUbL proteins ubiquitinate SUMOylated tar-
gets for proteasome-mediated degradation [66,69-73] or protein acti-
vation [74], removing the SUMOylated block to HR progression. This
model predicts that the compartmentalization of SUMOylation activ-
ities inside the heterochromatin domain and ubiquitination activities at
the nuclear periphery are needed for spatial and temporal regulation of
repair.

STUbL (and not RENI) is enriched at heterochromatic DSBs even
before relocalization [38] suggesting additional, still unidentified,
functions of STUDL in early steps of heterochromatin repair. Consistent
with this idea, artificial tethering of the STUbL subunit SIx5 to repair
sites in budding yeast is sufficient to target a persistent or unrepairable
DSB to the nuclear periphery [75], while recruitment of the STUbL
RNF4 to repair sites promotes early DSB signaling in human cells [70].

Of note, RNAi depletion of Arp2/3, myosins, Unc45, STUbL/RENi
proteins, nuclear pores, or INMPs, affects relocalization of heterochro-
matic DSBs without altering the block to HR progression inside the
heterochromatin domain, as Rad51 foci do not form inside the domain
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in these conditions [28,39]. Conversely, losing Smc5/6 or SUMOylation
results in Rad51 foci inside the heterochromatin domain [26,28,38],
revealing a separation of function between the pathway that blocks HR
progression and the mechanism of relocalization. SUMOylation is re-
quired for both, but motor or nuclear periphery components only
mediate relocalization or anchoring to the nuclear periphery
[26,28,38].

These studies also highlighted several distinct functions of silencing
histone marks and associated proteins in heterochromatin repair. In
Drosophila cells, HP1a is required to: i) prevent abnormal Rad51 re-
cruitment inside the domain via Smc5/6 and SUMOylation [26,28,38];
ii) promote relocalization of DSBs to the nuclear periphery via Arp2/3
and myosin recruitment [39], Smc5/6- and SUMO-dependent Unc45
loading [39], and Kdm4A recruitment [62]; and iii) facilitate nuclear
periphery anchoring via Smc5/6-associated STUbL-RENI proteins [28].
Additionally, Su(var)3-9-dependent histone methylation facilitates HR
repair while Kdm4A-dependent demethylation promotes NHEJ [61]. In
mammalian cells, HP1f or Kapl post-translational modification ap-
pears to facilitate heterochromatin loosening, repair, and dynamics
[25,48,63]. These studies establish a new paradigm where hetero-
chromatin components promote several steps of heterochromatin re-
pair, rather than interfering with it.

3. Alternative repair pathways in heterochromatin

Studies in Drosophila and mammalian cells reveal that, despite the
risks of aberrant recombination, heterochromatin is preferentially re-
paired by HR when both HR and NHEJ are available (i.e., in S and G2
phases of the cell cycle [26,30,41,42]). However, Drosophila tissues
enriched for G1 cells, and mammalian cells in G1/GO, also largely use
NHEJ in heterochromatin [30,41,43,61]. Surprisingly, single-strand
annealing (SSA) that is potentially engaged in repeated sequences [76]
does not significantly contribute to heterochromatin repair, at least
when repair outcomes are characterized with a DR-white repair cassette
in flies [43]. Further, NHEJ repair occurs inside the heterochromatin
domain in mouse cells [30], suggesting that NHEJ progression does not
require relocalization. However, heterochromatic DSBs are frequently
detected outside heterochromatin domains in Drosophila tissues, albeit
NHEJ prevails in this context [43], suggesting relocalization can occur
during NHEJ, at least in flies. Determining how different heterochro-
matic DSBs are directed toward distinct repair pathways, and re-
localization mechanisms linked to them, remain important open ques-
tions in the field.

4. Nuclear F-actin functions and regulation for heterochromatin
repair

Actin filaments (F-actin) are major components of the cytoskeleton
responsible for cell movement and adhesion, or transport of RNAs and
vesicles via myosin motors [77-79]. In the nuclei, F-actin functions
have long remained elusive because the more abundant cytoplasmic
signal interferes with detection of nuclear filaments using traditional
staining approaches [80,81]. With recent advances, including the de-
velopment of nuclear F-actin-specific fluorescent probes [39,80,82-84]
(Fig. 2A,B) and techniques to specifically and selectively inactivate
nuclear actin polymerization [39,82-85], several nuclear F-actin func-
tions have started to emerge in different cell types. These studies sug-
gest a model where nuclear F-actin is mostly stimulus-driven, is highly
dynamic, and mediates chromatin responses to different stresses
[46,86]. Functions of nuclear F-actin have been linked to transcription
regulation [82,84,85,87,88], mitotic exit [85], centromere main-
tenance [89], replication origin activation [90], replication fork rescue
[91], virus mobilization [92-94], T-cell activation [88] and DSB repair
[39,53,83,95,96,147] (reviewed in [46,86]).

