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Abstract

Actor Networks are a modelling framework for cyber-physical-system protocols based on Latour’s actor-network theory

that addresses the way we now create and exploit the power of networks whose components are no longer limited to

programs, but can also include humans and physical artefacts as actors. The main contribution of this paper is a logic

for modelling and reasoning about such actor networks that results from a two-stage constrained-hybridisation process:

the first stage corresponds to a logic that captures the structure of actor networks and the way knowledge or data flows

across them; the second addresses their dynamic aspects, i.e., the way actor networks can evolve as a result of the

interactions that occur within them. For each of these stages, we develop a sound and complete proof system, and we

illustrate how the framework can be used for modelling and analysing properties of cyber-physical-system protocols.

This two-stage constrained-hybridisation process advances the theoretical and practical aspects of hybrid logics by

providing new insights and results that go beyond the specific domain of actor networks. On the other hand, and in line

with Milner’s bigraph paradigm, the paper also makes a novel contribution to the development of formal methods for

systems where connectivity and locality play a fundamental role.
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1. Introduction

Hybrid Logics. Over the past few years, there has been a renewed interest in modal logics for computer science

through the new family of ‘hybrid logics’ (see [1] for a comprehensive overview), which originated in Arthur Prior’s

work in the 1960s [2]. In their most basic form, these are logics obtained by enriching ordinary modal logics with

nominals – symbols that name individual states (possible worlds) in Kripke models – and a dedicated satisfaction

operator @, sometimes denoted by a colon, which enables a change of perspective from the current state to one that

is named. A significant body of research exists around the model and proof theories of this class of logics, among

which [3, 4, 5, 6, 7] are just a few examples of recent developments that are related to the present study.

One of the applications of hybrid logics that relates to aspects of complex network structures that are of interest

to us concerns the specification and verification of reconfigurable systems [8]. In a nutshell, the idea is that system

configurations (and the functionalities associated with them) can be regarded as local models of a Kripke structure, and

that they can change simply by switching from one mode of operation to another via an accessibility relation. The key

advancement here lies in the fact that the characteristic features of the basic hybrid logic can be developed, through a

process known as hybridisation [9], on top of an arbitrary logical system used for expressing configuration-specific

requirements. This means that, depending on the base logic, configurations can be captured, for example, as algebras,

as relational structures or, when the hybridisation process is iterated, even as Kripke models.
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Actor Networks. Our interest in this process of hybridisation results from a new modelling framework for cyber-

physical-system protocols proposed in [10] around the concept of Actor Network (which we usually abbreviate as ANANt).

ANNts address networks whose components are no longer limited to programs but can also include humans and physical

artefacts as actors. Examples include the authentication protocols used nowadays in online banking, which involve

bank customers, smart cards, smart-card readers and mobile phones.

ANNts should be understood in the wider sense of Latour’s actor-network theory [11]: actors are cyber-physical

entities that have shared agency – from people, to objects, and to locations; they interact through so-called channels,

which account, for example, for data or knowledge that an actor may transmit to another, of control that an actor may

exert on another, or of movement of an actor inside another (e.g., a person moving into a location).

Connectivity & Locality. ANNts respond to the way we can now create and exploit the power of computational networks.

In just under three decades, these have evolved from small ad-hoc networks of computers, primarily developed for

distributed calculations, to large-scale cyber-physical networks where interaction, rather than computation, has become

the norm, giving rise to new challenges in ensuring the reliability of the systems that are now operating in cyberspace.

One notable example of mathematical formalism that has been proposed for this new class of systems is Milner’s

bigraphs [12], which have at their core the need to model and analyse systems in terms of two key orthogonal notions:

connectivity (actors can be connected to other actors, and these connections can change in time) and locality (actors

have a location and can move in space). The underlying semantic model of actor networks (explained in Section 2.4)

makes this same distinction: it is a particularisation of bigraphs that is suitable for the kinds of closed protocols that

arise in many classes of cyber-physical systems, including those mentioned above. As discussed in the concluding

remarks, we are now working on extending our logics to open protocols as enabled by bigraphs, i.e., to systems in

which locality and connectivity are not bound at design time.

Scope of research. The ANANt-based approach that we consider in this paper enables us to address some of the key aspects

of cyber-physical systems, but not all. For example, concerns such as continuity or failure, which are relevant for some

cyber-physical-system protocols, are not addressed by this theory. In fact, cyber-physical systems have become so

prevalent, and have so many distinct aspects that can be interpreted and studied in fundamentally different ways, that

different approaches or interpretations are being put forward, each of which is suitable for a particular set of aspects

(see, for example, [13]). For actor-network theory, those defining aspects are the dynamic evolution of the potential

interactions between actors and the way location and connectivity interact with each other.

ANNts are discrete-dynamical models in the sense that they account for discrete changes (in connectivity or locality)

in cyber-physical networks, and that the physical space is represented at an abstract level. This provides support for

dealing with the movement of actors (under a discrete interpretation) by means of network reconfigurations. For other

certain kinds of properties of cyber-physical systems, one might need to account instead for their continuous evolution

in a continuous space (e.g., in the context of collision avoidance for the etcs, the European Train Control System); in a

similar way, reasoning about properties such as reliability may require support for other features, like uncertainty.

In the literature, one can find a variety of mathematical formalisms and modelling frameworks for cyber-physical

systems, many of which consider hybrid-dynamical1 models (e.g., [14, 15, 16]). Among those, [17] and [18] are

particularly relevant for the developments that we present herein. The former extends differential dynamic logic with

hybrid features that are meant to allow for the explicit representation of the states of cyber-physical systems. Hence, the

base logic is different from the one we consider here, and the hybrid features added are one-kinded: they can account

for the states of such systems, but not for actors as well. The latter deals with a hierarchical hybrid logic (in the context

of reconfigurable systems) that does provide support for both actors and system states; however, it does not consider

constrained models, and thus it cannot faithfully capture ANANts. Moreover, reasoning is done through a translation into

first-order logic, whereas we develop a dedicated hybrid-logic proof system.

Contributions. The ordinary hybridisation process outlined above yields logical systems that are suitable for dealing

with the structural aspects of actor networks. For example, they can be used for giving faithful descriptions of the

shapes of networks, of the (states of the) actors involved, or of the channels through which interactions can take place.

However, in contrast to the general adequacy of hybrid logics to cope with reconfigurations, the challenge raised

1The word hydrid refers in this case to a combination of discrete & continuous modelling techniques for state change, not to hybrid logic.
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by ANANts lies precisely in capturing the way networks evolve: the way in which actors move in the space of possible

locations and the way their connections change in time. This is because the higher-level reconfigurations of networks

and the lower-level interactions between actors are closely intertwined: reconfigurations (in connectivity or locality)

are triggered by interactions, and they may result in network states/configurations where there are new opportunities for

interaction between actors. Therefore, we propose a new hybridisation step that takes as input a hybrid logic, used for

specifying states, and produces another logic with hybrid features for specifying network reconfigurations.

The paper also makes a novel contribution to the development of formal methods for bigraph-like semantic domains.

Whereas logics have been developed for bigraphs (e.g., [19], [20]), they are process calculi akin to CSPCSP, CCSCCS, the

π-calculus or the ambient calculus, i.e., they are operational characterisations based on terms (representing, say, network

configurations) and rules through which such terms can be rewritten (thus accounting for network reconfigurations).

Instead, our use of logic is akin to, say, that of temporal logics for modelling and analysing system behaviour in the

tradition initiated by Pnueli [21]: the interest is in logics whose sentences express, declaratively, properties of a system,

and on inference rules that can be used to infer properties from a system specification. To the best of our knowledge,

such a declarative approach has not yet been explored for bigraph-like semantic domains. Our conclusion is that

the two-stage constrained-hybridisation process that we propose is particularly well-suited for dealing with both the

structural and the dynamic aspects of semantic domains that capture connectivity and locality.

Structure of the paper. The paper consists of three main technical sections. In Section 2, we introduce the underlying

model theory of actor networks. We start by formalising the main static concepts: actors, the channels through which

actors can interact, the knowledge that actors may have and the way it may be acquired across certain channels, and the

placement of actors relative to other actors. Then, we formalize the key notion of interaction and the way an interaction

can become enabled, and hence can later change the states of a network.

Section 3 is dedicated to the two-stage constrained hybridisation process, which results in three different logics: the

basic logic (first level) characterizes the knowledge/data structures of actors; the second level characterizes connectivity

(how actors are connected) and locality (where actors are placed) in a given state; and the third level characterizes

the dynamics that result from interactions (how actors change location or their connections), i.e., how interactions

reconfigure states. Each level captures a different aspect of actor networks (knowledge representation, structure, or

dynamics), and each is defined as an exogenous enrichment (in the sense of [22]) of the previous level. This means that,

for each step of the hybridisation process, we work with higher-level models consisting of (collections of) lower-level

models – which may not be arbitrary, but subject to various semantic constraints whose role is to ensure that the

higher-level models are well defined – together with an additional structure that is specific to the hybridisation.

In Section 4, we show how, at each level, those logics can be used to specify properties of protocols and to derive

properties of specifications using inference rules. Throughout the paper, we use an elevator as a case study; this

is simple enough in order to discuss and provide a model in a few pages, and yet sufficiently rich to illustrate the

capabilities of the ANANts modelling framework and of the logics that we put forward to support it.

This paper is a revised and extended version of [23]. Section 4 is new and the other sections were expanded with

more motivation and explanations. The proof systems in Section 3 were also revised, and proofs of main results were

added.

On notations. Most of the structures we deal with in this paper are presented as tuples – whose components, in turn,

may also be tuple-based structures – that satisfy certain cohesion properties. To keep the notations as simple as possible,

and to avoid persistently spelling out all the components of a given structure, we make use of subscripts. For example,

we may denote the set N of nodes of a graph G by NG, the underlying graph G of an ANANt schemaA by GA, and the

domainD of an actor network ν byDν. When there is no risk of confusion, we overload this notation in order to refer

to the hereditary components of a structure. That is, we may denote, for example, the set N of nodes of the underlying

graph of an ANANt schemaA by NA – even if N is not a direct component ofA, but of its underlying graph.

2. Actor Networks

Actor Networks (ANANts) were originally proposed as a framework for modelling cyber-physical-system protocols

in [10]. They are based on Latour’s actor-network theory [11] in recognition of the fact that such protocols involve

a number of entities (called actors, which in concrete situations may correspond to people, devices, locations, etc.)

3



that have shared agency, and for which interaction, rather than computation, is the major concern. In this section, we

provide a model theory for ANANts, i.e., a number of mathematical structures for capturing the abstractions through which

one can model cyber-physical-system protocols from the vantage point of connectivity and locality.

2.1. Schemas

We start by defining the structures that capture the static aspects of ANANts: the actors that are involved in an ANANt and

the means through which they can exchange knowledge of the domain over which they operate, independently of the

way in which they actually operate.

Definition 1 (Schema). An ANANt schemaA consists of:

• A finite directed graph G = 〈N ,C, δ, ρ〉, where: (a) N is a non-empty set (of nodes, called actors), (b) C is a set

(of edges, called channels), and (c) δ and ρ are maps C → N that give the domain (also referred to as the origin)

and the codomain (also referred to as the target) of every channel.

• A partially ordered set T (of channel types), with a subtype relationship that we denote by ≤.

