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Abstract—While more and more consumer drones are abused
in recent attacks, there is still very little systematical research
on countering malicious consumer drones. In this paper, we
focus on this issue and develop effective attacks to common
autopilot control algorithms to compromise the flight paths of
autopiloted drones, e.g., leading them away from its preset
paths. We consider attacking an autopiloted drone in three
phases: attacking its onboard sensors, attacking its state es-
timation, and attacking its autopilot algorithms. Several first-
phase attacks have been developed (e.g., [1]–[4]); second-phase
attacks (including our previous work [5], [6]) have also been
investigated. In this paper, we focus on the third-phase attacks.
We examine three common autopilot algorithms, and design
several attacks by exploiting their weaknesses to mislead a drone
from its preset path to a manipulated path. We present the
formal analysis of the scope of such manipulated paths. We
further discuss how to apply the proposed attacks to disrupt
preset drone missions, such as missing a target in searching an
area or misleading a drone to intercept another drone, etc. Many
potential attacks can be built on top of the proposed attacks.
We are currently investigating different models to apply such
attacks on common drone missions and also building prototype
systems on ArduPilot for real world tests. We will further
investigate countermeasures to address the potential damages.

Index Terms—counter drone, autopilot, navigation

I. INTRODUCTION

While they have enabled many new applications [7], con-

sumer drones have been abused in many recent attacks [8],

[9]. One recent case was at the UK’s second largest airport.

Malicious drones disturbed the normal operations during the

busy 2018 Christmas season for three days. Clearly, we have

to build effective solutions to stop such abuses.

Existing counter-drone solutions usually have two steps:

we first identify an unauthorized drone entering a restricted

airspace and then apply counter-drone solutions to disrupt or

capture it. A typical setting is shown in Fig. 1. We set up

a perimeter and apply drone detection schemes, using Radio

Frequency (RF) communications, radars, acoustic monitor-

ing, or image processing [10]–[12] to discover incoming

drones. We focus on the second step in this paper: how to

systematically counter the invading drones. In particular, in

the no-fly zone, we assume that remote manual control is

disabled and the malicious drone is on autopilot; we can

apply the first-phase sensor attacks and the second-phase state

estimation attacks to inject fake states into the autopilot nav-

igation control. By examining the existing common autopilot

algorithms, we propose several third-phase attacks to mislead

invading drones.

Most existing counter-drone systems have been proposed

by industry with straightforward solutions, such as jamming

drone control channels or GPS receivers to trigger a drone

switching to a default failsafe mode (e.g., landing when lost

GPS signals over 10s), or capturing a drone with a net, etc.

Such direct physical attacks work well when dealing with

unsophisticated drone operators; but they also show serious

limitations, e.g., they usually do not consider collateral

damages. If a drone carries a bomb, we should not make

it land in a protected critical space, e.g., an office building.

The best solution in such situation is to lead the drone fly

away from the target as far as possible. We have conducted a

broad literature survey, and have not seen systematic research

to address such issues. Therefore, it is urgent to investigate

more intelligent counter-drone solutions.

Ideally, we want to precisely control the flight path of an

unauthorized drone, e.g., making it miss its preset waypoints

in its mission plan. In this paper, we consider attacking an au-

topiloted drone in three phases. The first-phase attacks focus

on compromising the sensor readings of an autopiloted drone.

Several first-phase attacks have shown that such attacks are

completely feasible (e.g., [1]–[4]). Based on such first-phase

attacks, we have proposed the second-phase attacks [5],

[6], e.g., exploiting the weaknesses in common drone state

estimation algorithms. In this paper, we focus on the third-

phase attacks by utilizing the compromised state estimation

to fool common autopilot algorithms to make a drone deviate

from its flight paths. We do not assume that we can remotely

tamper actuators.

Our Goal. Our goal is to compromise drone autopilot con-

trol algorithms to manipulate flight paths. We have conducted

Fig. 1: Attack Model.



extensive investigation on popular open-source flight control

systems (such as ArduPilot and Paparazzi), and discovered

multiple weaknesses in common autopilot control algorithms.

Because sensors often have occasional errors, drone control

systems usually use state estimation algorithms to address

these errors. Kalman Filter (KF) and its variants are the most

popular estimation algorithms in drone control systems. A

drone autopilot system is dependent on these state estimations

to adjust flight parameters. We have proposed several second-

phase attacks to manipulate state estimation algorithms in our

previous papers. In this paper, we focus on exploiting the

weakness of autopilot algorithms to manipulate a drone in

real time in order to make it follow (or not follow) certain

flight paths, e.g., away from a target or missing certain points

in a search sweep. To our best knowledge, we have not seen

similar work in this direction.

The remainder of this paper is organized as follows. We

will introduce related background of autopilot control in Sec.

2. In Sec. 3, we will then present several attacks on autopilot

control algorithms, and analyze the scope of feasible paths

under such attacks. We will further discuss how to apply the

attacks to disrupt drone missions, and show basic simulation

evaluations in Sec. 4. We conclude this paper and discuss our

current and future research in Sec. 5.

II. DRONE AUTOPILOT BACKGROUND

A. Drone Control Model

We illustrate a common automatic control loop of a drone

in Fig. 2. The control system periodically reads physical mea-

surements from sensor readings, and then estimate system

states for further control decisions via sensor fusion schemes;

based on the estimated system states, the autopilot component

makes control adjustments of actuators to achieve control

movements.

Autopilot
State 

Estimation

Sensors Actuators 

Fig. 2: Common Drone Control Loop.

