Compromising Flight Paths of Autopiloted Drones

Wenxin Chen, Yingfei Dong
Department of Electrical Engineering
University of Hawaii
Honolulu, HI 96822

Abstract—While more and more consumer drones are abused
in recent attacks, there is still very little systematical research
on countering malicious consumer drones. In this paper, we
focus on this issue and develop effective attacks to common
autopilot control algorithms to compromise the flight paths of
autopiloted drones, e.g., leading them away from its preset
paths. We consider attacking an autopiloted drone in three
phases: attacking its onboard sensors, attacking its state es-
timation, and attacking its autopilot algorithms. Several first-
phase attacks have been developed (e.g., [1]-[4]); second-phase
attacks (including our previous work [5], [6]) have also been
investigated. In this paper, we focus on the third-phase attacks.
We examine three common autopilot algorithms, and design
several attacks by exploiting their weaknesses to mislead a drone
from its preset path to a manipulated path. We present the
formal analysis of the scope of such manipulated paths. We
further discuss how to apply the proposed attacks to disrupt
preset drone missions, such as missing a target in searching an
area or misleading a drone to intercept another drone, etc. Many
potential attacks can be built on top of the proposed attacks.
We are currently investigating different models to apply such
attacks on common drone missions and also building prototype
systems on ArduPilot for real world tests. We will further
investigate countermeasures to address the potential damages.

Index Terms—counter drone, autopilot, navigation

I. INTRODUCTION

While they have enabled many new applications [7], con-
sumer drones have been abused in many recent attacks [8],
[9]. One recent case was at the UK’s second largest airport.
Malicious drones disturbed the normal operations during the
busy 2018 Christmas season for three days. Clearly, we have
to build effective solutions to stop such abuses.

Existing counter-drone solutions usually have two steps:
we first identify an unauthorized drone entering a restricted
airspace and then apply counter-drone solutions to disrupt or
capture it. A typical setting is shown in Fig. 1. We set up
a perimeter and apply drone detection schemes, using Radio
Frequency (RF) communications, radars, acoustic monitor-
ing, or image processing [10]-[12] to discover incoming
drones. We focus on the second step in this paper: how to
systematically counter the invading drones. In particular, in
the no-fly zone, we assume that remote manual control is
disabled and the malicious drone is on autopilot; we can
apply the first-phase sensor attacks and the second-phase state
estimation attacks to inject fake states into the autopilot nav-
igation control. By examining the existing common autopilot

Zhenhai Duan
Department of Computer Science
Florida State University
Tallahassee, FL 32306

algorithms, we propose several third-phase attacks to mislead
invading drones.

Most existing counter-drone systems have been proposed
by industry with straightforward solutions, such as jamming
drone control channels or GPS receivers to trigger a drone
switching to a default failsafe mode (e.g., landing when lost
GPS signals over 10s), or capturing a drone with a net, etc.
Such direct physical attacks work well when dealing with
unsophisticated drone operators; but they also show serious
limitations, e.g., they usually do not consider collateral
damages. If a drone carries a bomb, we should not make
it land in a protected critical space, e.g., an office building.
The best solution in such situation is to lead the drone fly
away from the target as far as possible. We have conducted a
broad literature survey, and have not seen systematic research
to address such issues. Therefore, it is urgent to investigate
more intelligent counter-drone solutions.

Ideally, we want to precisely control the flight path of an
unauthorized drone, e.g., making it miss its preset waypoints
in its mission plan. In this paper, we consider attacking an au-
topiloted drone in three phases. The first-phase attacks focus
on compromising the sensor readings of an autopiloted drone.
Several first-phase attacks have shown that such attacks are
completely feasible (e.g., [1]-[4]). Based on such first-phase
attacks, we have proposed the second-phase attacks [5],
[6], e.g., exploiting the weaknesses in common drone state
estimation algorithms. In this paper, we focus on the third-
phase attacks by utilizing the compromised state estimation
to fool common autopilot algorithms to make a drone deviate
from its flight paths. We do not assume that we can remotely
tamper actuators.

Our Goal. Our goal is to compromise drone autopilot con-
trol algorithms to manipulate flight paths. We have conducted

Mm_—Gs.t
PR X
R \
/" Remote manual control
/ disabled in no-fly zone \\

Evading |\
Drone \

Counter /
Drone = /

\ Solution

N\
. No-fly zone -~
\\ O

e

Fig. 1: Attack Model.

—«

extensive investigation on popular open-source flight control
systems (such as ArduPilot and Paparazzi), and discovered
multiple weaknesses in common autopilot control algorithms.
Because sensors often have occasional errors, drone control
systems usually use state estimation algorithms to address
these errors. Kalman Filter (KF) and its variants are the most
popular estimation algorithms in drone control systems. A
drone autopilot system is dependent on these state estimations
to adjust flight parameters. We have proposed several second-
phase attacks to manipulate state estimation algorithms in our
previous papers. In this paper, we focus on exploiting the
weakness of autopilot algorithms to manipulate a drone in
real time in order to make it follow (or not follow) certain
flight paths, e.g., away from a target or missing certain points
in a search sweep. To our best knowledge, we have not seen
similar work in this direction.

The remainder of this paper is organized as follows. We
will introduce related background of autopilot control in Sec.
2. In Sec. 3, we will then present several attacks on autopilot
control algorithms, and analyze the scope of feasible paths
under such attacks. We will further discuss how to apply the
attacks to disrupt drone missions, and show basic simulation
evaluations in Sec. 4. We conclude this paper and discuss our
current and future research in Sec. 5.

II. DRONE AUTOPILOT BACKGROUND
A. Drone Control Model

We illustrate a common automatic control loop of a drone
in Fig. 2. The control system periodically reads physical mea-
surements from sensor readings, and then estimate system
states for further control decisions via sensor fusion schemes;
based on the estimated system states, the autopilot component
makes control adjustments of actuators to achieve control
movements.

