


estimation methods, understand their control and navigation

algorithms for autopilot, and obtain their default common

parameters. Therefore, we can identify the limits of these

algorithms. Consequently, we have compromised multiple

types of drones through cyber attacks or physical attacks.

Our Research Focus. In this paper, we focus on remotely

manipulating the actual position of a drone, by compromising

state estimation algorithms and autopilot controllers (such as

heading, velocity, or attitude). As sensors are usually subject

to occasional errors, most control systems use state estima-

tion algorithms to deal with such errors. With an extensive

literature review, we confirm that Kalman Filter (KF) and

its variants are the most popular estimation algorithms in

drone control systems. Therefore, we choose it as our attack

target. Furthermore, based on the position estimation, a drone

navigation system usually uses an autopilot controller to

manage its actual position in real time such that it follows

a given flight path, and automatically guides it to a desired

destination. Therefore, we further investigate drone autopilot

controllers to figure out generic methods to manipulate target

drones’ actual positions. To the best of our knowledge, this

is the first work in this area.

Paper Organization and Our Main Contributions. The

remainder of this paper is organized as follows. We first

introduce related work in Sec. 2. In Sec. 3, we introduce the

common control loop in drone systems, especially the KF-

based position estimation methods and autopilot controller

in detail. In Sec. 4, we propose several attacks on drone

position estimation methods and autopilot controllers. First,

we propose a maximum False Data Injection (FDI) attack

on the most popular KF-based estimation approaches; we

then provide a detailed analysis of the proposed attack, and

further design a generic FDI attack. Furthermore, we design

two attacks on autopilot-based navigation, which ultimately

affects the actual position of a drone. In Sec. 5, we evaluate

the proposed attacks via simulations. Our simulation results

have shown that the proposed attacks can significantly affect

the position estimation and the actual position of a drone.

In Sec. 6, we conclude this paper and point out our future

research directions.

II. RELATED WORK

A. Position Estimation Algorithms

Position estimation is critical to drone control and nav-

igation systems. The most common sensors on consumer

drones include standard IMUs (accelerometers, gyroscopes,

and magnetometers in some cases), GPS, and barometers.

As sensors may experience errors, drone control systems

usually use state estimation methods to provide more ac-

curate estimations. In general, KF and its variations (e.g.,

Extended KF, or simply EKF) are the most commonly used

state estimation methods [9], [10]. These methods usually

give us fairly accurate state estimations. A recent advanced

KF framework [11], “Sigma-Point Kalman Filter”, provides

both a higher accuracy and lower computational overhead,

compared to the widely-used EKF. A few other methods are

also proposed to obtain altitude estimations based on various

sensors (e.g., using camera images [12], or differential GPS

and ultrasonic sensors [13]). However, because they are not

commonly used on consumer drones, these methods are out

of the scope of this research.

B. Existing False Data Injection (FDI) on State Estimation

FDI attacks have been proposed on dynamic systems,

through manipulating state estimations via modifying cor-

responding measurements without being detected by bad

data detectors. FDI attacks against state estimation have

been examined in various control systems. Liu et al. first

proposed a FDI attack against the state estimation in power

grids [14]. Several following-up efforts have been made in

this area [15], [16]. However, such state estimation model is

different from the one in drone navigation systems. Recently

theoretical analyses have been conducted in the area of FDI

attack against KF-based state estimation [17]. However, their

results cannot be applied to our research, because their model

has very strict assumptions.

C. Autopilot Controller in Drones

An autopilot controller is essential for drone navigation

systems. Common control strategies include the following

methods [18]. First, the PID control is the most popular

control strategy, which uses a control feedback mechanism

to dynamically adjust control inputs according to the dif-

ferences between outputs and setpoints. It is also one of the

simplest control strategies and usually achieves an acceptable

performance. However, it is not very robust, and its param-

eter adjustments may require extra efforts. Second, Neural-

Network (NN)-based adaptive control uses neural networks

to direct adaptive control system, e.g., an NN-based autopilot

algorithm is presented for unmanned helicopter control [19],

which also works for fixed-wing UASs. Furthermore, Fuzzy-

based autopilot takes advantage of the recent development

of fuzzy logic control systems, e.g., three fuzzy controllers

are proposed to make a drone follow a pre-set flight path

under wind disturbance [20]. Lastly, LQG/LTR & H∞ based

autopilot are also proposed. Although the PID control and

NN-based adaptive control do not require an accurate system

model, they may be not very robust. As a result, model-based

controllers have been developed. Because drone flight control

systems are usually non-linear, we often use linear models

to approximate the non-linear models. While a model-based

controller with linear quadratic regulator (LQR) Controller is

proposed [21] for effective drone altitude control, a controller

using a combination of dynamic inversion and H∞ loop

shaping is proposed to solve the same problem [22].

III. MODELS AND PROBLEMS FORMULATION

A. Control Loop in Drone Systems

The control loop in a drone is illustrated in Fig. 2,

which is a real-time automatic control without manual inputs.







Since it has reached the steady state, K has converged to

a constant. Then, in the maximum FDI attack, according to

eq. (1),(2), and (5), we have
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where Buk, ∆t, K, λmax are approximated as constants. In

the above equation, we remove the notation “(4 : 6)" from

each term for clarity.