To deal with an evading drone, we need attack schemes

to affect its flight path based on our goals, e.g., making it

miss its preset waypoints. As we mentioned in the above, we

consider such attacks as the third-phase attacks that exploit

the weakness of drone autopilot control algorithms. These

third-phase attacks are based on the first-phase attacks on

sensors and the second-phase attacks on state estimation

algorithms. The first-phase attacks focus on compromising

the sensor readings of a drone. By understanding how state

estimation algorithms use these sensor data, we can figure

out how to manipulate these readings such that we can fool

the state estimation algorithms of a drone as we need in

the second-phase attacks. Similarly, exploiting the weakness

of drone flight control algorithms, we know what states

will mislead the drone movement control in the third-phase

attacks. In this paper, we assume that sensor attacks help us

in state estimation and autopilot attacks; we do not focus on

sensor attacks. Attacking sensor readings has been an active

research area in recent years, and existing sensor attacks

achieves good results in manipulating IMU sensors [3], [4],

GPS [1], [2], etc. Therefore, in this paper, we assume that

first-phase attacks help us compromise sensors, and second-

phase attacks (proposed by other researchers and us [6]) help

us mislead the state estimation algorithms. We will focus on

the third phase attacks.

B. Autopilot Control Algorithms in ArduPilot

In this section, we introduce the basic mechanism for

autopilot control, which adjust drone actions to follow a pre-

set flight path with specific waypoints. Most popular autopi-

lot control algorithms use GPS-based waypoints navigation.

Therefore, the path control of a drone usually includes:

adjustment of roll and pitch for desired attitude; adjustment of

heading and altitude for trajectory or waypoints tracking; and

waypoint navigation. The autopilot system usually consists of

two basic controllers: An altitude controller makes sure the

drone at the correct altitude, and a velocity/heading controller

navigates the drone to fly through the desired waypoints. We

focus on both controllers in this work to change drone flight

paths. In this paper, we investigate three autopilot navigation

algorithms used in the popular open source flight control

system ArduPilot. ArduPilot uses the Proportional Integral

Derivative (PID) method for the controller, which adjust the

actuators in each time step to achieve the preset target points.

The Basic AutoPilot Algorithm is the fundamental auto-

navigation control algorithm. As shown in Fig. 3a, the

controller calculates the target bearing in every time step

based on the current position of the drone and the target

position. The controller will then navigate the drone towards

the target with this bearing and a desired velocity.

The Linear Track-based Navigation Algorithm leads a

drone to a target location following the linear track from a

source to a destination, as shown in Fig. 3b. To make sure that

the drone flies along the track, the controller will calculate the

track error (the distance between the drone’s current position

and the track) in every time step, and limit the error within

a small range. As a result, a drone will not deviate from the

track too far. Usually, the rate to correct the track error (i.e.,

moving the drone back to the track) is stable as a constant.

To lead the drone to reach the destination, the controller will

calculate the drone’s speed along the track and stabilize it at

a desired one.

The Spline Track-based Navigation Algorithm makes a

drone fly smoothly passing through waypoints during a flight.

To achieve this, one simple solution is to make a drone slow

down when it approaches a waypoint. However, this may
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Intercepting another nearby drone
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Fig. 17: Intercepting another nearby drone.

Simulation Settings. The attack simulator is written in

MATLAB. In this simulation, we assume that the two drones:

compromised drone C and victim drone V follow pre-set

flight tracks under the linear track-based autopilot algorithm.

In addition, we are able to manipulated the position esti-

mation of the C precisely. The injection on the position

estimation is set to be at most 5 m/timestep. Furthermore,

the noise of each state estimation is assumed to follow

N (0, 0.012). In the attack, we assume that we have the

knowledge of the pre-set flight track of C and V. In particular,

the source and the original destination for C is set to be

(50 m, 100 m) and (150 m, 100 m), while the source and

the original destination for V is (50 m, 50 m) and (150 m, 50

m) in a 2D plane. At time 0, they are both at their original

sources. For the linear track-based autopilot algorithms on

both drones, we assume that the maximum speed along the

track and towards the track for track error correction is

10 m/timestep and 2.5 m/timestep, respectively. Then our

attack goal is: by attack the autopilot controller of C, we

would like to make C and V collide,

Simulation Results. Fig. 17 shows the simulation results

of intercepting another nearby drone under the linear track-

based autopilot algorithm. The red line with circles shows

the flight path of C from the system’s view while the black

line with triangles represents its actual path. In addition, the

cyan line with stars is the flight path of V. Since the track

of V is under the one of C, we will attack C such that

C fly along the bottom edge of its position scope, where

C will intercept V at the earliest time. At each time step,

the attackers put a maximum positive injection on the y-

axis. Then the autopilot controller will direct the drone to

fly towards the "destination", which makes it move towards

bottom right. Under this attack, at time step 10, C and V will

collide at (150 m, 50 m).

V. CONCLUSIONS

In this paper, we have focused on compromising the

flight paths of autopiloted drones and presented several

attacks to three common autopiloted navigation algorithms.

Assume the first-phase sensor attacks and the second-phase

state estimation attacks can help us build precise position

injections, we have exploited the weaknesses of existing

autopilot navigation algorithms to mislead a drone from its

preset path to a manipulated path. We have presented the

formal analysis of the scope of such manipulated paths. We

have further discussed how to apply the proposed attacks to

disrupt preset drone missions, such as missing a target in

searching an area or misleading a drone to intercept another

drone, etc. Many potential attacks can be built on top of

the proposed attacks. We are currently investigating different

models to apply such attacks on common drone missions and

also building prototype systems on ArduPilot for real world

tests. We will further investigate countermeasures to address

the potential damages.
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