During Drosophila heterochromatin repair, nuclear F-actin starts
polymerizing at repair sites, with most filaments elongating from the
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Fig. 2. Damage-induced nuclear actin filaments generate directed motions for relocalization of heterochromatic DSBs. A-B) Examples of damage-induced
nuclear F-actin in indicated cell types and damage treatments (adapted from [39,53,83]). The nuclear F-actin probe chromobody (F-ActCB-GFP-NLS) or utrophin
(Utr230-EGFP-NLS) was used as indicated, in either live U20S [53] and Kc cells [39], or in fixed HeLa cells [83]. In A) times are min after exposure to 5 Gy X-rays. 0/
is before IR. In B) treatments were: 50 pg/ml for 2h or 500 ng/ml for 1 h neocarizinostatin (NCS), 50 J/m? UV, or 0.01% methyl methanosulfonate (MMS) for 2 h. C)
MSD curves for different types of motion (adapted from [97]). D) Example of a 3D reconstruction and tracking with Imaris of a Drosophila cell and heterochromatic
(HC) or euchromatic (EU) repair foci, shows track intervals characterized by diffusive or directed motion for heterochromatic repair foci that reach the nuclear
periphery (adapted from [97]). E) Time points characterized by directed and sub-diffusive motions were detected with an automated method [97], and confirmed by
MSD calculations within those time intervals (adapted form [39]). F) Whiskers plot show the quantification of the speed of focus movement before, during, and after
LDMs [39], as indicated (average values are shown in red). The average speed for each tract length was calculated using Imaris. Images reproduced with permissions

from Springer Nature. Scale bar =1 pm.

heterochromatin domain periphery to the nuclear periphery as bran-
ched structures [39,148] (Fig. 2A). Repair sites ‘slide’ along the fila-
ments with directed motions [39,97], consistent with a role of filaments
as ‘highways’ for relocalization. Class I and V myosins (including
MyolA, Myo1B, and MyoV) typically move toward the (+) or ‘barbed’
end of an actin filament [98,99], corresponding with the nuclear per-
iphery side [39]. While different myosins are involved and whether
more than one myosin operates at each repair site remains do be de-
termined.

Actin polymerization and relocalization of heterochromatic repair
sites specifically require the actin nucleator Arp2/3, while the nuclea-
tors Spire and the formin Dia do not contribute to these dynamics [39].
Additionally, relocalization requires the Arp2/3 activators Scar and
Wash, and not Wasp or Whamy [39]. The use of specific nucleators
might reflect the ability of the DNA repair machinery to recruit certain
components and not others, and relate to the need for filaments with a
specific structure. However, more studies are needed to establish the
fine structure of these filaments, the significance of ‘branches' asso-
ciated with them, and the regulatory mechanisms coordinating actin
polymerization with DSB relocalization and repair. Why polymerization
mostly occurs outside the heterochromatin domain is also unknown,
particularly given that Arp2/3 is already present at heterochromatic
repair sites before relocalization [39,148].

Damage-induced actin filaments are also highly dynamic.
Heterochromatin-associated structures in Drosophila frequently elon-
gate and shrink, and disassemble after relocalization of repair sites [39]
(Fig. 2A). It is still unclear what signals and actin remodelers regulate
these dynamics, and what are their roles in repair progression, but fi-
lament dynamics might enable ‘probing’ the crowded nuclear space for
an efficient relocalization path.

Additionally, release of monomeric actin during filament dis-
assembly might affect repair progression through the contribution of G-
actin in chromatin remodeling. Several chromatin modifiers con-
tributing to DSB repair contain monomeric actin (G-actin) (i.e., HDAC1/
2, Tip60, INO80, SWR1, SWI/SNF and RSC; reviewed in [100]), which
is critical for their assembly, integrity and function [100]. While the
roles of these chromatin modifiers in heterochromatin repair remains to
be established, it is possible that G-actin release during depolymeriza-
tion contributes to assembling and engaging these components during
repair.