• A function τ : C → 2T that assigns a non-empty upper set2 of channel types to every channel, such that for all

actors n, n′ ∈ N and types κ ∈ T there is at most one channel c ∈ C such that δ(c) = n, ρ(c) = n′, and κ ∈ τ(c).

This means that every channel c ∈ C can be identified by the triple 〈δ(c), τ(c), ρ(c)〉.

• A set P (of propositional symbols), disjoint from N .

The nodes of an ANANt schema represent actors executing a given protocol and the edges represent the channels through

which those actors can be connected. Channels are typed in order to account for different modes of relationships

between actors. For example, channels can account for observations that an actor may make of another, control that

one actor may exert on another, or movement of one actor inside another, say a person moving to a certain location. The

fact that a channel accounts for an observation, control, movement or any combination of these is captured by the types

associated with it. Channels are oriented to indicate the direction in which information, control, or movement flows.

The propositional symbols are used to represent knowledge that is held by the different actors, including data.

Pieces of data (or knowledge) have by themselves no agency in the context of the protocol, otherwise they would be

actors; for example, in a given protocol, money could be data but, in another protocol, bank notes could be actors, in the

sense that they can change hands, be lost, and so on. Knowledge/data can be transmitted across channels as appropriate.

Example 2. Consider an elevator serving a building with two floors.3 The static aspects of a protocol involving the

elevator and a user are captured by the ANANt schema Elevator = 〈GElevator,TElevator, τElevator,PElevator〉 defined as follows:

GElevator — The underlying graph of Elevator is depicted on the left-hand side of Figure 1. In particular, its set of

nodes is NElevator = {F0,F1,E,C,P0,P1,A} where:

• the nodes F0 and F1 correspond to the ground and first floor of a building, and E to the elevator proper

(including the shaft and the control system), which we often refer to as Elevator unless it is ambiguous;

• the node C corresponds to the elevator’s cabin, which we often refer to as Cabin, and P0 and P1 correspond

to the two platforms where the cabin can be – P0 for the ground floor, and P1 for the first floor;

• the node A represents a user of the elevator, which we often refer to as Alice.

TElevator and τElevator — The type hierarchy of Elevator is depicted on the right-hand side of Figure 1; its set of channel

types is TElevator = {mov, door, obs, ctr, btn}, where btn is a subtype of ctr, and door is a subtype of mov.

The set CElevator of edges of GElevator and the typing function τElevator are depicted on the left-hand side. In order

to avoid cluttering the graphic representation, we adopt the following conventions: on the one hand, we only

2We recall that an upper set of T is a subset U of T that contains all channel types κ′ ∈ T for which there exists κ ∈ U such that κ ≤ κ′.
3As one would expect, the techniques we present in this paper can be used for any (fixed) number of floors. To keep the running example simple,

and to avoid unnecessarily large models and long proofs in the following sections, we restrict the number of floors of the elevator system to two.
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Figure 1: The graph and typing function of the ANANt schema Elevator on the left, and the Hasse diagram4of its channel type hierarchy on the right

represent the minimal elements of the upper sets that label edges, and we omit brackets when there is only one

minimal element; on the other hand, we only represent one (directed) edge between any two nodes, and we label

it with the upper sets that type the edges that exist between those nodes.

For example, the btn-labelled edge connecting the node A to F0 corresponds to the triple 〈A, {btn, ctr},F0〉; and

the edge from E to F0 corresponds to the triples 〈E, {obs},F0〉 and 〈E, {ctr},F0〉. Notice that, since every channel

c can be identified by the triple 〈δ(c), τ(c), ρ(c)〉, channels are not named in figures: there is no risk of ambiguity.

In particular:

• The channel type mov captures the movement of one actor inside another. More specifically, the channels

of type mov between P0 and P1 allow the cabin to move between the two platforms (up or down). Note

that this is the intended semantics of mov; the actual semantics is given by means of axioms such as in

Example 61. The same applies to the other channel types discussed below.

• As mentioned above, the type door is a subtype of mov; the channels of type door between F0 and C, and

between F1 and C, allow users to enter or exit the cabin from or to the two floors.

• The channel type obs captures observations that an actor may make of another (their direction corresponds

to that of the information flow); the channels of type obs that connect E to F0 and to F1 account for

observations of the state of Elevator at either floor (imagine a typical display at each floor that is updated

every time the cabin moves), while those that connect F0 and F1 to A account for the observations that

Alice can make of either floor (by looking at the display).

• The channel type ctr captures the control that one actor may exert on another; the four channels of type ctr

between F0 and E, and between F1 and E, are used for transmitting requests between the two floors and

Elevator (so that the cabin is moved accordingly and the doors at any of the floors are opened once the

cabin arrives there); and the channel that connects C to E is meant to be used for transmitting requests from

Cabin to Elevator (imagine, for example, an electric current triggered by pressing the button).

• The channel subtype btn of ctr captures a special kind a control that is exerted through a button; there

are three channels of type btn, connecting the actor A to F0, to F1, and to C; each of them accounts for a

physical button that Alice can press at either floor or at Cabin.

PElevator — The ANANt schema Elevator has two propositional symbols, C at P0 and C at P1, that are used to capture

knowledge of the platform where Cabin is; this means that PElevator = {C at P0,C at P1}.

2.2. States

Protocols are executed by actors, as a result of which their state changes. A state of an ANANt schemaA consists of

an ANANt structure – its physical part – and a valuation of the propositional symbols – its data/knowledge part. There is

4As usual, for any two channel types κ and κ′, κ ≤ κ′ whenever the Hasse diagram contains an upward line segment from κ to κ′.
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Figure 2: An ANANt structure for Elevator: the graph on the left and the forest on the right

no built-in relationship between the structure and valuation of a state; instead, connections between the two parts that

are relevant for specific protocols can be established through axioms as illustrated in Examples 16 and 54 for Elevator.

A structure for an ANANt schemaA consists of a subgraph of GA that captures connectivity (i.e., the subset of channels

that connect the actors in that state) together with a forest – or placement graph, as in [12] – over its nodes that captures

locality (i.e., where each actor is located in relation to the other actors in that state).

Definition 3 (Structure). A structure for a schemaA is a pair 〈H ,F 〉 where:

• H is a subgraph of GA, and

• F is a forest over NH , meaning that every node n ofH has either none or a unique parent (inH), denoted F (n).

Example 4. An ANANt structure for Elevator is depicted in Figure 2. The forest, on the right, places the two platforms

inside Elevator, the Cabin inside the first-floor platform, and Alice at the ground floor; both floors are outside Elevator.

The graph, on the left, indicates the channels that are available (or active): the channel that corresponds to the

button that Alice can press to call the elevator; the one that connects F0 to Alice and allows her to observe the ground

floor; the ones that connect F0 and F1 to E, and vice versa, so that requests can be transmitted to or by Elevator; the

ones that connect E to F0 and F1 that allow the floors to observe Elevator; and the one that connects Cabin to Elevator

and transmits calls to Elevator. Notice that, for readability, we always include the channel types in figures, even though

they are not formally part of ANANt structures.

To better visualise ANANt structures (and similarly to [12]), we combine the graph and the forest by nesting nodes in the

graph according the placement (location) hierarchy; this can be seen in Figure 3 for the ANANt structure in Figure 2.

Definition 5 (Substructure). We say that 〈H1,F1〉 is a substructure of, or is included in, 〈H2,F2〉 if:

• H1 is a subgraph ofH2, and

• for every node n ofH1 such that the parent F1(n) is defined, F2(n) is also defined and equal to F1(n) – in other

words, the placement hierarchy is strictly preserved.

The notion of substructure defines a partial order on the set of structures for a schemaA, which we denote by �.

A state is an ANANt structure together with a valuation of the propositional symbols, which assigns to each node and

propositional symbol the truth value of the propositional symbol at that node. For the models that we consider here, we

work with a three-valued Łukasiewicz basis, which means that propositions may have the values + (true), − (false), or
± (undefined). This allows us to capture states in which, for instance, Alice does not know where Cabin is.

Definition 6 (State). A state of an ANANt schemaA consists of a structure S forA such thatNS = NA (i.e., the structure

has all the nodes of the schema) together with, for each node n, a valuation (map)Vn : PA → {− , ± , +}.

Following the notational convention described in the introduction, we denote the structure underlying a state σ by

Sσ. In addition, we denote the set of all states of an ANANt schemaA by SA.
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Figure 3: The underlying ANANt structure of elevator0, a state of Elevator

Example 7. As an example, consider the state elevator0 whose underlying ANANt structure is shown in Figure 3 and

whose valuations are defined as follows:

• VE(C at P0) = VF0(C at P0) = VF1(C at P0) = VA(C at P0) = − ,

• VE(C at P1) = VF0(C at P1) = VF1(C at P1) = VA(C at P1) = + , and

• Vn(C at P0) = Vn(C at P1) = ± for all other nodes.

That is, E, F0, F1 and A all know that Cabin is at P1 (and not at P0); none of the other actors knows where Cabin is.

2.3. Interactions

When present in a state, specific configurations of connectivity and locality can lead to a state change. These

specific configurations (parts of the states) are called interactions, each of which is defined in terms of an ANANt structure.

Definition 8 (Interaction). An interaction in the context of an ANANt schema A is just a structure for A, which we

usually denote by ι. The nodes of ι correspond to the actors taking part in the interaction; its channels capture the

connectivity of the actors in that particular interaction; and the forest component of ι accounts for the relative placement

of the actors under consideration. We denote by IA the set of all interactions ofA.

Note that interactions are defined between actors (in a given state), and are meant to signal or trigger a reconfiguration

between states. Their semantics is given by the transition relation of an actor network (cf. Definition 10).

Example 9. Figure 4 depicts three interactions for the ANANt schema Elevator:

a) callElevator0 involves the btn channel through which Alice can call the elevator at the ground floor (F0) and the ctr

channel through which the request can then be transmitted to Elevator.

b) moveCabin0 involves the mov channel from the platform P1 to P0, which enables the movement of the cabin

between the two platforms, and the ctr channels between F0 and E that mediate the opening of the doors.

c) enterCabin0 involves the channel of type door that connects F0 to C and allows actors at the ground floor to enter

the cabin, as well as the obs channels through which those actors can be informed that Cabin is at the ground floor

(and is therefore safe to cross through).

When executed in a given state, an interaction produces another state, which we formalise in Section 2.4 below.
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Figure 4: Interactions of Elevator: (a) callElevator0, (b) moveCabin0, and (c) enterCabin0

2.4. Actor networks

We formalise cyber-physical-system protocols as actor networks. For this purpose, an actor network consists of

(a) an ANANt schema, which contains all the actors and the channels available to connect them; (b) a set of possible worlds

– each being associated with a state of the ANANt schema under consideration – including a subset of designated initial

worlds; (c) a set of possible interactions through which the actor network can evolve; and (d) for every such interaction,

a transition relation on the set of worlds. More precisely:

Definition 10 (Actor network). An actor network N = 〈A,D, ς,D0,I,−−→〉 consists of:

• an ANANt schemaA;

• a domain (finite set of worlds)D together with a function ς : D → SA that assigns a state to every world;

• a non-empty subsetD0 ⊆ D of initial worlds (whose labels are initial states);

• a (finite) set I ⊆ IA of interactions ofA;5

• a transition relation (−−→) ⊆ D × I ×D such that, for each interaction ι ∈ I and world w, there is a transition

w
ι
−−→w′ to another world w′ if and only if ι � Sς(w) (i.e., interactions are substructures of the source states).