This result shows that xk − xk−1 is linear, so xk would

be quadratic. Eq. (7) also gives us the expression for xk. In

particular, from eq. (7), we have:
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Summing up the above equations, we have:
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With this result, we can achieve a more general purpose

attack – generic FDI attack: in this attack, assuming the

attacker starts performing the attack at time t. Our goal is

to make the state value xt+n to be certain value ξ at time

t+ n, after n time cycles.

To further simplify the attack, we assume starting time t

to be 0. In eq. (8), x0 and K are known to attackers, ∆t

is usually set to be one time unit, e.g., 100 milliseconds.

Then we have two options to achieve the attack goals:

compromising u or λmax. Modifying λmax relies on ma-

nipulating GPS or barometer readings (according to eq. (5)),

and modifying u means the manipulation of accelerometer

readings. As a result, by modifying GPS/barometer readings

and/or accelerometer readings, we can achieve the generic

FDI attack based on eq. (8).

If the starting time t is not zero, we can achieve the generic

FDI attack based on the following equation:
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This equation shows that the compromised estimation

xt+n will also depend on the starting time t.







Fig. 7: Altitude estimation before attack.

Fig. 8: Altitude estimation after attack.

of generality, we choose one dimension of drone poistion -

altitude as the attack target.

Simulation Settings: The simulations are based on the

altitude estimation algorithm of the ArduPilot project [26].

We mainly compare the altitude estimations before and after

the proposed attacks.

Our simulations are performed on TestLog3 data given

in [26]. In the experiments, without loss of generality, we

perform the maximum FDI attack to make the attack effects

more legible. The default threshold τ in the ArduPilot code is

pre-set to be 5. In addition, all the sensors remain operational

except the airspeed module, which is disabled manually to

show the attack effects.

In this simulation, for simple illustration, we set the

vertical acceleration to be 0, where the altitude estimation

is expected to increase linearly according to eq. (8). In ad-

dition, we force the flight control system to perform altitude

estimation at each time interval. (Under default settings, the

estimation may not proceed at certain time steps if some

measurements are missing.) In the simulations, we performed

the attacks through the entire estimation process.

Simulation Results: Fig. 7 and Fig. 8 depict the altitude

estimations before and after the maximum FDI attack, respec-

tively. The x-axis shows the simulation time and the y-axis

shows the altitude and the altitude estimate. In the figures, the

blue line shows the estimations of altitude while the red line

represents the actual values. In Fig. 7, without attacks, two

lines mostly overlap. However, in Fig. 8, with the attacks, the

estimation of altitude surges. In addition, the compromised

estimations increase almost linearly. The reason that they

are not strictly linear is: even though we set the vertical

acceleration measurements as 0, its estimation may not be

necessarily 0, which causes small fluctuations. Furthermore,

we can also validate the effectiveness of our attack from the

altitude innovation data. From Fig. 9 and Fig. 10, we can see

that the innovation of the altitude remains constant during

the entire estimation process when under attack, which is as

expected.

Fig. 9: Innovation before attack.

Fig. 10: Innovation after attack.

B. Third-Phase Attacks on Autopilot Controllers

In this subsection, we will evaluate the proposed attacks

on autopilot controllers. Specifically, we conduct two simu-

lations to verify if the proposed attacks on the basic autopilot

algorithm and the linear track-based autopilot algorithm can

achieve the desired goal.

Simulation Settings: The attack simulator is written in

MATLAB. In this simulation, we assume that we are able

to manipulated the position estimation. The injection on the

position estimation is set to be at most 5 m/timestep. In

addition, the noise of each state estimation is assumed to

follow N (0, 0.01). In each attack, the source and the original

destination is set to be (50 m, 100 m) and (150 m, 100 m)

in a 2D plane. We would like to guide the target drone to

the compromised destination (150 m, 75 m). For the attack

on the basic autopilot algorithm, the target drone’s maximum

speed allowed is assumed to be 10 m/timestep; and for the

attack on the track-based autopilot algorithm, we assume that

the maximum speed along the track and towards the track for

track error correction are 10 m/timestep and 2.5 m/timestep,

respectively.

Simulation Results: Fig. 11 shows the simulation results

of attacks on the basic autopilot algorithm. The red line

with circles shows the flight path from the system’s view

while the black line with triangles represents the actual

path. At first, the attackers put a maximum positive injection

along the y-axis. Then the autopilot controller will direct the

drone to fly towards the "destination", which makes it move

towards bottom right. However, the current bearing is not

large enough for the compromised destination. Therefore, the

attackers will keep the same action in the next four time steps.

When the drone eventually aims exactly at the compromised

destination after the 5th time step, we will stop injections,

and let the drone fly directly towards the destination without

changing bearings in the following time steps. In the end, we

can find that the drone have almost reached the compromised

destination, which is as expected. Similarly, Fig. 12 shows the

attack results on the linear track-based autopilot algorithm:

we can also direct the target drone arriving at the desired

location.



Fig. 11: Simulation of attacking the basic autopilot algorithm.

Fig. 12: Simulation of attacking the linear track autopilot

algorithm.

VI. CONCLUSION

In this paper, we have carefully investigated position esti-

mation methods and autopilot algorithms used in the popular

open-source ArduPilot and identified potential attacks to

compromise position estimations and manipulate drone actual

positions. We have developed two attacks on the popular

estimation techniques and further proposed two attacks on

the autopilot controller to manipulate drone positions. Our

simulation results have shown that the proposed attacks can

significantly affect the position estimation and the actual

positions of a drone. We are currently working formulating a

theoretical framework to conduct thorough investigation such

attacks and analyze its capabilities and limitations.
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