Sensors

State
Estimation

Autopilot

Fig. 2: Common Drone Control Loop.

To deal with an evading drone, we need attack schemes
to affect its flight path based on our goals, e.g., making it
miss its preset waypoints. As we mentioned in the above, we
consider such attacks as the third-phase attacks that exploit
the weakness of drone autopilot control algorithms. These
third-phase attacks are based on the first-phase attacks on
sensors and the second-phase attacks on state estimation
algorithms. The first-phase attacks focus on compromising
the sensor readings of a drone. By understanding how state
estimation algorithms use these sensor data, we can figure
out how to manipulate these readings such that we can fool

the state estimation algorithms of a drone as we need in
the second-phase attacks. Similarly, exploiting the weakness
of drone flight control algorithms, we know what states
will mislead the drone movement control in the third-phase
attacks. In this paper, we assume that sensor attacks help us
in state estimation and autopilot attacks; we do not focus on
sensor attacks. Attacking sensor readings has been an active
research area in recent years, and existing sensor attacks
achieves good results in manipulating IMU sensors [3], [4],
GPS [1], [2], etc. Therefore, in this paper, we assume that
first-phase attacks help us compromise sensors, and second-
phase attacks (proposed by other researchers and us [6]) help
us mislead the state estimation algorithms. We will focus on
the third phase attacks.

B. Autopilot Control Algorithms in ArduPilot

In this section, we introduce the basic mechanism for
autopilot control, which adjust drone actions to follow a pre-
set flight path with specific waypoints. Most popular autopi-
lot control algorithms use GPS-based waypoints navigation.
Therefore, the path control of a drone usually includes:
adjustment of roll and pitch for desired attitude; adjustment of
heading and altitude for trajectory or waypoints tracking; and
waypoint navigation. The autopilot system usually consists of
two basic controllers: An altitude controller makes sure the
drone at the correct altitude, and a velocity/heading controller
navigates the drone to fly through the desired waypoints. We
focus on both controllers in this work to change drone flight
paths. In this paper, we investigate three autopilot navigation
algorithms used in the popular open source flight control
system ArduPilot. ArduPilot uses the Proportional Integral
Derivative (PID) method for the controller, which adjust the
actuators in each time step to achieve the preset target points.

The Basic AutoPilot Algorithm is the fundamental auto-
navigation control algorithm. As shown in Fig. 3a, the
controller calculates the target bearing in every time step
based on the current position of the drone and the target
position. The controller will then navigate the drone towards
the target with this bearing and a desired velocity.

The Linear Track-based Navigation Algorithm leads a
drone to a target location following the linear track from a
source to a destination, as shown in Fig. 3b. To make sure that
the drone flies along the track, the controller will calculate the
track error (the distance between the drone’s current position
and the track) in every time step, and limit the error within
a small range. As a result, a drone will not deviate from the
track too far. Usually, the rate to correct the track error (i.e.,
moving the drone back to the track) is stable as a constant.
To lead the drone to reach the destination, the controller will
calculate the drone’s speed along the track and stabilize it at
a desired one.

The Spline Track-based Navigation Algorithm makes a
drone fly smoothly passing through waypoints during a flight.
To achieve this, one simple solution is to make a drone slow
down when it approaches a waypoint. However, this may

/R

]
WP,

WP, e wp, Track WP, wP,
. a, WP, e a, ay wp, M Vs
a, a

(a) Basic autopilot algorithm.

(b) Linear track-based autopilot algorithm.

(c) Spline track-based autopilot algorithm.

Fig. 3: Three types of autopilot algorithm.

cost the drone more time and power. In order to tackle this
problem, we can make the flight track be a spline. ArduPilot
uses Cubic Hermite splines for flight tracks. As shown in
Fig. 3c, a Cubic Hermite spline is defined by source W P,
destination W Ps, origin velocity V7, and destination velocity
Vo. In particular, any position P(t) in this spline can be
defined as:

2 -2 1 1 WP
-3 3 -2 1 WP,
_ 43 42 2
piy=1[¢ ¢t 1]-| ° 4 | o vl
1 0 0 O Vs
ey
where t € [0, 1]. The corresponding velocity is:
2% — 32 +1]7 [Wh
—2t3 4 3¢* WP,
VID=1p_opie| | @
3 — 12 Vs

When we piece splines together, we should ensure that the
positions and velocity rates are matched at each connection
point. Similarly, in this method, the controller constrains the
track error to make the drone move along the track, with a
desired speed.

III. PROPOSED ATTACKS

In this section, we focus on designing general methods
to compromise common autopilot navigation algorithms. In
particular, we propose three attacks to the three common
autopilot algorithms, to compromise the flight paths of au-
topiloted drones. We further formally analyze, when under
the proposed attacks, the feasible position scopes of an
autopiloted drone with a preset track from one waypoint
to another. We then discuss how to apply such analysis to
multiple tracks and other complicated cases (discussed in the
next section). We also examine the key factors that affect the
proposed attacks.

We assume that first-phase attacks (cyber attacks or phys-
ical attacks) can help us compromise drone sensor readings,
such that we can feed “fake” data to drone control algorithms
to mislead drone navigation control. Recently, several attacks
have been developed to compromise the readings of MEMS
sensors, by exploiting their physical vulnerabilities. In [3], the
authors showed that an adversary can incapacitate the MEMS
gyroscopes of a drone, by crafting acoustic signals with the
same resonant frequencies of gyroscopes to degrade their

a,: drone’s actual position att

a'.: drone’s position at t from autopilot’s view
d,: drone’s displacement at t

I,: attack on position estimation at t

- di a
I: difference between true and comp. dest. dg Se (CuC,)
a, \
d L
az 2 1
d; _~® \
a, Injection Track: |
a 2
a, 91 Ty \(o,p,)
(SX,Sy)r ————————————— .
b 4 a) ; o g as
¥ loe G5
(a' ay
a’ | . d > '3,71 d
0 2y 2 T d, .o 4
L4 Iy
I; v