Therefore, an actor network over a schema A can be regarded as a labelled transition system over a set of states of

A, transitions being labelled with interactions. For each interaction, the ANANt structure that defines it is required to be

present in the source state of any transition performed by that interaction; moreover, its presence at any given state of

the network determines that a transition by that interaction is available from the state.

Example 11. An actor network NElevator with Elevator as its schema could have, for example, elevator0 (labelled with

the state defined in Example 7, which we also designate by elevator0, or by σelevator0
when there may be a risk of

confusion) as its only initial world, and the worlds and transitions presented in Figure 5, among others. Note that the

valuations are not included in these diagrams; an axiomatic presentation is discussed in Section 3.

The ‘horizontal’ transitions in Figure 5 are performed by the interaction callElevator0 – cf. Figure 4 (a). The one at

the top starts at elevator0. Although several actors and channels are present in elevator0, the interaction callElevator0

indicates that the actors that are active in the transition are Alice, Elevator and F0 (the ground floor), and that the active

channels are those that connect A to F0 and F0 to E. That is to say, Alice presses the button at F0 and the request is

transmitted to Elevator. The transition to elevator1 activates the mov channel that connects P1 to P0 through which

5Notice that, since the schema is finite, its set of interactions is finite as well.
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ctr

obs, ctr

obs
ctrdoor

door

elevator2

callElevator0

callElevator0

moveCabin0

Figure 5: Transitions performed by the interactions callElevator0 and moveCabin0
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Elevator can respond to the request (move the cabin), and closes the channel of type btn from A to F0, i.e., Alice is no

longer able to call the elevator. (Naturally, one could model a scenario where the button can be repeatedly pressed, but

that is not relevant for this protocol.) We denote both the resulting world and the state associated with it by elevator1.

The other transition performed by callElevator0 (at the bottom of the figure) starts in a different world, elevator
′
0
,

where Cabin is at the ground-floor platform, P0. It opens the two channels of type door between F0 and C that allow

users to enter or to exit the cabin. We denote the resulting world and state by elevator2.

The ‘vertical’ transition from elevator1 to elevator2 is performed by the interaction moveCabin0 – cf. Figure 4 (b).

As indicated by the interaction, this computation is local to P0 and P1. The transition moves the cabin from P1 to P0,

closes the channel of type mov that connects the two platforms and – just like the transition between elevator
′
0

and

elevator2 – opens the two channels of type door that allow users to enter or to exit the cabin.

In the final part of the paper, when reasoning about properties of actor networks, we are particularly interested in those

states that correspond to reachable worlds, i.e., to worlds that can be reached (through interactions) from initial worlds:

Definition 12 (Reachable states). Given an actor network N = 〈A,D, ς,D0,I,−−→〉, we say that:

• A world w ∈ D is reachable under N if either w ∈ D0 (i.e., w is an initial world) or there exists a reachable world

w′ and an interaction ι ∈ I such that w′
ι
−−→w. We denote byDR the set of reachable worlds of N.

• A state ofA is reachable under N if it is the image through ς of a reachable world under N. We denote by RN

the set of reachable states of N.

• N has reachable worlds/states when all its worlds/states are reachable, i.e., whenD = DR, resp. ς(D) = RN.

3. Logics for ANts

The logics through which we can specify and reason about actor networks are obtained through an iterated process

of constrained hybridisation. For every step, we discuss the syntax and the semantics of the logics involved, both of

which are defined in terms of an appropriate notion of signature. As usual, signatures provide the primitive symbols

used for building the sentences of the logic, which are then interpreted (assigned meaning, usually in an inductive

fashion) in models; but for the hybridised logics that we consider here, signatures have a prevailing semantic role, as

they also determine some of the constraints to be imposed on the models defined in the hybridisation process.

Throughout this section, we consider an arbitrary but fixed ANANt schemaA = 〈G,T, τ,P〉.

3.1. The base logic

The base for the hybridised construction that we develop is the three-valued propositional Łukasiewicz logic, which

we recall below. At this level, the underlying signature for the schemaA is just the set P of its propositional symbols.

Definition 13 (Syntax). The set Ł(P) of sentences of the base logic is the least set that contains all the elements of P

(as atomic sentences) and is closed under negation, denoted p, and implication, denoted p ⊃ q, where p, q ∈ Ł(P).

Example 14. The Łukasiewicz-logic signature of Elevator is PElevator = {C at P0,C at P1} as defined in Example 2.

Definition 15 (Semantics). The sentences of the base logic are interpreted over appropriate Łukasiewicz valuations,

that is over functions v : Ł(P)→ {− , ± , +} that are compatible with the following two truth tables.

p p

− +

± ±

+ −

p ⊃ q q = − q = ± q = +

p = − + + +

p = ± ± + +

p = + − ± +
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It is straightforward to see that any Łukasiewicz valuation is uniquely determined by its restriction to the propositional

symbols of P. In other words, there is a one-to-one correspondence between Łukasiewicz valuations and functions

from P to {− , ± , +}. We say that a proposition p is valid, or that it is a tautology, if v(p) = + for all valuations v.

Other useful standard connectives such as the disjunction (denoted p ∪ q, for base-logic sentences p and q),

conjunction (denoted p ∩ q), and equivalence (denoted p ≡ q) can be defined through the following abbreviations:

• p ∪ q , (p ⊃ q) ⊃ q

• p ∩ q , p ∪ q

• p ≡ q , (p ⊃ q) ∩ (q ⊃ p)

Their corresponding truth tables are:

p ∪ q q = − q = ± q = +

p = − − ± +

p = ± ± ± +

p = + + + +

p ∩ q q = − q = ± q = +

p = − − − −

p = ± − ± ±

p = + − ± +

p ≡ q q = − q = ± q = +

p = − + ± −

p = ± ± + ±

p = + − ± +

Example 16. The base-logic sentence below captures the coherence of the actors’ knowledge regarding the position of

Cabin: if an actor knows that the cabin is at the ground platform, then it must also know that the cabin is not at the top

platform, and vice versa; in addition, an actor that does not know whether the cabin is at the ground platform or not

cannot know whether the cabin is at the top platform either.

• C at P0 ≡ C at P1

It is easy to see that, in the state elevator0 described in Example 7, the valuations associated with all the actors return

the value + for this sentence.

The following Łukasiewicz modalities, which return Boolean values, are also useful:

• M p , p ⊃ p, meaning that p is possibly true, in the sense that it has value + or ±;

• L p , M p, meaning that p is necessarily true, in the sense that it has value +;

• N p , M p (or, equivalently, L p), meaning that p is necessarily false, in the sense that it has value −;

• I p , M p ⊃ L p, meaning that p is unknown, in the sense that it has value ± .

Their corresponding truth tables are:

p M p

− −

± +

+ +

p L p

− −

± −

+ +

p N p

− +

± −

+ −

p I p

− −

± +

+ −

Notice that the nature of these operators is indeed modal. This means that (a) for any two base-logic sentences p and q,

the sentence L (p ⊃ q) ⊃ (L p ⊃ L q) is a tautology – this accounts for the standard modal axiom K, also known as the

distribution axiom, for the operator L; (b) the operators M and L are dual, according to the very definition of L; and

(c) the sentence L p is valid whenever p is valid – which corresponds to the generalisation rule for L.
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3.2. The state logic

In order to capture the states of the ANANt schema A, we consider a constrained hybridisation of Ł(P).6 For that

purpose, we start with a notion of state signature forA. Technically, this is a countably infinite set SVar whose elements

are called state variables (following terminology from [24]); however, to emphasise the connection with the base

Łukasiewicz logic and the role played by the actors and channels ofA in the construction of state sentences, we also

list P, N and T as components of signatures.

Definition 17 (Signature). A state signature forA is a tuple

Σ = 〈P,N , SVar,T〉

where P is the set of propositional symbols ofA (i.e., a signature of the Łukasiewicz logic),N is the set of actor names

ofA, SVar is a countably infinite set disjoint from P ∪N , and T is the set of channel types ofA.

Example 18. The state signatures for the schema Elevator are of the form

〈PElevator,NElevator, SVar,TElevator〉

where (PElevator ∪ NElevator) ∩ SVar = ∅ and, as defined in Examples 2 and 14,

• PElevator = {C at P0,C at P1},

• NElevator = {F0,F1,E,C,P0,P1,A},

• TElevator = {mov, door, obs, ctr, btn}.

The formulas and sentences of the state logic follow the standard definitions in the hybrid-logic literature. In this case,

the set P determines the ordinary propositional symbols, N ∪ SVar determines the nominals used to refer to individual

nodes in a Kripke model, and T determines the modalities used in modal operators.

Definition 19 (Syntax). The formulas of the state logic for a signature Σ = 〈P,N , SVar,T〉 are given by the grammar

φF p | a | ¬ φ | φ→ φ | 〈κ〉 φ | 〈π〉 φ | @a φ | ∃x φ

where p ∈ Ł(P), a ∈ N ∪ SVar, x ∈ SVar, κ ∈ T , and π is a distinguished and new parent modality. Therefore, the state

logic includes modal operators that capture connectivity – 〈κ〉 , for κ ∈ T – and operators that capture locality – 〈π〉 .

The free and the bound occurrences of nominals in formulas are defined as usual (e.g. [25, 26]) except that the

only binder that we consider here is the existential quantifier (∃). The Σ-sentences are formulas for Σ with no free

occurrences of state variables; we denote their set by State(Σ).

Traditionally, hybrid-logic formulas are evaluated over unconstrained Kripke models, that is, over triples 〈W,R,V〉

where 〈W,R〉 is a Kripke frame – which means that W is a set of possible worlds and R is a family Rλ ⊆ W ×W of

accessibility relations indexed by modalities λ – and V is a W-indexed family of interpretations for nominals and

propositional symbols. In order to enable nominals to act as names of possible worlds, every nominal is required to be

satisfied (in the sense that its interpretation is true) at exactly one node of W (cf. [27]).

The semantics of specific hybrid logics often includes additional constraints; for example, in the S4 variant of

hybrid propositional logic, the accessibility relations are required to be reflexive and transitive (i.e., they are preorders),

while in the S5 variant they are required to be reflexive and Euclidean (i.e., they are equivalences). The constraints that

we consider for the state logic follow from the underlying graph structure of the ANANt schema:

• There is a one-to-one correspondence between actors and possible worlds. For notational convenience, we do

not distinguish possible worlds from actors.

6Strictly speaking, not the set Ł(P) is hybridised, but the Łukasiewicz logic to which it belongs. When there is no risk of confusion, we use such

formulations as well to indicate the relationship between ANANt schemas and the base-logic sentences used to describe their states: states ofA are

specified using hybrid-logic sentences built over Ł(P). This extends in the latter part of the paper to ANANt schemas and the networks defined over them.
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• The accessibility relations conform to the channels and the channel types of the schema: for each channel type κ,

Rκ consists only of pairs (n, n′) of nodes that are connected through a channel of type κ.

• The interpretation of the parent (locality) modality π is functional and acyclic.

In other words, the constrained Kripke models that we consider here are states of the actor-network schemaA.