In addition to relocalizing heterochromatic DSBs in Drosophila cells,
nuclear F-actin has been proposed to drive local dynamics for focus
clustering in human cells, promoting HR repair in euchromatin [53]
(reviewed in [46]). Arp2/3 is enriched at DSBs and required for repair
focus movement [53], and in this context actin assembles short and
highly dynamic structures (Fig. 2B) tracking with HR sites [53]. Arp2/3
also mediates clustering of euchromatic foci in Drosophila cells [39],
suggesting conserved pathways. Actin structures might promote clus-
tering by generating propelling forces to move repair sites [53], al-
though more studies are required to understand how F-actin works in
this context.

Notably, the dynamic movement of human repair sites requires
Wasp [53], revealing a distinct mechanism for Arp2/3 activation than
that operating in Drosophila heterochromatin. Additionally, the myosin
activator Unc45 is not required for focus clustering in Drosophila

euchromatin [39], revealing that the mechanisms responsible for re-
localization of heterochromatic DSBs and for clustering of euchromatic
breaks are genetically distinct.

Formins and Spire proteins have also been identified as actin nu-
cleators in response to different DNA damaging agents [83] (Fig. 2B),
and for focus clustering in G1 [101], suggesting that the distinct nu-
cleators might contribute to damage-induced F-actin assembly in dif-
ferent contexts of repair, cell cycle phase, chromatin, or cell type (re-
viewed in [46]).

Together, these studies identified two separate functions of nuclear
F-actin in DSB repair. In heterochromatin, F-actin and myosins enable
the relocalization of heterochromatic DSBs after resection and Smc5/6
recruitment, to prevent aberrant recombination between repeated se-
quences and enable 'safe' HR repair at the nuclear periphery. In eu-
chromatin, actin polymerization promotes DSB movement, clustering
and resection in a myosin-independent fashion. The structure of F-actin
in different contexts might reflect the different functions. For example,
short actin polymers might be sufficient for local dynamics mediating
clustering; while long filaments might be needed for the myosin-de-
pendent, longer-range, directional motions of heterochromatic DSBs.
More studies are required to characterize these structures and nucle-
ating mechanisms in different cell types, cell cycle phases, chromatin,
and repair contexts.

5. Directed motion of repair sites

One of the most important discoveries so far from heterochromatin
repair studies is that focus movement is characterized by directed
motion [39,97], similar to F-actin and myosin-driven movements in the
cytoplasm [102]. A traditional approach to distinguishing Brownian
versus directed motion is the mean-square displacement (MSD) analysis
of the positional data for repair sites [97,103]. When MSD values are
plotted at increasing time intervals, graphs with a progressively in-
creasing slope describe directed motion, while graphs showing a linear
dependence indicate Brownian motion [97,103] (Fig. 2C). Chromatin is
also subject to constraints due to its polymeric nature, compaction,
molecular crowding, and anchoring to nuclear structures, resulting in
subdiffusive rather than Brownian motion, and flattened MSD curves
[97,103,104]. In addition, when subdiffusive motions occur in a con-
fined space (e.g, the nucleus or a phase-separated domain), MSD graphs
reach a plateau proportional to the confinement radius [97,103].

However, when directed motions alternate with diffusive motions
(mixed trajectories [97]), and initiate asynchronously in the population
of foci, they cannot be detected with a simple MSD analysis [46,97,39].
New analytical methods have been developed to uncover tracts of di-
rected motions in the context of mixed types of motion [97]. These
analyses revealed that each heterochromatic repair site leaving the
heterochromatin domain undergoes long-lasting directed motions
(LDMs) (Fig. 2D,E), and those typically last about 24 min, consistent
with the average duration of nuclear actin filaments [39]. Remarkably,
directed motions of heterochromatic repair sites mostly occur between
the heterochromatin domain periphery and the nuclear periphery [39],
i.e., where most nuclear actin filaments are organized [39,148]. Inside
the heterochromatin domain and until foci reach the periphery of the
domain, the movement is largely subdiffusive confined [39] (Fig. 2D,E),
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likely because heterochromatin compaction [105] and phase separation
[13,14] limit dynamics. Similarly, after relocalization, focus movement
is highly confined by nuclear periphery anchoring [28,39]. Notably, the
average speed of focus motion does not increase during directed mo-
tions (Fig. 2F), suggesting that the myosin-driven movement along actin
filaments does not enhance focus speed. Rather, it might provide di-
rectionality and counteract other forces that limit the release of repair
foci from the heterochromatin domain (e.g., chromatin compaction and
phase separation).