Fig. 4: Tllustration of attaéking the basic autopilot algorithm.

performance. In [4], the authors further developed acoustic
injection attacks on MEMS accelerometers. Moreover, ma-
nipulating GPS readings [1], [2] has been conducted in field
tests. We are also investigating potential attacks on MEMS
barometer sensors used on drones, following other MEMS
research [13]. (We are fully aware that this assumption is
fairly strong. These attacks need significant efforts, which
are not addressed here.) Furthermore, we also assume that
we can perform second-phase attacks to manipulate state
estimation such as positions. Other research and our previous
work [6], [14] have shown such fake-data injection attacks
on state estimation. In this paper, we focus on the third-
phase attacks to exploit the weaknesses of common autopilot
algorithms. We have briefly discussed the ideas of two third-
phase attacks in [14] without details due to space limit; that
paper focused on attacking state estimation. In this paper, we
present the detailed attack algorithms and formal analysis of
position scopes; we also develop the attack on spline track-
based autopilot with analysis; we further apply our position
scope analysis to build more general attacks (such as multi-
track attacks).

A. Attacking the Basic Autopilot Algorithm

The main idea to attack the basic autopilot algorithm is:
by attacking the position estimation, we continuously adjust
the heading of a drone little by little, until the drone exactly
points to a compromised destination. As long as the bearing
has been determined, we only need to adjust the remaining
flight distance, such that it can reach the compromised des-
tination precisely. Although the basic autopilot algorithm is
simple, it is actually a little harder to compromise compared

3
Source @ Original Dest.

dl\ al. O
% /

d; ay d .

2 g,

d;

: boundary of drone’s paths
under attack

: feasible drone’s paths under
attack

/// : drone’s possible position

/ scope under attack a's

Fig. 5: Feasible position scope for a drone under the attack
of basic autopilot algorithm.

to the linear-track autopilot algorithm, because it is difficult to
predict and manipulate the bearing information in each time
step as the drone moves in each step and calculates a new
bearing in every step. We show the algorithm in Algorithm
1.

We use an example in Fig. 4 to show the proposed
algorithm in detail. For ease of illustration, here we ignore the
altitude and only consider the flight path in two dimensions:
a source (5;,S,), an original destination (D.,D,) and a
compromised destination (C;;,C), where we want to mislead
a drone to fly to. Since Cy > D, in this case, we apply a
downward position injection such that the direction of the
displacement points to the above. Here the optimal strategy is
to make the position injection vector I; vertically downward,
with the maximum magnitude that it can achieve using
the second-phase state estimation attack. This strategy will
maximize the bearing change. Then, the autopilot finds the
drone at a “new” position aé, calculates the current bearing,
and moves towards the "destination" with the displacement
allowed in one time step (based on its velocity and the
length of a time step). Now the drone believes it is at aj,
but actually at a;. In the following, the attackers repeat
the above process until the drone is exactly towards the
compromised destination. Note that the magnitude of the
last injection should be tuned such that we set the perfect
bearing for the drone. Next, we need an additional injection
I, with the same or opposite moving direction of the drone,
to adjust the remaining flight distance with the given time.
More specifically, Iy = I — I} — I, — I3, where I is the
vector difference between the original destination and the
compromised destination. (Note that it is vector arithmetic.)
At the end, the drone reaches the compromised destination as
at the given time, but it believes that it arrives at the original
destination a5. We generalize the procedure in Algorithm 1
(without loss of generality, assume C, < D, Cy, > Dy,
Sy < Dy, and S, = D,):

Feasible Position Scope under the Attack. In the follow-
ing, we formally analyze the scope of all feasible positions
when a drone is under the proposed attack. As Fig. 5 shows,
the top and bottom yellow solid lines indicate the actual flight

Algorithm 1: Attacking the basic autopilot algorithm
input : maximum position injection in each time step Iyqz, and
drone’s displacement in one time step d
output: injection vector {I;} that leads the drone to (Cy, Cy)

-

Initialization: for time step i, I; «— 0, the bearing towards the
original destination from the autopilot’s view: o; <+— (), the actual
bearing towards the compromised destination: J; <— (), the actual
position: a; <— (), the position from the autopilot’s view: a] +— 0;
ag «— (Sz,Sy); ag «— (Sz,Sy): 00 +— 0;

g +— arctan gi:gg, I+— (Dy — Cy,Dy — Cy);

Io «— (0,0); i «— 1; A +— +/(Dz — Cz)2 + (Dy — Cy)?%;

2 while |o;_1]| < |§;_1] do

3 if ¢ = 1 then

] 1.
4 L o; <— arctan A
5 else
i T—d- i—1 si
6 0; — arctan —— " Zm=0"7n) (Zjﬁo =z G"’);
A—d- (3, _gcosan)

7 I; +— (0, —Imaq); keep injecting max until |o;—1| > |§i—1] ;
8 a; «— (a@i—1), +d-cosoj,ai_1), +d-sino;);
9 al«—a;+> 4 Ii;

Yy~ Diy
10 §; +— arctan o) g,

T~ Qig
11 1+—1+1;
12 if |o;_1| > |§;—1]| then
13 1 <— 1 — 1; if we over-estimate the bearing change in the

previous step, we need to make sure |o;| == [d;];
Cy—ag;_1q

14 §; +— arctan Cy—(z)y;

2= A1)y
15 o; < 053
16 I «— (0,(Dz — a(i—1),) - tano; —ag_1),);
17 a; «— (a(i—1), +d-cosoj,ai_1), +d-sino;);
18 aj«—a;i+35, 1 1is
19 1+—1+1;
20 Now |o;_1]| == |0;—1|, we do not need vertical injection any more.