Definition 20 (Semantics: satisfaction). Let Σ = 〈P,N , SVar,T〉 be a state signature forA. Given a stateσ = 〈S,V〉

of A, an assignment is a map α : N ∪ SVar → NS whose restriction to the set of actor names is the identity.7 The

satisfaction relation between states and formulas is parameterised by assignments α and by actors n (i.e., nodes of S):

• σ, α, n � a iff α(a) = n;

• σ, α, n � p iff vn(p) = + , where vn is the valuation defined byVn over P;

• σ, α, n � ¬ φ iff σ, α, n 6� φ;

• σ, α, n � φ1 → φ2 iff σ, α, n � φ1 implies σ, α, n � φ2;

• σ, α, n � 〈κ〉 φ iff σ, α, ρ(c) � φ for some channel c ∈ C such that δ(c) = n and κ ∈ τ(c);

• σ, α, n � 〈π〉 φ iff F (n) is defined and σ, α,F (n) � φ;

• σ, α, n � @a φ iff σ, α, α(a) � φ;

• σ, α, n � ∃x φ iff σ, α′, n � φ for some assignment α′ that agrees with α on SVar \ {x}.

Other propositional connectives such as the conjunction (∧), disjunction (∨), and equivalence (↔) can be defined as

usual. The dual modal operators ([κ], where κ is a channel type, and [π] for the parent modality) and the universal

quantifier over state variables (∀) can also be defined in the conventional way:

• [κ] φ , ¬ 〈κ〉 ¬ φ

That is, σ, α, n � [κ] φ iff σ, α, ρ(c) � φ for all channels c ∈ C with δ(c) = n and κ ∈ τ(c).

• [π] φ , ¬ 〈π〉 ¬ φ

That is, σ, α, n � [π] φ iff σ, α,F (n) � φ whenever F (n) is defined.

• ∀x φ , ¬∃x¬ φ

That is, σ, α, n � ∀x φ iff σ, α′, n � φ for all assignments α′ that agree with α on SVar \ {x}.

We also consider the universal modality, sometimes referred to as the global modality:

• A φ , ∀x @x φ, where x is a state variable that does not occur free in φ

That is, σ, α, n � A φ iff σ, α,m � φ for all nodes m ∈ N . In other words, a sentence of the form A φ is satisfied

at a node when φ is satisfied at all the nodes of the state.

To keep the notation simple, we sometimes extend the use of the connectives and modal operators to sets of sentences.

For example, when Φ is a finite set of sentences {φ1, . . . , φn}, we may denote by
∧

Φ the conjunction φ1 ∧ · · · ∧ φn. We

also denote by AΦ the set of sentences {A φ | φ ∈ Φ}, regardless of the cardinality of Φ.

Definition 21 (Semantics: validity). A state-logic formula is said to be valid in a state if it is satisfied, for every

assignment, at every node of that state; it is valid in an ANANt structure if it is satisfied in every state based on that

structure; and it is absolutely valid (in a signature of the schema) if it is valid in every state of the schema. Formally,

• σ � φ iff σ, α, n � φ for all assignments α : N ∪ SVar → Nσ (cf. Definition 20) and all n ∈ Nσ;

7Recall that, by Definition 6, NS = N .
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• S � φ iff σ � φ for all states σ such that S � Sσ;8

• Σ � φ, or simply � φ, iff σ � φ for all state-logic models σ of Σ, i.e., for all states σ ∈ SA.8

These forms of validity extend to sets of state-logic formulas to mean that every formula in the set is valid. Given a set

Φ of formulas, we denote by SΦ the set of states in which all the formulas in Φ are valid.

Notice that, because they have no free occurrences of state variables, the validity of sentences does not depend on

the choice of the assignment: for every sentence φ, every actor n of a state σ, and for any two assignments α and α′,

σ, α, n � φ if and only if σ, α′, n � φ – a corollary of Proposition 22 below. Therefore, we can disregard the assignments

and say, for short, that a sentence is valid in a state when it is satisfied at every node of that state.

Proposition 22. Let σ be a state of A, and α1, α2 : N ∪ SVar → Nσ two assignments for σ. For every state formula

φ, if α1 and α2 agree on the free variables of φ, then for every actor n ∈ Nσ we have:

σ, α1, n � φ if and only if σ, α2, n � φ.

Proof. We prove the result by structural induction on φ. Most of the cases are straightforward, so we only consider

here the two more interesting ones that correspond to satisfaction statements and to existentially quantified formulas.

For satisfaction statements, consider a formula @a φ such that α1 and α2 agree on the free variables of φ and on a

(assuming that a is a state variable; otherwise, if it is an actor name, the assignments agree on a by definition). Then

σ, α1, n � @a φ iff σ, α1, α1(a) � φ according to Definition 20

iff σ, α2, α1(a) � φ by the induction hypothesis

iff σ, α2, α2(a) � φ because α1 and α2 agree on a (regardless of its nature as an actor name or as a variable)

iff σ, α2, n � @a φ. according to Definition 20

For existentially quantified formulas, assume that α1 and α2 agree on all free variables of a state-logic formula φ,

except an arbitrary but fixed variable x ∈ SVar. In that case, we obtain the following sequence of equivalences:

σ, α1, n � ∃x φ iff σ, α′1, n � φ for some assignment α′1 that agrees with α1 on SVar \ {x}

according to Definition 20

iff σ, α′2, n � φ for some assignment α′2 that agrees with α2 on SVar \ {x}

by the induction hypothesis, because for every assignment α′1 as above

there exists an assignment α′2, defined by α′2(y) =















α′1(y) if y occurs freely in φ

α2(y) otherwise,

that agrees with α′1 on the free variables of φ, and also with α2 on SVar \ {x}

iff σ, α2, n � ∃x φ. according to Definition 20

Remark 23. A state-logic sentence φ is valid in a state if and only if A φ is valid in that state.

Example 24. The following sentences are properties of (i.e., valid in) the state elevator0 defined in Example 7, of its

underlying structure Selevator0
(according to Figures 2 and 3), or of the ANANt schema Elevator itself:

• elevator0 � (E ∨ F0 ∨ F1 ∨ A)→ L (C at P1)

The actors E, F0, F1, and A know that Cabin is at the first-floor platform.

• Selevator0
� @A [btn] 〈ctr〉E

Whenever Alice calls the elevator, the request is transmitted to Elevator.

8Recall that, by Definition 5, S � Sσ means that S is a substructure of the structure of σ; and that, by Definition 6, SA is the set of states ofA.
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• Elevator � @P0 [mov] P1 ∧@P1 [mov] P09

Any mov channel with source P0 has target P1 and any mov channel with source P1 has target P0

Naturally, any property of the structure Selevator0
is also a property of elevator0, and any property of the schema Elevator

is also a property of Selevator0
(and of any ANANt structure of Elevator). More generally:

Remark 25. Given a state signature Σ forA, a structure S, a state σ, and a sentence φ ∈ State(Σ):

• If Sσ � φ then σ � φ.

• If Σ � φ then S � φ.

As might be expected, the converse implications do not necessarily hold. For example, considering Example 24, the

first sentence is valid in elevator0 but not in its underlying structure, while the second sentence is valid in Selevator0

without being absolutely valid.

A useful property of the state logic is that it allows us to characterise the states that are admissible for a given structure

by means of (sets of) state-logic sentences. The next result plays an important part in the following sections of the

paper when dealing with the axioms of the ANANt logic and with entailment.

Proposition 26. Let ΦS be the (finite) set of all sentences of the form @a 〈λ〉 b that are valid in a structure S, where a

and b are actor names and λ is a modality (i.e., a channel type or the parent modality π). Then SΦS = {σ ∈ SA | S � Sσ}.

Proof. Clearly, since ΦS consists only of sentences that are valid in S, it follows that ΦS is valid in any state σ that

has S as a substructure. For the converse, it suffices to notice, for any state σ ofA, that σ � @a 〈λ〉 b if and only if

there exists a channel of type λ from a to b in Sσ (if λ is a channel type) or b is the parent of a in Sσ (if λ is the parent

modality). Consequently, for all the states σ in which ΦS is valid, S � Sσ.

The (absolute) validity of sentences can be established syntactically through a proof system, i.e., through a set of

axioms and inference rules. As usual, by theorem of the logic we mean a sentence that is either an axiom, or can be

derived (from axioms) in a finite number of steps through repeated applications of inference rules.

An example of a (Hilbert-style) proof system for the basic, unconstrained hybrid logic is given in Figure 6, which is

both a simplification (because we do not make use of the binder ↓) and an extension (due to the multi-modality setting

of our logic) of the axiom system given in [3, Chapter 2].10 This system (among others, e.g., [24]) has been shown to

be sound and complete in the sense that a sentence is a theorem if and only if it is valid in all Kripke frames.

Some useful theorems and admissible inference rules – in the sense that for every state-logic formula that can be

derived using such a rule, there exists a derivation that does not make use of the rule (see, e.g., [3]) – include:

Theorems

Taut any propositional theorem

AndDistr @a (φ1 ∧ φ2)↔ (@a φ1 ∧@a φ2)

OrDistr @a (φ1 ∨ φ2)↔ (@a φ1 ∨@a φ2)

Admissible inference rules

φ1 φ2

φ1 ∧ φ2

(∧II)
φ1

φ1 ∨ φ2

(∨EE)
φ

[λ] φ
(Gλ)

φ

A φ
(GA)

9As most unary operators, [mov], @P0
and @P1

bind stronger than the binary operator ∧, hence the sentence should be read as a conjunction.
10It should be noted that, although apparently finite, the axiomatisation in Figure 6 is actually infinite, since each of the axioms or rules (sometimes

referred to in the literature as schemas) is parameterised by formulas, nominals, state variables, and other syntactic entities.
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Axioms

CTCT propositional theorems for ¬ and→

Distr @a (φ1 → φ2)↔ (@a φ1 → @a φ2)

SDSD @a φ↔ ¬@a ¬ φ

Scope @a @b φ↔ @b φ

Ref @a a

Intro (a ∧ φ)→ @a φ

λEE
∗ ([λ] φ ∧ 〈λ〉 a)→ @a φ

∀EE ∀x φ→ φ[a/x]

Inference rules

φ1 φ1 → φ2

φ2

(MPMP)
φ

@a φ
(@II)

@x φ

φ
(@EE)†

(φ1 ∧ 〈λ〉 x)→ @x φ2

φ1 → [λ] φ2

(λII)†
φ1 → φ2[x/y]

φ1 → ∀y φ2

(∀II)†

∗ Here, λ stands both for the regular modalities defined by channel types and for π.

† x does not occur free in φ (@EE), in φ1 or φ2 (λII), or in φ1 or ∀y φ2 (∀II).

Figure 6: Hilbert-style axioms and rules for basic hybrid logic

Remark 27. Because any ANANt state has an underlying Kripke frame (corresponding to the structure of the state;

see Definitions 6 and 3), and because the satisfaction of state-logic sentences (Definition 20) is consistent with the

hybrid-logic concept of satisfaction of sentences, it follows that any sound and complete proof system for the basic

hybrid logic is also sound for the state logic: sentences that can be proved using the axioms and inference rules in

Figure 6 are valid in all Kripke frames and, therefore, they are absolutely valid in the sense of Definition 21.