Application of similar analytical methods [91,106] revealed di-
rected motions associated with subtelomeric DSBs repaired by the HR
sub-pathway break-induced replication (BIR) in S. cerevisiae [106], and
with damaged replication forks in human cells [91] (reviewed in [46]).
Additionally, these methods unmasked directed motions for persistent
DSBs that move to the nuclear periphery in budding yeast
[69,107-110], reverting the initial conclusion that those are char-
acterized by Brownian/diffusive motion [111]. Directed motions have
also been detected during homology search for HR repair of telomeres
in ALT cells [112]. These studies point to the importance of applying
dedicated tools to identifying directed motions, and suggest that nu-
clear structures and motors might contribute to repositioning repair
sites in more contexts than initially thought, including where diffusive
motions appear to prevail: DSBs in rDNA [113-116,147], damaged
telomeric and subtelomeric sequences [112,117-119], damaged re-
plication forks in yeast [69,120], homology search in different contexts
[121,122], chromosome territory repositioning [123,124], and focus
clustering [26,27,39,53,101,125-130] (reviewed in [31,33]).

Additionally, while studies in Drosophila and mammalian cells
identified nuclear F-actin and myosins responsible for directed motions
[39,91], relocalization of subtelomeric sites for BIR repair in yeast has
been linked to nuclear microtubules and the kinesin Kar3 [106], sug-
gesting that nuclear architecture and motor components contributing to
repair dynamics might be distinct across different cell types and repair
pathways. Also in this context, loss of Kar3 does not affect the average
speed of motion [106], suggesting a role for filaments and motors in
providing a directionality to the repair site rather than affecting speed.
More studies are needed to identify repair contexts relying on directed
movements and the structural/motor components mediating these dy-
namics.

6. HR regulation in phase separated environments

A critical element for successful heterochromatin repair is the
ability to separate repair steps in space and time, thus enabling repair
progression only at the nuclear periphery. Compartmentalization of
repair activities in the nucleus is a likely mechanism to explain this
spatial and temporal regulation. For example, the enrichment of HP1a
and SUMOylating proteins inside the heterochromatin domain [26,28],
and anchoring of SUMO-binding/processing proteins and proteasomes
to nuclear pores [28,69,131-133], explain at least some aspects of this
regulation. However, how this compartmentalization is achieved is only
partially understood, and the recent characterization of the hetero-
chromatin domain as a phase-separated environment provides further
insights to understanding this regulation.

Studies in Drosophila and mammalian cells revealed that HP1 mo-
lecules establish a phase transition compartment through a liquid-like
HP1 population that surrounds the chromatin-bound fraction [13,14].
This function is in addition to the ability of HP1 to generate a compact
chromatin state through HP1-HP1 interactions of chromatin-bound HP1
molecules [13,14]. Unlike chromatin compaction, phase separation
provides a mechanism for selective accessibility of the heterochromatin
domain (reviewed in [24]). In the context of DNA repair, a phase-se-
parated environment might selectively retain or exclude repair proteins
to influence repair pathway choice and repair progression (Fig. 3). For
example, efficient damage processing might rely on high retention of
resection components inside the heterochromatin domain, or exclusion

DNA Repair xxx (XxxX) XXXX

of NHEJ proteins from the domain. Accordingly, the early NHEJ com-
ponent Ku80-GFP is mostly excluded from the HP1a domain in Droso-
phila cells [26], where repair largely occurs by HR [26,28,38]. Ad-
ditionally, the heterochromatin domain might retain Smc5/6 and other
early repair proteins (e.g., dPIAS, Arp2/3, myosins) [26,28,39], while
excluding later repair components (e.g, Rad51, Rad54) [26,38]. In
agreement, HP1a loss affects both phase separation and Rad51 exclu-
sion from the domain. Additionally, local HPla loss at repair sites
during a normal repair cycle [26] might enable Rad51 recruitment and
repair progression at the nuclear periphery.

A phase separated environment would also facilitate focus clus-
tering inside the heterochromatin domain, promoting early damage
processing. Consistent with this idea, repair focus clustering in het-
erochromatin does not depend on Arp2/3 [39], and relocalization of
repair sites to outside the domain is frequently concurrent with the
splitting of these clusters into smaller foci [26]. Further, exclusion of
Arp2/3 activators (i.e., Scar and Wash) might promote filament for-
mation only after repair sites have reached the heterochromatin domain
periphery, explaining why filaments mostly form outside the hetero-
chromatin domain.

Phase separation also enables fast regulated changes in the bio-
physical properties of the domain, which could in turn facilitate repair
progression. For example, chromatin modifiers or phosphorylation of
heterochromatin components might change the biophysical properties
of the heterochromatin domain to promote expansion and facilitate
dynamic movements in response to DNA damage.