We just need to figure out the remaining injections towards the
compromised destination in the following;

1 while \/(DI —af;_y),)? + Dy —af,_))? > Imaq do

I~

22 57 (—57',,1;0'7; — 0i—1;

23 if (I— "4 1,) > Iiao then

24 |_ Ii — (Im,cw,' . C050i7[7rLua: . Sinai);

25 else

26 L IH—I—Z;_:IOIR;

27 ali «— (a/(i—l)w +d- cosoi,a’(iil)y +d-sino;) + Ij;
28 a; +— (ag_1y, +d- cos o, a(; 1), +d- sino;);

9 | 1+— 1+ 1;

30 if (I— 3" 1n) > Imax then
31 |_ return “Attack Failure!”;

32 else
_ i—1 .
33 L L=I->_"oIn:
34 return injection vectors {I;};

path when we apply the maximum vertical position injections
in each time step. In these boundary cases, the drone experi-
ences the largest bearing change. Intuitively, these two paths
limit the feasible position scope. Furthermore, we can also
find that every feasible position inside the aforementioned
scope is achievable under the attack, because we can adjust
the injection at each time step to find a flight path covering
any point in the scope.

Assume the maximum position injection in each time

step is represented as I,,q5. To reach the boundaries, the
injections should be either upward or downward. The drone’s
displacement in one step is d based on its velocity and the
length of the time step. With these parameters, we can get
the exact position scope at time step t.

As Fig. 5 shows, at time step 1, we apply an upward or
downward position injection for reaching the top or bottom
boundaries, respectively. In the following, we denote the
constant /(D, — S;)? + (Dy — Sy)? as A. The relative
bearing of the drone towards to the original destination
at time step 1 is o;, where 0; = =arctan % Then,
we have a1 = (S +d - coso1,Sy + d - sinoy),a] =
(Sz+d-cosoy, Sy —d-sinoy).

In time step 2, starting at a; or aj, we continue to let
the target drone make a maximum bearing change. Based
on similar analysis, we can get the new bearing is oy =
+arctan %. We then have as = (aj, + d -
cos 03, a1, +d-sinog), ay = (a), +d-cos o, a’ly —d-sin o9),
where a1, = ay = S, +d-cosoy, a;, = Sy +d-sinoy,
and af = S, —d-sino;. Repeating the above process, at
time step ¢t > 2, we have

—d- (Z;;ll sinoy,)

Ima,x

t
o, = tarctan

= (3)
A—d- (Zzzll cos ay,)
and
a; = (a1, +d-cosoy,a;1, +d-sinoy)
¢ t
=(S;+d- (Z cosoy), Sy +d- (Z sinogy,));
n=1 n=1 (4)

r 0 . / -
a; = (a;_y, +d-cosoy,a;_y —d-sinoy)

= (S, +d- (Z cosoy), Sy —d- (Z sinoy,)),

n=1

Now we get all the positions for a; to a; and a} to ay,
then the top and bottom boundaries are made of all the
line segments @,_1,a, and a,_;,a), forn = 1,2,...,¢
(where af, = ag). For the boundary "arc" Ka;, we can get
its precise shape if needed. But we can easily approximate
it with multiple short lines, by finding multiple position
points on the "arc". For example, we can give 2¢ + 1
position points on this "arc", including: a, (at—1, + d -

cos oy 1,at—1,+d-sinoy_1),(a;2, +2d-cosoy_o,a; 2, +

2d - sinoy_9),...(at—n, +n-d-cosot_p, 0y, +n-d-
3] / - /

sinoy—p),...(Dy, Dy), ... (aj_p, +n-d-cosorn,a;_, —
no-d-sinogp),...(a_o, + 2d-cosops,a;_5 — 2d-

sinoy_), (aj_,, +d-cosoy_1,a;_; —d-sinoy_y),aj. These

Y

are the drone’s positions at time step ¢ in the cases when the
continuous upward or downward position injections stop at

time step n forn = 0,1,2,--- .t (i.e., there are injections in
the first n time steps, but no injection in the last ¢ — n time
steps).

For theoretical interests, we also figure out the eventual
scope when ¢ is sufficient large. When I,,,,, > d, the relative

bearing towards to the original destination o; will be close to
+7/2. We have a; = (ay—1, +d-cosoy,a;1,+d-sinoy) =~
(at-1,,at-1, +d) = (Dg,a;-1, +d);a; = (a;_;, +d-
cosoy,ay_y —dsinoy) ~ (at-1,,ai-1,—d) & (Dg, ar—1,—
d). This means the drone’s position will go straight upward
or downward near the vertical line at D, on the x-axis . If
Inae < d but they are close, then the drone will also fly
upward or downward when ¢ is very large. However, it will
stop in finite steps, since the drone will eventually reach the
"destination" from the autopilot’s view. If I,,,, < d, then
the drone will stop after a few time steps before the relative
bearing o; approaches +7/2.

Applying the above analysis result to lead a drone along
a single desired track. Given a desired attack flight track, we
can directly use the above results to figure out if it is feasible
or how to build position injections to achieve it. First, the
desired track must be in the feasible position scope based
on the flight parameters. If a part of the desired track is
outside the position scope, it cannot be achieved. Second,
although the whole desired track is within the scope, it is not
necessarily feasible because we have to make sure the bearing
change at each time step on the desired track is achievable,
due to the limit of bearing change at a time step. In general,
as long as we find a feasible path, we just need to backtrace
the corresponding position injections such that we make the
drone flying on the desired path.

: boundary of drone’s position
. scope under attack
- ;. drone’s actual path under
attack

we,
— —
-
T o= L Lwe,
. WP, ¢
.
J—
3\‘\\ - wep",
.\\D
‘e wp",

Fig. 6: Compromising drone’s flight path via multiple way-
points.