Unsurprisingly, hybrid-logic proof systems such as the one in Figure 6 are no longer complete for the state logic in the

sense that there are sentences of the state logic that are absolutely valid but cannot be derived as theorems. This is due

to two major factors:

1. As a hybrid formalism, the state logic is built over a Łukasiewicz logic. Notice that, in order to syntactically

mark the difference between the two logical levels, the symbols used for the negation ( ) and implication (⊃)

in the base Łukasiewicz logic are different from those used in the state logic (¬ and→, respectively). Their

semantics is also different. For example, given two sentences p, q ∈ Ł(P), we have that

• � p→ ¬ p, and

• � (p ⊃ q)→ (p→ q),

but not the other way around. These sentences, as well as any tautology of the base logic, cannot be derived from

an axiom system (as in Figure 6) that does not take into account the structure of the base-logic sentences.

We address this issue by following the general technique described in [7], where the authors show how (sound

and complete) proof systems for the base logic can be integrated within a hybrid axiomatisation like the one

described in Figure 6 to produce a (sound and complete) proof system for the resulting hybridised logic. All that

we need to ensure in order to use this result – besides the existence of a sound and complete proof system for the

base logic, which is known [28] – is that the three-valued Łukasiewicz logic that we consider here admits all

semantic Boolean connectives11 (cf. Figure 8), which is established in Proposition 29 below.

11Intuitively, this means that the logic is expressive enough to capture the semantics of the standard Boolean connectives, possibly through

sentences that are considerably more complex than their Boolean counterparts – a property also known as Boolean completeness (see Proposition 29).
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NN1
∨

{a | a ∈ N}

NN2 ¬@a b for a , b ∈ N

CC1 ¬@a 〈κ〉 b for a, b ∈ N such that there is no c ∈ C

with δ(c) = a, ρ(c) = b, and κ ∈ τ(c)

CC2 〈κ〉 a→ 〈κ′〉 a for κ ≤ κ′ and a ∈ N

π1 〈π〉 a→ [π] a for a ∈ N

π2 ¬@a 〈π〉
na for 1 ≤ n ≤ |N| and a ∈ N

Figure 7: Additional axioms for the state logic – AxState(Σ)

BLTBLT all base-logic theorems

BLIBLI (p→ q)↔
(

(q ⊃ q) ⊃ (p ⊃ p)
)

BLNBLN ¬ p↔ (p ⊃ p)

Figure 8: Additional axioms for the hybridised Łukasiewicz logic

2. As discussed above, the models of the state logic are not arbitrary (unconstrained) Kripke models but states of an

ANANt schema. Because of this, there are two main categories of new tautologies: those that arise from the ANANt

schema used, and those that are innate to the state logic. The former category includes, for example in the case

of Elevator, sentences like ¬@A 〈ctr〉 E (meaning that Alice cannot control the elevator directly) that derive

from the underlying graph of the ANANt schema over which the connectivity modalities are interpreted. The latter

contains sentences such as ¬@a b, where a and b are distinct actor names, and 〈π〉 φ → [π] φ, which derives

from the forest structure over which the parent modality is interpreted.

In order to regain completeness, for any given state signature Σ for the ANANt schemaA, we consider the axioms

presented in Figure 7, the set of which we denote by AxState(Σ). The axioms NN1 and NN2 ensure that all possible

worlds correspond to actor names, and that no two distinct names are interpreted in the same way. The axiom CC1

rules out those channels that are not defined in the ANANt schema, while CC2 captures the channel subtyping relation.

Lastly, π1 and π2 specify that the interpretations of the distinguished parent modality are functional and acyclic,

respectively. Notice that, because ANANt schemas are finite, so is AxState(Σ).

Definition 28 (Proof system). The proof system PSState(Σ) for the state logic is the extension of the axiomatisation of

the basic hybrid logic (as in Figure 6) with all the theorems of the Łukasiewicz logic and the statements that establish

its semantic connectives (as in Figure 8), and with the axiomatic constraints AxState(Σ) of the state logic (as in Figure 7).

Note that the axiomatisation in Figure 7 depends on the ANANt schema under consideration. For instance, axiom CC1

depends on the connections between actors that are declared in the schema, while CC2 depends on the typing hierarchy.

Therefore, the size and complexity of the axiomatisation is correlated with the level of detail of the ANANt schema. This

would not compromise potential implementation efforts though because the schema is always finite and the number of

state-logic axioms increases only polynomially with the size of the ANANt schema.

The completeness of PSState(Σ) relies on the following two elementary properties, each of which addresses one

of the major factors mentioned above. The first one, Proposition 29, warrants the axioms in Figure 8; the second,

Proposition 30 (which is, in fact, a direct consequence of the interpretation of the sentences in Figure 7 in Kripke

models), establishes the necessary connection between the state logic and the hybridisation of the Łukasiewicz logic.

Proposition 29. The three-valued propositional Łukasiewicz logic is Boolean complete, in the sense that, for any two

sentences p, q ∈ Ł(P), there exist piq, np ∈ Ł(P) such that, for every valuation v : Ł(P)→ {− , ± , +},

• v(piq) = + if and only if v(p) = + implies v(q) = +;

• v(np) = + if and only if v(p) ∈ {− , ±}.
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Proof. The sentence piq, which corresponds to the semantic Boolean implication of p and q, can be defined as L p ⊃ L q

or, equivalently, using only primitive connectives, as (q ⊃ q) ⊃ (p ⊃ p). For the semantic negation, we can define np as

N p ∪ I p or, equivalently, as p ⊃ p. To check the two properties above, it suffices to consider the following truth-tables:

(q ⊃ q) ⊃ (p ⊃ p) q = − q = ± q = +

p = − + + +

p = ± + + +

p = + − − +

p p ⊃ p

− +

± +

+ −

Proposition 30. Every state signature Σ forA can be treated as a hybrid-logic signature. Under this view, the mapping

of ANANt states to their underlying Kripke models gives rise to a one-to-one correspondence (up to model isomorphism)12

between the states of A and the (unconstrained) Kripke models over Σ that validate AxState(Σ). Moreover, for every

state σ ofA and every state sentence φ of Σ, φ is valid at σ if and only if it is valid in its underlying Kripke model.

Lemma 31. Given an arbitrary but fixed state signature Σ forA and a sentence φ ∈ State(Σ), if φ is absolutely valid

then
∧

A AxState(Σ) → φ is a theorem of the unconstrained hybridisation of the Łukasiewicz logic, i.e., it can be derived

from the proof system in Figure 6 enriched with the axioms in Figure 8.

Proof. Let φ be an absolutely valid state-logic sentence. It follows from Proposition 30 and Remark 23 that any model

of the unconstrained hybridisation of the Łukasiewicz logic validates
∧

A AxState(Σ) → φ. By the general soundness &

completeness result of [7], since the base Łukasiewicz logic is Boolean complete (according to Proposition 29), we

have that the axioms and proof rules in Figures 6 and 8 (which include all the theorems of the base logic – obtained,

for example, by using a proof system as in [28]) are sound and complete for the unconstrained hybridisation of the

Łukasiewicz logic. Consequently, the implication
∧

A AxState(Σ) → φ is a hybrid-logic theorem.

Theorem 32. A state-logic sentence (over a signature Σ) is absolutely valid if and only if it is derivable in PSState(Σ).

Proof. The soundness property follows trivially by induction on the structure of the derivation, so we focus only on

completeness. Let φ be an absolutely valid state-logic sentence. By Lemma 31, this means that
∧

A AxState(Σ) → φ is a

theorem of the unconstrained hybridisation of the Łukasiewicz logic. It follows that φ can be derived in PSState(Σ) by

extending the derivation of the above-mentioned implication with multiple applications of the generalisation rule for

the global modality to AxState(Σ), of the introduction rule for the conjunction (∧II), and by modus ponens (MPMP).

3.3. The ANANt logic

The logic through which we can reason about the networks of an ANANt schema A requires a further level of

hybridisation. Concepts like those of signature, formula/sentence, model, and satisfaction are all defined as in the case

of the state logic. The main difference is that, instead of the Łukasiewicz logic, the functionality assumed for the base

logic is now provided by the state logic itself. There are no surprises on the syntactic side, where formulas are once

again ordinary hybrid-logic sentences (built by regarding state-logic sentences as atoms). The semantics, however,

deserves more attention because we are considering new constraints that are specific to the actor networks.

Definition 33 (Signature). An ANANt signature forA is a tuple

Ω = 〈Σ, Init,NVar,I〉

consisting of a signature Σ = 〈P,N , SVar,T〉 of the state logic, a (finite) set Init whose elements are called names

of initial states, a countably infinite set NVar of network variables such that P, N , SVar, Init and NVar are pairwise

disjoint, and a (finite) set I of interactions forA.

12The correspondence is only up to isomorphism because the state-logic axioms ensure that the interpretation of actor names in Kripke models is

bijective – it is not necessarily an identity mapping, as in the case of ANANt states, where there is no distinction between actors and possible worlds.
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Example 34. An ANANt signature for Elevator that corresponds to the network discussed in Example 11 is of the form

〈Σ, Init,NVar,I〉

where Σ = 〈PElevator,NElevator, SVar,TElevator〉 is a state-logic signature as described in Example 18, Init is a singleton,

and I ⊆ IElevator is a set of interactions defined over Elevator (as in Definition 8) that contains at least the three

interactions given in Example 9: callElevator0, moveCabin0, and enterCabin0.

The sentences of the ANANt logic (over a signature as described above) are defined as follows:

Definition 35 (Syntax). The syntax of the ANANt logic for a signature Ω = 〈Σ, Init,NVar,I〉 is given by the grammar

ψF φ | i |¬¬ψ | ψ⇒ ψ | 〈|ι|〉ψ | i : ψ |∃∃sψ

where φ ∈ State(Σ), i ∈ Init ∪ NVar and s ∈ NVar are seen as ANANt-logic nominals, and ι ∈ I is an ANANt-logic modality.

The free/bound occurrences of nominals in formulas and the notion of ANANt-logic sentence are defined similarly to

their state-logic counterparts. We denote by ANANt(Ω) the set of ANANt-logic sentences defined over the signature Ω. For

simplicity, we sometimes use State(Ω) instead of State(Σ) to denote the set of sentences that belong to the base logic.

Notice that, in order to avoid ambiguity, we use double symbols for the connectives of the ANANt logic, and that the

satisfaction operators (represented as @a for the state logic) are denoted in this case by means of a colon. We extend

the use of the double-symbol notation to other Boolean connectives (∧∧, ∨∨,⇔), to the dual modal operators (~_�), and

to the universal quantifier (∀∀), which are defined as in Section 3.2. In addition, we also consider the global modality

Aψ ,∀∀s (s : ψ), where s is a network variable that has no free occurrences in ψ.

Example 36. We can now write sentences about the dynamics of Elevator like

@C 〈π〉P1⇒ ~callElevator0�@P1 〈mov〉P0

meaning that, if the interaction callElevator0 takes place when the cabin is at the first floor, then in the resulting state

there will be an active channel of type mov between the two platforms – which could then enable, through the execution

of different interactions, the actual movement of the cabin from P1 to P0.

Similarly to the level of the state logic, the semantics of the ANANt logic is defined once more by means of constrained

Kripke models. In this case, the models of a signature Ω = 〈Σ, Init,NVar,I〉 for the schema A are actor networks

N = 〈A,D, ς,D0,I,−−→〉 as in Definition 10 together with an onto mapping from the set Init (of names of initial states

of Ω) to the setD0 (of initial worlds of N); to keep the notation simple, when there is no danger of confusion we denote

by Ni the initial world associated to a name i ∈ Init. The ANANt-logic constraints are significantly simpler: all that we

need to ensure is that the interactions ι ∈ I are enabled precisely at those states for which ι is a substructure.