Intriguingly, other nuclear compartments required for hetero-
chromatin repair are phase separated, including repair foci and nuclear
pores. At repair sites, the early recruitment of poly(ADP-Ribose) poly-
merase 1 (PARP1) promotes poly-ADP-ribosylation, which results in
recruitment of intrinsically disordered proteins (IDPs) and phase se-
paration by liquid demixing [15]. While we do not know how these
responses operate in heterochromatin, similar biophysical changes
might promote the initial exclusion of repair foci from the hetero-
chromatin domain, and their accumulation at the heterochromatin
domain periphery where they interact with actin filaments. In agree-
ment with this idea, the initial phase of focus relocalization in Droso-
phila cells is rarely concurrent with directed motions (Fig. 2D,E and
[39]) or visible nuclear actin filaments [39,148], suggesting that in-
dependent separating forces contribute to these dynamics.

At nuclear pores, intrinsically disordered phenylalanine-glycine-rich
nucleoporins (FG-Nups) generate a phase separated domain that forms
a selective permeability barrier [16]. Recent studies further propose
that FG-porins organize distinct territories within the pore, maintained
by different types of FG motifs [134]. It is tempting to speculate that
repair restart at the nuclear pores is influenced by this local environ-
ment, which might retain high concentration of components for strand
invasion and HR progression.

Finally, F-actin and myosin-driven forces might be particularly cri-
tical to enabling the formation of protrusions of heterochromatin from
the domain and relocalization of repair foci, counteracting surface
tension of the phase separated HP1la domain. Thus, phase separation
likely influences several aspects of DSB repair in heterochromatin, and
understanding how pre-existing biophysical properties and damage-
induced changes in these domains contribute to the spatial and tem-
poral regulation of HR repair is an exciting challenge for future studies.

7. Conclusions and perspectives

Several studies in the past few years have shed light on a number of
components that regulate heterochromatin repair in space and time to
prevent aberrant recombination and enable 'safe' repair. Repair starts
inside the heterochromatin domain, and continues outside with Rad51
recruitment. Nuclear F-actin and myosins generate pulling forces for
relocalization, revealing a tight coordination between nuclear archi-
tecture, nuclear dynamics, and repair progression. These studies have
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Fig. 3. Model for how phase separation
might contribute to heterochromatin repair
through selective protein accessibility.
Liquid-liquid phase separation (LLPS) of het-
erochromatin, repair sites, and nuclear pores,
might contribute to regulating hetero-
chromatin repair in space and time. The het-
erochromatin domain might be permeable to
resection and checkpoint components, while
excluding NHEJ proteins (Ku80). The strand
invasion component Rad51, and Arp2/3 acti-
vators (Scar, Wash), might also be excluded
thus enabling resection and Arp2/3 recruit-
ment inside the heterochromatin domain, but
filament formation only at the hetero-
chromatin domain periphery. Heterochromatin
expansion might reflect global changes in the
biophysical properties of the domain facil-
itating relocalization. The nuclear pore might
provide a favorable environment for ubiquiti-
nation of SUMOylated components and for
Rad51 recruitment. Finally, phase separation
of heterochromatic repair sites might facilitate
their diffusion from the core of the hetero-

Nuclear pore

raised many new and exciting questions. How F-actin and myosins are
regulated for heterochromatin repair is largely unclear. Targets of
SUMOylation and checkpoint kinases in this context remain un-
characterized. How F-actin is disassembled during focus relocalization
and the significance of this to repair is also unknown. The mechanisms
restarting HR at the nuclear periphery and the role of ubiquitination in
this step remain to be defined. The function of local and global chro-
matin changes in heterochromatin repair still needs to be understood,
and the epigenetic targets of this regulation have just started to emerge.
Importantly, understanding how the biophysical properties of hetero-
chromatin as a phase separated environment contribute to different
repair steps is an exciting direction for further investigation.
Additionally, chromatin movement across nuclear domains is not un-
common and an important challenge is to establish the relevance of
transient nuclear filaments and motors in nuclear dynamics for different
functions, including transcription, chromosome territory repositioning,
and DNA replication. Heterochromatin silencing [135,136], HR repair
[137-140], nuclear periphery [141], and actin/myosin components
[142] deteriorate with age, suggesting these declines as a contributor to
repair defects and genome instability observed in older organisms
[143-146] (reviewed in [33,46]). Thus, understanding hetero-
chromatin repair mechanisms is expected to open new opportunities for
addressing human disease, and the tools are now in place for exciting
new discoveries in the upcoming years.
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