Compromising drone’s flight path with multiple way-
points. In the above we have discussed how to attack drone’s
actual positions on one track between two waypoints. A
follow-up question is how to manipulate a drone’s path
with multiple waypoints. We illustrate the basic idea with
Fig. 6. Assume a flight path (starting at W P; and ending
at W P,) contains three tracks: WP, — WPy, WPy, — W Ps,
and W P; — W P,. Our attack goal is to let the drone reach
W P}”, instead of W P;. We can first mislead the autopilot
navigation to make it reach W Pj;. At this point, we apply
the attack again to make it reach W Pj. We apply the same
single-track attack to guide it to the compromised destination
W P}". Note that all the actual paths should be within the

position scope of each track. In particular, the position scope
of the second or third track is based on the virtual track
WP, — WP} and WP — WP/, respectively.

B. Attacking the Linear Track-based Autopilot Algorithm

If the desired flight track is linear, the position error
caused by the proposed second-phase attacks is easy to figure
out: since any "drift" (due to the injection on the position
estimation) will be corrected by the autopilot algorithm, the
sum of the total injections on position estimation should be
equal to the inverse of the injection track (i.e., the difference
between the original and compromised destinations). We
present the attack algorithm to mislead the drone to a specific
compromised destination in the following.

a,: drone’s actual position at t
a': drone’s position at t from autopilot’s view
d,: drone’s displacement att

I;: attack on position estimation att Comp. Dest.
I: difference between true and comp. dest. ag ag
L] o
. . a, d. /
Max disp. along track in 1 time step L) d 5/
5
Max correction e /
disp. in 1 time step az. d Injection Track |
N a 3 /
o d
a\1 77777 * 2 Original Dest. /
o| d Original Track
Source 1 -
1 d1 ay ® a's dg a'
1 a', d; 5 Ug ¢

Fig. 7: Ilustration for attacking the linear track autopilot

algorithm.
As shown in Fig. 7, we first apply a position estimation

injection I in time step 1. Without loss of generality, we let
the magnitude of the injections I, (except the last injection)
be the maximum value that it can be achieve with the second-
phase attack, and all the injection vectors be parallel to the
injection track. After the injection, the autopilot algorithm
believes the drone has drifted away from the track and will
try to make it return to the track again. It will let the drone
make an adjustment d;, which is the sum of the allowed
displacement along the track and the allowed displacement
correction towards the track in one time step. As a result, the
drone reaches a; but believes itself at a}. In the following,
the attacker applies other two injections I and I3 on the
position estimation such that I = I; + Iy + I3 (note that it
is vector arithmetic). The controller will try to correct the
drone’s position with displacement ds and ds. By now, we
have finished all the injections on position estimation for this
attack. Therefore, we will then let the autopilot controller
continuously correct the drone’s flight path and move along
the "track" to the "destination". Finally, the drone arrives at
the compromised destination ag, but believes that it reaches
the original destination aj. Due to the space limit, we move
the detailed attack algorithm to a technical report [15].
Feasible position Scope under this Attack. Similar to
attacking the basic autopilot algorithm, as Fig. 8 shows, the
top and bottom yellow solid lines indicate the actual flight
path when it is applied the proposed position injection with
maximum possible magnitudes in each time step. Intuitively,

Max disp. along track in 1 time step
Max correction
disp. in 1 time step
3 O
\; """""""" /d /// /
g yA d[

Source @ Original Dest.
- 2/ 4 7%’7&/ / |
: boundary of drone’s paths
under attack & (]
: feasible drone’s paths under a's

attack
: drone’s possible position
// scope under attack

Fig. 8: Feasible position scope of the target drone when the
adversaries attack the linear track-based autopilot algorithm.

the two yellow solid paths limit the feasible position scope.
In addition, every feasible position inside the aforementioned
scope is achievable by the drone under the possible attack for
similar reasons.

The mathematical form of the position scope here is rel-
atively straightforward. With the same notation as the above
attack (in addition, we denote the correction displacement
and the displacement along the track in one time step as d.
and d;, respectively), we have:

(a) If the drone does not return on the track after the
autopilot’s correction in one time step, as Fig. 8 shows, at
time step 1, after we apply an position injection, we have
a1 = (Sz+ds, Sy+d.);ay = (Sy+di, Sy —d.). In addition,
the relative bearing of the drone will not change through the
whole attack. Thus, we have a; = (Sy+t-dy, Sy+t-d.);a; =
(Sy+t-ds, Sy —t-d.). Therefore the scope is a triangle with
three vertices: source, a;, and aj. In this case, the scope will
become very large when ¢ is large.

(b) If drone’s position return the track after the autopilot’s
correction in one time step, we have a; = (Sy +¢-d;, Sy +
t-1,);a; = (Sy+t-di, Sy —t-I,), where I, is the size of
the y-component of the position estimation injection. Here
the relative bearing of the drone will not change through
the whole attack as well, except at the last time step when
the drone reaches the "destination" from the autopilot’s view.
Specifically, at the last time step, the drone’s displacement
along the track may be shorter to reach the "destination".
Therefore the scope here is made of a triangle with three
vertices: source, a;—1, and a}_;, and a trapezoid with four
vertices: a;—1, a_q, at, and a}, where ¢ is the final time step.

C. Attacking the Spline Track-based Autopilot Algorithm

In ArduPilot, although the navigation controller supports
the spline track-based autopilot algorithm, they do not sup-
port a correction approach when the drone is off the track. In
this section, we will first design a corresponding correction

algorithm, then develop the attack schemes. We will also
analyze the feasible position scope under attack.

Fig. 9: Position correction algorithm for the spline track-
based autopilot algorithm.

Proposed Position Correction Algorithm. As we men-
tioned before, in each time point ¢ € [0, 1], the expected
position of the target drone can be determined using eq. (1).
We propose a simple position correction algorithm as shown
in Fig. 9: as long as the autopilot controller finds that the track
error (the difference between the expected and the actual
positions) is beyond the threshold 7,y at any time, it asks
the drone to suspend the current flight plan and fly directly
back to the expected position. After reaching the expected
position, it restarts the flight plan. If the track error is within
the threshold, then the controller will guide the drone fly
parallelly to the track. This correction algorithm may not be
the most time-efficient one, but it can assure the drone flies
closely along the track in most time.