Definition 37 (Semantics: satisfaction). Consider an ANANt signature Ω = 〈Σ, Init,NVar,I〉 for A, an actor-network

model N = 〈A,D, ς,D0,I,−−→〉 for Ω, and an assignment (function) α : Init ∪ NVar → D such that α(i) = Ni for

every i ∈ Init. For every world w ∈ D, the satisfaction of ANANt sentences at w is inductively defined as follows:

• N, α,w 
� i iff α(i) = w;

• N, α,w 
� φ iff ςN(w) � φ;

• N, α,w 
�¬¬ψ iff N, α,w 6
� ψ;

• N, α,w 
� ψ1 ⇒ ψ2 iff N, α,w 
� ψ1 implies N, α,w 
� ψ2;

• N, α,w 
� 〈|ι|〉ψ iff there is a transition w
ι
−−→ w′ in N such that N, α,w′ 
� ψ;

• N, α,w 
� i : ψ iff N, α, α(i) 
� ψ;

• N, α,w 
�∃∃sψ iff N, α′,w 
� ψ for some assignment α′ that agrees with α on NVar \ {s}.
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SLTSLT all state-logic theorems

SLISLI (φ1 ⇒ φ2)⇔ (A φ1 → φ2)

SLNSLN ¬¬ φ⇔ ∃x @x ¬ φ

Figure 9: Additional axioms for the hybridisation of the state logic

Inter13
∧

Φι ⇔ 〈|ι|〉 true, where ι ∈ I

Figure 10: Additional axioms for the ANANt logic – AxANANt(Ω)

Definition 38 (Semantics: validity). Similarly to the first level of hybridisation, we say that an ANANt-logic sentence ψ

defined over Ω = 〈Σ, Init,NVar,I〉 is valid in an actor network (model) if it is satisfied, for every assignment, at every

world of the network, and that a sentence ψ is absolutely valid if it is valid in every actor-network model:

• N 
� ψ iff N, α,w 
� ψ for all assignments α : Init ∪ NVar → DN and all w ∈ DN;

• Ω 
� ψ, or simply 
� ψ, iff N 
� ψ for all ANANt models N over Ω.

Given a set Ψ of ANANt sentences, we denote by NΨ the set of actor networks over which all the sentences in Ψ are valid.

Example 39. Let Ω be an ANANt signature for Elevator as described in Example 34, and let NElevator be the ANANt model

that corresponds to the actor network outlined in Example 11 – where the only initial-state name of Ω is interpreted as

σelevator0
(the only initial world of NElevator). Then we obtain the following validity statements:

• NElevator 
� ~moveCabin0�@C 〈π〉P0

Any execution of the interaction moveCabin0 results in a state where Cabin is at the ground floor.

• Ω 
� 〈|moveCabin0|〉 true⇒ @P1 〈mov〉P0

Moreover, the moveCabin0 transitions are enabled only at states where there is a mov channel from P1 to P0.

Notice that, unlike the second sentence above, the first one cannot be inferred from the general properties of the ANANt

models over the signature Ω, and thus it is valid in NElevator without being absolutely valid.

Having the development of the proof system for the state logic as a reference, we can easily define a similar proof

system for the ANANt logic, which would be adequate for establishing (syntactically) the absolute validity of ANANt-logic

sentences. To that end, as argued in Section 3.2, we need to ensure that:

1. The base logic – in this case, the state logic – admits all semantic Boolean connectives.

2. The constraints of the ANANt logic can be captured through a (finite) set of hybrid-logic sentences.

In order to address these concerns, we consider a different extension of the axiomatisation of hybrid logic.

Definition 40 (Proof system). The proof system PSANANt(Ω) for the ANANt logic is the extension of the axiomatisation of

the basic hybrid logic (as in Figure 6, but using the connectives, hybrid-logic operators and quantifiers of the ANANt logic)

with all the theorems of the state logic and the statements that establish its semantic connectives (as in Figure 9), and

with the axiomatic constraints AxANANt(Ω) of the ANANt logic (as in Figure 10).

The adequacy of PSANANt(Ω) follows from the next two properties.

Proposition 41. The state logic is Boolean complete: for any state signature Σ forA and sentences φ, φ1, φ2 ∈ State(Σ),

there exist υ, µ ∈ State(Σ) such that, for every ANANt state σ forA,

13Recall that, by Proposition 26, Φι is set of sentences of the form @a 〈λ〉 b that are valid in ι.
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• σ � υ if and only if σ � φ1 implies σ � φ2;

• σ � µ if and only if σ 6� φ.

Proof. Let υ and µ be the sentences A φ1 → φ2 and ∃x @x ¬ φ, respectively (cf. Figure 9).

By Definition 20 we have that, for every state σ forA, A φ1 → φ2 is valid in σ if and only if σ satisfies φ2 at every

node when it satisfies φ1 at every node, i.e., φ2 is valid in σ if φ1 is valid in σ. Notice that the global modality is needed

because the semantics of the plain state-logic implication φ1 → φ2 is significantly different; for example, taking a

sentence of the form a→ p in the role of φ1 and the sentence @a p in the role of φ2, it is easy to see that any state that

validates a→ p also validates @a p but (a→ p)→ @a p is not a tautology.

For the negation, ∃x @x ¬ φ is valid in a state σ if and only if there is a node n of σ where ¬ φ is satisfied; that is, if

and only if φ is not valid in σ. Notice that, since the nodes of σ are actors, for the semantic negation of φ we could also

consider the (finite) disjunction of all sentences of the form @a ¬ φ, where a ∈ N .

Proposition 42. The ANANt logic is equivalent to a fragment of the hybridisation of the state logic, as follows: every ANANt

signature Ω forA is also a signature of the hybridisation of the state logic, and every ANANt model (of a signature Ω)

uniquely corresponds to a Kripke model that validates the sentences AxANANt(Ω) in Figure 10.

Theorem 43. An ANANt-logic sentence (over a signature Ω) is absolutely valid if and only if it is derivable in PSANANt(Ω).

Proof. Analogous to the proof of Theorem 32, by Propositions 41 and 42.

4. Specifying and Reasoning about ANts

In this section, we show how the logics defined previously can be used for specifying and reasoning about actor

networks. Throughout the section, we consider a fixed ANANt schemaA = 〈G,T, τ,P〉 and use Elevator as an example.

4.1. Entailment

The methodological approach that we consider for reasoning about ANANts is that of the algebraic-specification

tradition for the formal development of systems. This means that we consider two essential, and interrelated, processes:

Specification where classes of models of interest (ANANt states or networks) are described by means of sets of sentences.

Verification where we determine (e.g., through a proof system) that a specification guarantees certain properties.

The following notions of semantic entailment are essential in formalizing the verification process.

Definition 44 (Entailment). Given a set Φ of sentences and a sentence φ, all over the same state signature, we say that

• φ is a (global) semantic consequence of Φ, or that Φ (globally) entails φ, and we write Φ � φ, when φ is valid in

all the states where the sentences of Φ are valid – in other words, when SΦ ⊆ S{φ}.

• φ is a local semantic consequence of Φ, or that Φ locally entails φ, when φ is satisfied at all the nodes (of all

states) where the sentences of Φ are satisfied.14

ANNt-logic counterparts of the notions of global and local semantic consequence can be defined analogously; in that

case, we denote the fact that ψ is a global semantic consequence of a set Ψ of ANANt sentences by Ψ 
� ψ. In addition,

• ψ is a semantic consequence of Ψ with respect to reachable states, or Ψ entails ψ on reachable states, when ψ is

valid in all networks with reachable states (according to Definition 12) where the sentences of Ψ are valid – more

formally, if N 
� ψ for all networks N whose worlds/states are all reachable and such that N 
� Ψ.15

14Equivalently, one could say that φ is valid in all so-called pointed Kripke models where Φ is valid (see, e.g. [29]).
15This kind of entailment is reminiscent of the master modality from [27, 30].
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Remark 45. Any local consequence of a set Φ of state sentences (or, similarly, of ANANt sentences) is also a global

consequence of Φ. The converse does not necessarily hold. As a (counter)example, it would be enough to consider the

singleton {p} in the role of Φ, where p is an atomic sentence, and [κ] p in the role of φ.

Besides absolute validity, the proof systems PSState(Σ) and PSANANt(Ω) discussed in Section 3 can also be used to syntactically

establish the entailment of state- and ANANt-logic sentences.

Definition 46 (Syntactic entailment). Under the notations and assumptions of Definition 44, we say that the sentence

φ is provable from Φ, and we write Φ ⊢ φ, if φ can be derived in PSState(Σ) (i.e., φ is a state theorem), or there are

sentences φ1, . . . , φn ∈ Φ such that the implication A (φ1 ∧ · · · ∧ φn)→ φ is derivable in PSState(Σ).

Correspondingly, an ANANt-logic sentence ψ is provable from Ψ, denoted Ψ 
 ψ, if ψ can be derived in PSANANt(Ω), or

there are sentences ψ1, . . . , ψn ∈ Ψ such that A (ψ1 ∧∧ · · · ∧∧ ψn)⇒ ψ is derivable in PSANANt(Ω).

The completeness results that we consider in this section are based on the following elementary properties of the global

and local semantic-entailment relations, which are well known in the hybrid-logic literature (see, e.g. [27]).

Proposition 47.

1. A sentence φ is a global semantic consequence of Φ if and only if it is a local semantic consequence of AΦ.

2. The local semantic-entailment relation is compact, in the sense that, if Φ locally entails φ, then there exists a

finite subset Φ0 ⊆ Φ such that Φ0 locally entails φ.

3. The local semantic-entailment relation has the deduction theorem, i.e., Φ locally entails φ1 → φ2 if and only if

Φ ∪ {φ1} locally entails φ2. In particular, φ1 → φ2 is a tautology if and only if {φ1} locally entails φ2.

Theorem 48. A state-logic sentence φ is a (global) semantic consequence of Φ if and only if it is provable from Φ.

Φ � φ iff Φ ⊢ φ

Proof. Similarly to the proof of Theorem 32, we only consider the completeness of the state-logic provability relation.

Notice, however, that in this case the converses of all of the following implications are valid as well.

Suppose that φ is a semantic consequence of Φ. Then, by Proposition 47, φ is a local semantic consequence of AΦ.

Since the local semantic-entailment relation is compact (also by Proposition 47), it follows that there exists a finite

subset Φ0 ⊆ Φ such that φ is a local semantic consequence of AΦ0. Therefore, by the deduction theorem, we have that

the sentence
∧

AΦ0 → φ is absolutely valid. Finally, Theorem 32 ensures that
∧

AΦ0 → φ is derivable in PSState(Σ);

in other words, given that A and
∧

commute, and according to Definition 46, φ is provable from Φ0 ⊆ Φ.

In concrete situations, the following corollary allows us to write formal proofs that are much shorter than those that

would result from the direct application of Definition 46. A similar result can be obtained for the ANANt logic based on

Theorem 50 below, but to avoid repetition, we do not state it explicitly.

Corollary 49. A state-logic sentence φ is a (global) semantic consequence of Φ if and only if

1. it is a state-logic axiom,

2. it is a sentence in Φ, or

3. it can be derived (based on 1 and 2) through repeated applications of inference rules.