Attack Schemes. Attacking the spline track-based au-
topilot algorithm with the proposed position correction is
similar to attacking the linear track-based autopilot algorithm.
In particular, the attackers will put a series of position
estimation injections, whose sum is equal to the inverse
of the injection track. We will discuss the attack schemes
in two different cases in the following. For simplicity, we
assume the maximum correction displacement in one time
step d. > Tspline-

a,: drone’s actual position at t

a': drone’s position at t from autopilot’s view Comp. Dest.
I, attack on position estimation att Pa
I: difference between true and comp. dest. Al 11
a a a, P*
5 ag a; 8 o
a; as 3 . o
[] L4 Injectionll'rack: |
alu(
a' Original Dest.
f a's
a's a, a'y . o~
S S— P S e
Original Track

Fig. 10: Attacking the spline track-based autopilot algorithm
when I > Topiine.

Case 1: We will first consider the case when the maximum
position estimation injection I > Tgpiine. We will use
Fig. 10 to explain the attack scheme. To make the attack
process more legible in the figure, we will perform the
attack in every other time step if needed (i.e., in the time

step of 0,2,4,---). Similar to attacking the linear track-
based autopilot algorithm, the attackers will place three
position estimation injections Iy, I, I3 that are parallel to the
injection track I at time step 0, 2, 4, Such that I = Iy +1,+13.
Then the autopilot controller will "correct” the drift caused
by these injections, pushing the target drone towards the
compromised destination. In this case, the target drone will
precisely reach the compromised destination under the attack.

a, drone’s actual position at t Comp. Dest.
a',: drone’s position at t from autopilot’s view
I;: attack on position estimationat t ag ‘ T
" spline
I: difference between true and comp. dest. a. ¢
8

[] f

Ch) a, * . ®" / Injection Track: |
Source a; L4 . a, -
\ a, Original Dest.
I a 6
CH
¥ NJa" /
P Tepline
2
Tspline. o 9
o / Topline
T R ‘
: ¥ : . o ag
° '

'
ay

ay % az

Fig. 11: Attacking the spline track-based autopilot algorithm
when I < Topiine.

Case 2: When I < Topiine, we will apply the same attack
scheme as the above. However, as shown in Fig. 11, the target
drone may not reach the compromised destination with no
error; instead, it reaches the circular region with the desired
destination as the center and Tgpiine as the diameter. For
example, in Fig. 11, we can find that the controller will
correct the track error after Iz is injected, since at this time
the track error Iy + I is greater than the threshold Tspjine.
However the last injection I3 will not be corrected, since
the track error is I3 < I < Tgpiine. In the end, the distance
between the actual position and the compromised destination
will be I3 < 7gpiine; in addition, the distance between the
position from the autopilot’s view and the original destination
will also be Iz < Tgpine. However, if we apply the injection
at time step 0, and every time when the injection is corrected
and the target drone has flown back to the source, we
continue to apply more injections, as long as the sum of these
injections is greater than the threshold 7y i1, the drone can
still reach the compromised destination precisely.

a,: drone’s actual position at t Comp. Dest.
a';: drone’s position at t from autopilot’s view ’

I;: attack on position estimation at t
I: difference between true and comp. dest. Topline
a, ag £

Cl

ca L]
¥ 4 al ' '
as ay

Fig. 12: If d. < Tspiine, it is possible that the drone arrives
with a bounded error.

)
ag

Discussion: what if d. < Tspiine? We can still perform
the above attack. However, similar to the above I < Tgpiine
case, it is possible that the drone arrives at the compromised

destination with a bounded error. For example, as Fig. 12
shows, at time step 0/3, after the injection I;/Is is performed,
since the drift at this time is greater than the threshold 7spiine,
a corrected displacement is applied. Because the corrected
displacement d. < Tspiine, the drift is not fully corrected,
and the target drone does not reach the original track after
correction from autopilot’s view. In the following time step,
the remaining drift is not corrected either, because the drift
is not greater than the threshold any more. Eventually, the
target drone arrives with a bounded error. Due to the space
limit, we move the detailed attack algorithm to a technical
report [15].

Feasible position scope under this attack. In the fol-
lowing, we will analyze the feasible position scope under
the proposed attack. For simplicity, we assume we apply the
injection at time step 0, and every time when the injection is
corrected and the target drone has flown back to the source
track, we continue to apply more injections. That is, all the
injections are performed at the beginning, and the drone’s
spline-form path will not start until all the "drifts" caused by
the injections are corrected. Therefore, under both Case 1 and
2, the target drone will reach the compromised destination
with no error; and both attack results will be the same if
under the same attack. Again, we will use a figure to illustrate
1t.

: possible actual flight path
—) POSition estimation injection
: position scope right after all
injections
actual destination scope

Source 'y ‘ ‘ | ‘» Original Dest,

Original Track

Fig. 13: feasible position scope of the target drone when the
adversaries attack the spline track-based autopilot algorithm.

As Fig. 13 shows, we know that the injection in each
time step can be in any direction, then the corresponding
compensatory displacement for correction can also be in
arbitrary direction, since the drone always flies in the op-
posite direction of the injection for correction. Then after ¢
injections at the beginning, the feasible position scope of the
drone will be a circular region with the source as the center
and t- I as the diameter. Then the drone will fly along a path
that has the same shape and size of the original track, and
is parallel to the original track. Therefore, the actual ending
position of the drone is also within the circular area with the
original destination as the center and ¢- I as the diameter. As
a result, the position scope under this attack is a position set
as follows:

{S | S is a spline that has the same shape and size of the
original track, has the origin in the circular region with the

source as the center and t- I as the diameter, and is parallel
to the original track.}.

D. Factors May Affect the Attacks

The above attacks assume we can perform precise position
injection and no obstacles in the no-fly zone. These factors
may vary in different situations. We discuss the impact of
these factors on the proposed attacks in the following.

1) Position Injection with Noise: In practical navigation
systems, the position estimation injections usually contain
noises. If the position estimation injection is not precise, the
accuracy of the proposed attacks may be impacted. However,
we can control the magnitude of attack errors within an
acceptable range. In particular, when performing the attack,
if we find there is a position injection error in the last time
step, we should correct this error in this injection. That is, in
this time step, the position injection should be equal to sum
of the original injection and the inverse of the last injection
error (in vector arithmetic). By repeating the process, we can
ensure that the difference between the final position of the
drone and the desired compromised destination is equal to
the position injection noise in the last time step.

2) Obstacles in the No-fly Zone: In real life, a drone may
meet obstacles during a flight. If there are obstables on a
flight path, the path needs to be changed. The challenge
is how we should adjust the attack strategies such that the
target drone can reach the compromised destination in the
shortest possible path. We use the basic autopilot algorithm
to illustrate our idea to solve this problem in two cases.

a,: drone’s actual position att

a': drone’s position at t from autopilot’s view
d;: drone’s displacement at t

I;: attack on position estimation at t

I: difference between true and comp. dest.

2 Comp. Dest.

N\lInjection Track: |
N\

N\ .
\Orlgmal Dest.
Source

Fig. 14: The obstacles block the actual flight path.

Obstacles blocking the actual flight path. We design an
optimal attack algorithm in the presence of obstacles. As
Fig. 14, assume two obstacles block the proposed actual path
for the target drone. To avoid colliding with the obstacles
and maximize the bearing change, a natural selection is to
make the first flight path - segment tangent to Obstacle 1.
Similarly, the second flight path segment - should be tangent
to Obstacle 2. After that, we can continue the attack as the
original one as in Sec. III-A. If in one time step the tangent
line is not a feasible flight path segment under the proposed
attack, then the attack cannot be performed.

Obstacles blocking the flight path from autopilot’s view. In
this case, under the proposed attack, from autopilot’s view,
the target drone will hit obstacles, though it may not actually

a,: drone’s actual position at t

a';: drone’s position at t from autopilot’s view
d,: drone’s displacement at t

I;: attack on position estimation at t

I: difference between true and comp. dest.

A3 Comp. Dest.

as
d, . A Injection Track: |
d a, N\
d, @ 2_»® S Original Dest.
s Q "1 o Original Track \
OUMCE @ o o mm o o o o o - - —— -
< \h dl 2|1 - - a'4
\ d
I a 7 Uy
Obstacle 1 \ 2 d, ’ d .ll
| 9 “a'4
3

Fig. 15: The obstacles block the flight path from autopilot’s
view.

happen. Using a similar strategy, we can let the flight path
segment be tangent to the obstacles when the original ones
overlap them.

In summary, when facing obstacles, the attackers should
change the flight path for the target drone to avoid collision.
One efficient way to achieve this is to make the flight path
tangent to the obstacles. This also works for attacks on the
linear track-based autopilot algorithm or the spline track-
based autopilot algorithm. To change the flight path, for
the linear track-based autopilot algorithm, we can adjust the
direction by shortening the size of injection or changing its
direction; and for the spline track-based autopilot algorithm,
we can choose to distribute the position estimation injections
in different time steps (e.g., every other time step), rather
than putting all injections continuously at the beginning.

IV. APPLYING THE PROPOSED ATTACKS ON DRONE
MISSIONS

A. Disrupting Patrol Missions

Now we consider a scenario of attacking a drone’s patrol
mission such that it misses a target within a specific area.
As Fig. 16 shows, a drone is performing a common patrol
task within a closed rectangular region. Assume the detection
range of the drone is 1, then the preset patrol path zigzags
with the distance @ from each edge of the area. Assume
we have an asset within a 2 x 2 square area. In this case, our
goal is to change the actual flight path of the patrol drone so
that it cannot detect our asset.

Because there are many ways to achieve our goal, we use a
simple attack strategy to illustrate how to apply our proposed
attacks to shift the patrol path to the left. Specifically, we
apply a right position injection for each horizontal track,
which leads the track to move left. In the first injection, we
apply an right injection of 1.6, causing a right shift of the
waypoint a; to aj. Then, the drone will make an right turn
to fly back along the second horizontal track to the left side
of the patrol area. Here we need to perform a left injection of
1.6— g to make sure the drone not flying out the patrol area.
After the second downward flight, the drone will continue to
go towards right, where we again apply a right injection of

Detection range

Pr————— 4
1202 o 311 5
ey == —J oJ
a3y a, a,
___________.' y [~ Obstacles
a'la, a'SI ag : scheduled
_;—AIOE patrol path
e ——— == =W | 2| == == :patrol path
asz§ay as % under attack
. : attack area
, ""--------'ﬂ 1 ww desired not
gl ag ayg a9 found by the
. 4_________# Y patrol drone
43y a g a9

Fig. 16: Make the target drone move along the desired path.

1.6, making the waypoint a; move left. Then the drone will
fly downward again, reaching ag. Now the track between
ag and ag are the closest part to the attack area, where the
distance between them is 1.6 + @ + @ -2~1014>1
(the detection range of the patrol drone). Therefore the drone
will not detect our asset in this area. In the following, the
attackers will repeat the previous process, under which the
drone will fly along ag to af;.

B. Intercepting Another nearby Drone

In this scenario, we want to make two nearby drones
to collide. Assume we know the flight paths and current
positions of a victim drone V' and a compromised drone C.
There are different ways to make them collided. One simple
way is: we do not attack V' but make C intercept V by flying
into V’s path at a certain time. Assume V' cannot avoid fast
moving drones. Because V flies on its known flight path, we
first determine the feasible collision positions on V’s path.
Because we know the position of V at time ¢, we can find
those positions by checking if they are in the feasible position
scopes of C' and if we can make C' arrive at the position at
or before time {. We can easily exclude the position that C'
will arrive later than V. Furthermore, we select one collision
position based on different requirement, e.g., with a shortest
delay. Then, we perform the proposed attack on C such that
(1) it arrives at a collision position at the same time of V,
and they will collide; (2) it arrives a little earlier, and then
we have to continue position injections to make it lingering
for V’s arrival.