Proof. The soundness part follows trivially from the soundness of the inference rules of the state logic. For complete-

ness, notice that, by Theorem 48, we know there exists a finite subset {φ1, . . . , φn} ⊆ Φ such that A (φ1 ∧ · · · ∧ φn)→ φ

is a theorem. Therefore, φ can be derived from {φ1, . . . , φn} through further applications of the introduction rule for the

conjunction (∧II), of the generalisation rule for the global modality (GA), and of modus ponens (MPMP).

In an analogous manner to Theorem 48, for the ANANt logic we have:
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Theorem 50. An ANANt-logic sentence ψ is a (global) semantic consequence of Ψ if and only if it is provable from Ψ.

Ψ 
� ψ iff Ψ 
 ψ

Properties of networks that have reachable states can be proved through an induction schema.

Corollary 51. Let Ψ and ψ be (sets of) ANANt logic sentences over a signature Ω as in Definition 44 such that

1. Ψ 
 i : ψ, for all names of initial states i of Ω;

2. Ψ 
 ψ⇒ ~ι�ψ, for all interactions ι of Ω.

Then ψ is a global semantic consequence of Ψ with respect to reachable states.

Proof. Suppose N is an ANANt model for Ω that has reachable states and validates Ψ. By Theorem 50, we know that, for

all names of initial states i and interactions ι ofΩ, both i : ψ and ψ⇒ ~ι�ψ are global consequences ofΨ. Consequently,

i : ψ and ψ⇒ ~ι�ψ are valid at N, from which we deduce that (a) ψ is satisfied at all the initial states of N, and (b) if ψ

is satisfied at a state σ of N, then it also satisfied at all successor states of σ, for all interaction ι of Ω. It follows that ψ

is satisfied at all (reachable) states of N or, equivalently, that ψ is valid in N.

We are particularly interested in applying the induction schema described above to state properties, in which case the

induction step is of the form

φ⇒ ~ι� φ

where φ is a state-logic sentence and ι is an interaction of the ANANt-logic signature Ω. Whenever that is the case, we say

that φ is an invariant for ι with respect to Ψ; moreover, when this property holds for all interactions ι of Ω, and when Ψ

can be easily inferred from the context, we simply say that φ is an invariant.

More generally, notice that sentences of the form φ1 ⇒ ~ι� φ2 correspond to Hoare triples [31], and express

properties of the transitions performed by interactions: intuitively, the sentence φ1 is a (pre)condition under which

the execution of the interaction ι ensures the (post)condition φ2. This connection with the Hoare logic goes back to

Vaughan Pratt’s work on propositional dynamic logic in the late 1970s [32, 33].

4.2. State specifications

As mentioned above, we consider a specification to be a set of sentences over a given signature of a logic.

Definition 52 (State specification). A state specification for A consists of a signature Σ for A (i.e., with the same

actor names, channel types, and propositional symbols as the schema) and a set of sentences in State(Σ).

We denote by ΦElevator the state specification for the schema Elevator. This set contains, for instance, the base-logic

sentence C at P0 ≡ C at P1 from Example 16, and the sentence @A [btn] 〈ctr〉E from Example 24. Other examples of

sentences that we would expect to find in ΦElevator are given throughout this section.

Example 53 (Observation channels). We can include in ΦElevator sentences that give a meaning to obs-channels:

EE1 p→ [obs] p for every p ∈ Ł(P)

Intuitively, this means that knowledge is propagated through observation channels.

Example 54 (Knowledge). We can also specify what knowledge should be available at specific nodes, establishing in

this way a link between the base and the state level of the specification. For example:

EE2
(

@C 〈π〉P0↔ @E L (C at P0)
)

∧
(

@C 〈π〉P1↔ @E L (C at P1)
)

The elevator proper always knows at which platform the cabin is; notice that this sentence alone has no impact on

the knowledge at other nodes of the whereabouts of the cabin, which might vary.
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EE3 @a p→
∨

b∈N\{a}@b (p ∧ 〈obs〉 a)

for a ∈ N \ {E} and p ∈ {L (C at P0),N (C at P0), L (C at P1),N (C at P1)}

Knowledge about the location of the cabin can be acquired by actors other than E only through observation channels.

That is, these sentences of ΦElevator determine what knowledge nodes have about Cabin: the elevator proper always

knows where the cabin is, and the other nodes can only acquire that information through observation channels.

Through entailment, state-logic specifications allow us to determine properties of the ANANt structures and schemas in

which the sentences of the specification are valid. The following corollary of Proposition 26 provides a characterisation

of the validity of a sentence at a structure in terms of global (semantic) entailment.

Corollary 55. Given an ANANt structure S forA and a sentence φ, S � φ if and only if ΦS � φ.

Example 56 (callElevator0). It is trivial to see that ΦcallElevator0 consists of:

CC1 @A 〈π〉F0

Alice is at the ground floor.

CC2 @A 〈btn〉F0

A btn channel connects Alice to the ground floor.

CC3 @A 〈ctr〉F0

A ctr channel connects Alice to the ground floor. Notice that this sentence is a consequence of CC2, since btn ≤ ctr.

CC4 @F0 〈ctr〉E

A ctr channel connects the ground floor to Elevator.

Example 57 (Selevator0
). It is trivial to see that the following sentences belong to ΦSelevator0

:

SS1 @C 〈π〉P1

The cabin is at the first platform.

SS2 @E 〈obs〉F0

An obs channel connects the elevator to the ground floor.

SS3 @F0 〈obs〉A

An obs channel connects the ground foor to Alice.

Given that callElevator0 is a substructure of Selevator0
, we also have that ΦSelevator0

includes ΦcallElevator0.

One can use Corollary 55 to infer properties of the underlying structures of given states. For example, from the

specification ΦElevator ∪ΦSelevator0
we can infer, by syntactic entailment, properties like @A L (C at P1) – i.e., at σelevator0

,

Alice knows that the cabin is at the first platform. For simplicity, we tend to writeΦ ⊢Elevator φ instead ofΦElevator∪Φ ⊢ φ.

Let us first consider the following intermediary property:

Example 58 (Observation channels). The schema:

EE4 @a (p ∧ 〈obs〉 b)→ @b p

can be derived from ΦElevator, i.e., for any two actors a, b ∈ NElevator and any base-logic sentence p ∈ Ł(P),

ΦElevator ⊢ @a (p ∧ 〈obs〉 b)→ @b p.

The schema states that, if actors a and b are connected through an observation channel, then b acquires all the knowledge

that is available at a. A possible derivation (according to Corollary 49) is as follows:
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1. @a (p→ [obs] p) by @II, based on EE1

2. @a

(

(p ∧ 〈obs〉 b)→ ([obs] p ∧ 〈obs〉 b)
)

propositional equivalence, based on 1

3. @a

(

(p ∧ 〈obs〉 b)→ @b p
)

by propositional calculus, based on 2 and λEE

4. @a (p ∧ 〈obs〉 b)→ @a @b p by Distr, from 3

5. @a (p ∧ 〈obs〉 b)→ @b p by Scope, from 4

Example 59. We can now use EE4 to derive:

{

@C 〈π〉P1,@E 〈obs〉F0,@F0 〈obs〉A
}

⊢Elevator @A L (C at P1)

That is, if Cabin is at the first platform, the ground floor can observe Elevator and, in turn, Alice can observe the ground

floor, then Alice knows that Cabin is at the first platform.

1. @C 〈π〉P1 by hypothesis (SS1)

2. @C 〈π〉P1→ @E L (C at P1) from EE2

3. @E L (C at P1) by MPMP, based on 1 and 2

4. @E 〈obs〉F0 by hypothesis (SS2)

5. @E L (C at P1) ∧@E 〈obs〉F0 by ∧II, based on 3 and 4

6. @E (L (C at P1) ∧ 〈obs〉 F0) from AndDistr, based on 5

7. @E (L (C at P1) ∧ 〈obs〉 F0)→ @F0 L (C at P1) from EE4

8. @F0 L (C at P1) by MPMP, based on 6 and 7

9. @F0 〈obs〉A by hypothesis (SS3)

10. @F0 L (C at P1) ∧@F0 〈obs〉A by ∧II, based on 8 and 9

11. @F0 (L (C at P1) ∧ 〈obs〉 A) from AndDistr, based on 10

12. @F0 (L (C at P1) ∧ 〈obs〉 A)→ @A L (C at P1) from EE4

13. @A L (C at P1) by MPMP, based on 11 and 12

There are other general properties of Elevator that we might want to prove; for example, @C 〈π〉 (P0 ∨ P1) (from

Example 65) – the cabin is (always) either at P0 or at P1. Because such properties are not structural, in the sense that

they do not hold at every state of Elevator, they should be proved instead at the level of actor networks, which define

the way states can evolve through repeated interactions. For that purpose, we need to work with ANANt specifications.

4.3. ANt specifications

Similar to state specifications, we define:

Definition 60 (ANANt specification). An ANANt specification forA consists of a signature Ω forA and a set of sentences

in ANANt(Ω). Given an ANANt specification Ψ, we define State(Ψ) = {φ ∈ State(Ω) | Ψ 
� φ}, i.e., the sentences of the state

logic that are entailed by Ψ, which we call the underlying state specification of Ψ.

This means that, if Ψ is an ANANt specification forA, then for every actor network N overA that validates Ψ (N 
� Ψ), we

have ςN(DN) ⊆ SState(Ψ), i.e., all the states of N satisfy the state properties entailed by Ψ; in particular, RN ⊆ SState(Ψ).
16

The ANANt logic allows us to axiomatise specific types of channels that influence state transitions, much in the same

way that in Example 53 we axiomatised observation channels:

Example 61 (Move channels). Consider an ANANt signature ΩElevator as in Example 34. One could axiomatise mov

channels as follows. For every interaction ι ∈ IElevator and actors a, o, t ∈ NElevator:

TT1 @a 〈π〉 o⇒ ~ι�@a 〈π〉 t if ι � @o 〈mov〉 t

TT2 @a 〈π〉 o⇒ ~ι�@a 〈π〉 o if ι 6� @o 〈mov〉 true

16Recall that, by Definition 12, RN is the set of reachable states of N.
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This means that any interaction that involves a channel of type mov between the actors o (for origin) and t (for target),

regarded as locations, determines the movement to t of any actor located in o; on the other hand, if an interaction

does not involve a mov channel starting at o, then the actors in o maintain their location. For example, because

moveCabin0 � @P1 〈mov〉P0 (according to Proposition 26 and Corollary 55) and moveCabin0 6� @F0 〈mov〉 true

(easy to prove, given that moveCabin0 has no mov channel starting at F0), we obtain

@C 〈π〉P1⇒ ~moveCabin0�@C 〈π〉P0

@A 〈π〉F0⇒ ~moveCabin0�@A 〈π〉F0

That is, a transition performed by moveCabin0 on a state where Cabin is at the first platform moves Cabin to the

ground platform and, if Alice is at the ground floor, she will remain there.

Example 62 (Control channels). Whereas mov channels are responsible for changes operated by interactions on the

placement graph of a state, channels of type ctr are responsible for changes operated on the sub-graph, i.e., they control

which channels can be made available as a result of the interaction.