We can also change the flight paths of both drones to make
them collide. We then have to find the overlap positions of
the feasible position scopes of both drones. There are also
some realistic limitations that can make the attack much
more challenging, including: limited battery life, injections
with noise, obstacles in the attack zone, no knowledge of
the exact flight paths of two drones. We will further explore
these issues.

C. Simulation Evaluation

We propose a simple simulation to demonstrate the feasi-
bility of intercepting another nearby drone.

Simulation Settings. The attack simulator is written in
MATLAB. In this simulation, we assume that the two drones:
compromised drone C and victim drone V follow pre-set
flight tracks under the linear track-based autopilot algorithm.
In addition, we are able to manipulated the position esti-
mation of the C precisely. The injection on the position
estimation is set to be at most 5 m/timestep. Furthermore,
the noise of each state estimation is assumed to follow
N(0,0.012). In the attack, we assume that we have the
knowledge of the pre-set flight track of C and V. In particular,
the source and the original destination for C is set to be
(50 m, 100 m) and (150 m, 100 m), while the source and
the original destination for V is (50 m, 50 m) and (150 m, 50
m) in a 2D plane. At time 0O, they are both at their original
sources. For the linear track-based autopilot algorithms on
both drones, we assume that the maximum speed along the
track and towards the track for track error correction is
10 m/timestep and 2.5 m/timestep, respectively. Then our
attack goal is: by attack the autopilot controller of C, we
would like to make C and V collide,

Simulation Results. Fig. 17 shows the simulation results
of intercepting another nearby drone under the linear track-
based autopilot algorithm. The red line with circles shows
the flight path of C from the system’s view while the black
line with triangles represents its actual path. In addition, the
cyan line with stars is the flight path of V. Since the track
of V is under the one of C, we will attack C such that
C fly along the bottom edge of its position scope, where
C will intercept V at the earliest time. At each time step,
the attackers put a maximum positive injection on the y-
axis. Then the autopilot controller will direct the drone to
fly towards the "destination", which makes it move towards
bottom right. Under this attack, at time step 10, C and V will
collide at (150 m, 50 m).

V. CONCLUSIONS

In this paper, we have focused on compromising the
flight paths of autopiloted drones and presented several
attacks to three common autopiloted navigation algorithms.
Assume the first-phase sensor attacks and the second-phase

state estimation attacks can help us build precise position
injections, we have exploited the weaknesses of existing
autopilot navigation algorithms to mislead a drone from its
preset path to a manipulated path. We have presented the
formal analysis of the scope of such manipulated paths. We
have further discussed how to apply the proposed attacks to
disrupt preset drone missions, such as missing a target in
searching an area or misleading a drone to intercept another
drone, etc. Many potential attacks can be built on top of
the proposed attacks. We are currently investigating different
models to apply such attacks on common drone missions and
also building prototype systems on ArduPilot for real world
tests. We will further investigate countermeasures to address
the potential damages.

Acknowledgement: We like to thank the support of NSF
1662487 for this research. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] N. O. Tippenhauer, C. Popper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 75-86.

[2] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal
of Field Robotics, vol. 31, no. 4, pp. 617-636, 2014.

[3] Y. Son, H. Shin, D. Kim, Y.-S. Park, J. Noh, K. Choi, J. Choi, Y. Kim
et al., “Rocking drones with intentional sound noise on gyroscopic
sensors.”

[4] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut:
Waging doubt on the integrity of mems accelerometers with acoustic
injection attacks.”

[5] W. Chen, Z. Duan, and Y. Dong, “False data injection on ekf-based
navigation control,” in ICUAS 2017, pp. 1608-1617.

[6] W. Chen, Y. Dong, and Z. Duan, “Manipulating drone dynamic state
estimation to compromise navigation,” in 2018 IEEE Conference on
Communications and Network Security (CNS), May 2018, pp. 1-9.

[7]1 J. Vanian, “Drone registrations are still soaring,” Fortune, http:
//fortune.com/2017/01/06/drones-registrations-soaring-faa/, Jan. 06,
2017.

[8] M. A.H. and D. Gettinger, “Analysis of new drone incident reports,”
May 8, 2017, http://dronecenter.bard.edu/analysis-3-25-faa-incidents/.

[9] M. Schmidt and M. Shear, “A drone, too small for radar to detect,
rattles the white house,” New York Times, https://www.nytimes.com/
2015/01/27/us/white-house-drone.html, Jan. 26, 2015.

[10] M. Benyamin and G. Goldman, “Acoustic Detection and Tracking of
a Class I UAS with a Small Tetrahedral Microphone Array,” ARL,
Tech. Rep. ARL-TR-7086, 2014.

[11] D. Labs, “Drone detector,”
how-drone-detection-works/, 2016.

[12] DeDrone, “Secure your airspace now,” http://www.dedrone.com/en/
dronetracker/drone- protection-software, 2016.

[13] D. E. Bolanakis, “Mems barometers in a wireless sensor network for
position location applications,” in Applications of Commercial Sensors
(VCACS), 2016 IEEE Virtual Conference on. 1EEE, 2016, pp. 1-8.

[14] W. Chen, Y. Dong, and Z. Duan, “Manipulating drone position
control,” in IEEE CNS 2019, June 2019.

, “Compromising the flight paths of autopiloted drones,” https:

//drive.google.com/open?id=1pH6912FIxGkQezwZEdCNY czrtZn_

G8hE, 2019.

http://www.dronedetector.com/

[15]