One could axiomatise ctr channels as follows. For every ι ∈ IElevator, κ ∈ TElevator and a, b ∈ NElevator:

TT3 〈|ι|〉@a 〈κ〉 b⇒ @a 〈κ〉 b if ι � ∀x (@a 〈π
∗〉 x→ ¬∃y @y 〈ctr+〉 x)

where π∗ denotes the reflexive and transitive closure of the parent modality, and ctr+ the transitive closure of the

ctr-channel modality. Notice that, because the ANANt schema is finite, both closures can be defined using disjunctions:

• 〈π∗〉 φ , φ ∨ 〈π〉 φ ∨ 〈π〉2φ ∨ · · · ∨ 〈π〉n−1φ

• 〈ctr+〉 φ , 〈ctr〉 φ ∨ 〈ctr〉2φ ∨ · · · ∨ 〈ctr〉nφ

where n = |NElevator|. In practice, however, the disjunction-based approach to reflexive and transitive closures may

prove to be inadequate for theorem-proving purposes. This suggests further research into connections between hybrid

logic (and, in particular, the state logic) and the much more expressive dynamic logic (see, for example, [34]).

The intuitive interpretation of the axiom TT3 is that, if an interaction makes available a channel κ between two nodes

a and b when applied to a given state, then the interaction must include a ctr channel (or a path of such channels) whose

target is either a or an ancestor of a. This means that there must be an actor (corresponding to y) that exerts control

over either a or an ancestor of a (which implicitly controls its descendants). This captures part of the notion of agency

that is intrinsic to actor networks.

Example 63 (callElevator0 & moveCabin0). One can also specify the effects of specific interactions:

TT4 @C 〈π〉P1⇒ ~callElevator0�@P1 〈mov〉P0

When the elevator is called (at the ground floor), a request to move the cabin to the ground platform is issued if the

cabin is at the first-floor platform.

TT5 ~moveCabin0�@F0 〈door〉 (C ∧ 〈door〉F0)

The doors are opened whenever the cabin moves to the (ground) platform.

We now have all the necessary ingredients for illustrating the proofs of invariants and of inductive properties.

Example 64 (Invariants). Let ΨElevator be the extension of the specification ΦElevator from Section 4.2 with the sen-

tences discussed in Examples 61, 62 and 63, and with all sentences of the form (elevator0 : φ) where elevator0 is the

only initial-state name of the ANANt signature of Elevator and φ is a state sentence valid in σelevator0
(which includes those

presented in Example 57). Then, the sentence @C 〈π〉 (P0∨ P1) is an invariant with respect to the specification ΨElevator

in the sense that ΨElevator entails @C 〈π〉 (P0 ∨ P1)⇒ ~ι�@C 〈π〉 (P0 ∨ P1) for all interactions ι ∈ IElevator.

We start by proving that ΨElevator 
� @C 〈π〉P0⇒ ~ι�@C 〈π〉 (P0 ∨ P1).

1. From TT2, if ι 6� @P0 〈mov〉 true then @C 〈π〉P0⇒ ~ι�@C 〈π〉P0 is a sentence in ΨElevator;

therefore ΨElevator 
� @C 〈π〉P0⇒ ~ι�@C 〈π〉 (P0 ∨ P1).
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2. Suppose now that ι � @P0 〈mov〉 true.

(a) From Example 24, ι � @P0 [mov] P1, and thus ι � @P0 〈mov〉P1.

(b) From TT1, it follows that @C 〈π〉P0⇒ ~ι�@C 〈π〉P1 is a sentence in ΨElevator.

(c) Therefore, ΨElevator 
� @C 〈π〉P0⇒ ~ι�@C 〈π〉 (P0 ∨ P1).

Following the same reasoning, ΨElevator 
� @C 〈π〉P1⇒ ~ι�@C 〈π〉 (P0 ∨ P1). Hence we conclude that

ΨElevator 
� @C 〈π〉 (P0 ∨ P1)⇒ ~ι�@C 〈π〉 (P0 ∨ P1)

Example 65. We can take the sentence from Example 64 further and show that it is not only an invariant, but a global

semantic consequence of ΨElevator with respect to reachable states. Building on Example 57 (SS1), we know that the

sentence (elevator0 : @C 〈π〉P1) is part of the specification ΨElevator. Therefore, the following entailment holds:

ΨElevator 
� elevator0 : @C 〈π〉 (P0 ∨ P1)

By the induction schema of Corollary 51, it follows that ΨElevator entails @C 〈π〉 (P0 ∨ P1) on reachable states. That is,

the fact that Cabin is either at the first platform or at the ground platform is a property of all the reachable states of the

actor networks that validate ΨElevator – and, in particular, of the actor network described in Example 11.

The proofs of invariants rely essentially on Hoare triples, i.e., sentences of the form φ1 ⇒ ~ι� φ2. Another kind of

property concerns the availability of transitions performed by interactions when certain conditions hold, which can be

done through sentences of the form φ⇒ 〈|ι|〉 true. These are called progress properties, in the sense that they ensure

that computations can proceed. Examples of such sentences are available through the axiom schema Inter in Figure 10.

Example 66 (Progress). For instance, from Example 56 we can conclude, based on Inter, that

ΨElevator 
�
(

@A 〈π〉F0 ∧@A 〈btn〉F0 ∧@F0 〈ctr〉E
)

⇒ 〈|callElevator0|〉 true

Because, from Example 56, the sentences in the antecedent are also valid for Selevator0
, we can also conclude that

ΨElevator 
� elevator0 : 〈|callElevator0|〉 true

which means that progress can be made from the initial state by performing callElevator0.

This example also illustrates how the axiomatisation of ctr channels can interfere with progress properties, possibly

generating inconsistencies. Therefore, some care must be taken when defining ΨElevator. For example, by TT4, we have

ΨElevator 
� @C 〈π〉P1⇒ ~callElevator0�@P1 〈mov〉P0

Because, as seen in Example 64, (elevator0 : @C 〈π〉P1) belongs to ΨElevator we can conclude that

ΨElevator 
� elevator0 : ~callElevator0�@P1 〈mov〉P0

Using now the progress property above, we obtain

ΨElevator 
� elevator0 : 〈|callElevator0|〉@P1 〈mov〉P0

In order to see how interference could arise, notice that the sentence @P1 [mov] false is valid in the state σelevator0

discussed in Examples 64 and 11. Therefore, (elevator0 : @P1 [mov] false) belongs to ΨElevator as well.

On the other hand, by TT3 it follows that, if callElevator0 � ∀x (@P1 〈π
∗〉 x→ ¬∃y @y 〈ctr+〉 x), then

ΨElevator 
� 〈|callElevator0|〉@P1 〈mov〉P0⇒ @P1 〈mov〉P0

which would raise a contradiction:

elevator0 : @P1 [mov] false and elevator0 : @P1 〈mov〉P0

However, a contradiction does not arise here because, using again the axiom schema Inter but in the other direction,

we can derive from Example 56 that 〈|callElevator0|〉 true ⇒ (@A 〈ctr〉F0 ∧@F0 〈ctr〉E) is an ANANt-logic tautology,

which shows that ∀x (@P1 〈π
∗〉 x→ ¬∃y @y 〈ctr+〉 x) is not valid for callElevator0 – there is a chain of ctr channels

that connects Alice to Elevator – the parent of P1 – which allows for a new channel to be created connecting P1 to P0.

That is, when modelling actor networks we need to ensure that appropriate control channels are present whenever

the interactions create new connections.
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5. Concluding remarks

In this paper, we have shown how, through a two-stage constrained-hybridisation process, a suite of logics can be

developed that support the specification and verification of cyber-physical-system protocols modelled as actor networks

(ANANts) in the sense of [10]. The first stage of the hybridisation process results in a logic that captures the structure of

actor networks and the way knowledge flows across such networks; the second addresses the dynamic aspects of actor

networks, i.e., the way they can evolve as a result of the interactions that occur within them.

One of the main novel aspects of the paper in relation to the state of the art in hybridisation is in the fact that we

rely on unconventional semantic constraints derived from the structural characteristics of ANANt states or from the general

properties of state transitions. This results in faithful representations, at a logical level, of the way actor networks

perform computations. That is, constrained models capture the relationship between the higher-level reconfigurations

of networks and the lower-level interactions between actors that trigger them. Besides expressivity, a key property of

these constraints is that they can be axiomatised within hybrid logic. This enables the use of conventional (sound and

complete) proof systems for hybrid logic as a tool through which we can formally verify properties of actor networks.

The semantic model of ANANts is a bigraph-like structure in the sense of [12], i.e., it captures both connectivity (actors

can be connected to other actors, and these connections can change in time) and locality (actors have a location and can

move in space). This is achieved in the first-stage hybridisation (which produces the state logic – Section 3.2) through

two different kinds of modalities: 〈κ〉, where κ is a channel type, for connectivity; and 〈π〉 for locality. Through these

modalities, we can model the way information (such as data or knowledge) is transmitted among actors based on the

connectivity that is available between them and where they are located – which is not intrinsic to bigraphs. Although

we used a rather simple model of knowledge based on a three-valued propositional Łukasiewicz logic, the first-stage

hybridisation could have been applied to a more expressive logic if relevant for a given application domain.

The second level of hybridisation (which produces the ANANt logic – Section 3.3) allows us to reason about the

dynamics of ANANts, i.e., the way connectivity and locality change when certain configurations, called interactions, are

present in a state. This sort of reasoning is akin to the use of dynamic logic for reasoning about imperative programs

(e.g., [35]) or temporal logic for reasoning about concurrent computations (e.g., [21]), and we gave an example of a

typical proof of an invariant. We also showed how certain types of channels that are intended to capture movement

(i.e., changes to locality) or control (i.e., changes to connectivity) can be axiomatised in the ANANt logic, which leads

us to conclude that the two-stage constrained-hybridisation process that we proposed is particularly well-suited for

dealing with both the structural and the dynamic aspects of the semantic domains that capture connectivity and locality.

Part of our planned future work is to use the expressive power of this formalism to reason about security protocols in

cyber-physical systems, and in particular about non-interference and the existence of covert channels, which is part of

the original motivation for the study of ANANts as proposed in [10].

This approach to modelling and analysis is declarative in the sense that we proposed logics whose sentences express,

declaratively, properties of a system, and inference rules that can be used to infer properties from a system specification.

This is different from the logics that have been proposed for bigraphs (e.g., [19], [20]), which are term-based process

calculi through which one can give an operational semantics based on term rewriting. One of the research directions

that we are currently pursuing is precisely towards an operational semantics of ANANts based on graph transformation

systems in the sense of [36], and its integration with the declarative approach proposed herein.

ANNts are suitable for the kinds of closed protocols that arise in many classes of cyber-physical systems where

security is a concern, an example of which are the authentication protocols used nowadays in online banking, which

involve bank customers, smart cards, smart-card readers and mobile phones [10]. Hence, it is important to investigate

how notions related to information flow such as non-interference or non-deducibility can be formalised and proved

through suitable rules. To that end, we are investigating how a connection can be established with the work reported

in [17], which proposes a hybrid-logic formalism and proof calculus for modelling and reasoning about hybrid-dynamic

information flow in cyber-physical systems.

The systems we have considered in this work are closed in the sense that connectivity and locality are bound by

a fixed space of possible locations and a fixed set of possible connections. Bigraphs are more general in that they

address open systems, i.e., systems in which locality and connectivity are not bound at design time. Therefore, another

research direction that we are pursuing aims at investigating how the formal approach that we proposed in [37, 38] for

the run-time interconnection of asynchronous systems, which like bigraphs is based on hypergraphs, could be used to

extend the framework that we have proposed in this paper.
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