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Abstract—Because cloud storage services have been broadly
used in enterprises for online sharing and collaboration, sensitive
information in images or documents may be easily leaked outside
the trust enterprise on-premises due to such cloud services.
Existing solutions to this problem have not fully explored the
tradeoffs among application performance, service scalability, and
user data privacy. Therefore, we propose CloudDLP, a generic
approach for enterprises to automatically sanitize sensitive data
in images and documents in browser-based cloud storage. To
the best of our knowledge, CloudDLP is the first system that
automatically and transparently detects and sanitizes both sen-
sitive images and textual documents without compromising user
experience or application functionality on browser-based cloud
storage. To prevent sensitive information escaping from on-
premises, CloudDLP utilizes deep learning methods to detect
sensitive information in both images and textual documents. We
have evaluated the proposed method on a number of typical
cloud applications. Our experimental results show that it can
achieve transparent and automatic data sanitization on the cloud
storage services with relatively low overheads, while preserving
most application functionalities.

Index Terms—data loss prevention, data sanitization, data
security, cloud storage

I. INTRODUCTION

Nowadays, cloud storage services or cloud applications

with file storage functionality, such as Dropbox, Box, and

Salesforce, etc., are increasingly used in enterprises for online

sharing and collaboration. However, sensitive information may

be easily (accidentally or maliciously) shared outside of the

trust premises due to these cloud services. In June 2014,

Google patched a flaw in Google Drive that may grant

unauthorized parties access to a subset of shared documents

under certain circumstances. Dropbox and Box were also

affected by similar security issues, where major vulnerabilities

allowed third parties to discover private file transfer links.

Besides, researchers have identified several defects or misuses

in Amazon Simple Storage Service (S3) that may leak sensitive

information such as trade data [1], military secrets [2], private

medical data, affecting over 150 thousand people [3] and

about 198 million American voter records [4]. Therefore, it is

critical to ensure that all sensitive information can be properly

detected, protected, or sanitized, before uploading data from

on-premises to cloud storage.

To protect against data leakage in the browser-based cloud

storage, various approaches and systems have been introduced.

Data Loss Prevention (DLP) technology is critical in this area.

DLP software products such as SPIRION [5], CUSpider [6],

and CipherCloud [7], detect sensitive information using mas-

sive regular expressions, custom keywords, or domain specific

entity corpora. Unfortunately, the detection precision is still

low even though traditional machine learning algorithms are

integrated into these systems. To address this problem, existing

solutions mostly focused on textual data rather than images

and complicated documents. For example, ShadowCrypt [8]

only supports encrypting cleartexts but not able to encrypt

complicated files. M-Aegis [9] only supports encryption for

textual data. MessageGuard [10] creates a file upload overlay

using HTML iFrames to protect data while sacrificing the

storage capacity and search functionality. Although Cloud

Access Security Broker (CASB) [11] solutions (adopted by

commercial companies like Skyhigh Networks [12] and Ci-

pherCloud [7]) provide protection of sensitive information in

files, they have to adapt various services by reverse engineering

service-specific protocols, which is time-consuming and labor-

intensive (as further discussed in Sec. II). In fact, it is very

difficult to simultaneously achieve good privacy and usability

levels after encryption. Making it even worse, these solutions

often degrade the scalability of various applications in practice.

In this paper, we introduce CloudDLP, the first system that

automatically and transparently detects and sanitizes both sen-

sitive image and textual information, without compromising

user experience or application functionality on browser-based

cloud storage. Additionally, CloudDLP is designed to provide

scalability for various cloud applications. It can automatically

identify and capture files without requiring cooperation from

cloud providers or complicated protocol reverse engineering.

Our system instrument JavaScript snippets to the web ap-

plication pages with the support of gateways. The injected

JavaScript snippets are used to identify file requests. Then

CloudDLP will intercept, detect, and redact or sanitize sen-

sitive data, especially images and documents which contain

a wide range of private information that may be shared un-

intentionally. To prevent sensitive information escaping from

on-premises, CloudDLP detects sensitive information from

images and textual documents using deep learning methods.

Moreover, privacy-utility trade-offs can be achieved by au-

tomatic sanitization in CloudDLP. Compared to traditional

rule-based approaches, our automatic detection and sanitiza-
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tion methods based on deep learning methods have obvious

advantages and show superior performance. With CloudDLP,

enterprises can effectively prevent core data leakage, and can

also ensure sensitive data security and regulatory compliance

in the cloud.

To validate the feasibility of the proposed method in

practice, We have implemented and evaluated CloudDLP in

ten real-time browser-based cloud storage services, includ-

ing email, storage, and office software. The experiments on

these applications successfully demonstrate the effectiveness

and generality of the proposed approach. The performance

evaluation shows that CloudDLP is cable to protect enterprise

sensitive data with fairly low overheads.

Our contributions can be summarized as follows:

• We propose CloudDLP, the first system that provides

automatic and transparent sensitivity detection and sani-

tization in various browser-based cloud storage. It is easy

to adapt to new applications with minimal efforts.

• To preserve the utility of the application while preserving

privacy, our system detects sensitivity in images and

textual documents, and performs automatic sanitization

through deep learning methods.

• We have implemented and tested CloudDLP with various

popular cloud applications, such as Gmail, Box, Dropbox,

Salesforce, etc. Our experimental results demonstrate that

CloudDLP is effective in real-time applications with fairly

low overheads.

The rest of the paper is organized as follows. We review

the related work in Section II. We present the overall system

architecture and implementation Section III. We present per-

formance evaluation and case studies in Section IV. Finally,

we conclude this paper in Section V.

II. RELATED WORK

A number of solutions to protect sensitive data for cloud

storage services have been proposed. In this section, we

discuss the advantages and disadvantages of these solutions.

Data Loss Prevention (DLP) system is used to protect

three types of data: the data is at rest, data is in motion,

and data is in use [13]. In this paper, we focus on data

in motion. Several non-automated methods are based on

regular expressions, such as SPIRION [5], CUSpider [6],

and CipherCloud [7]. They detect sensitive information based

on pre-defined keywords and domain-specific entities through

regular expressions. The detection precision of these systems

are often low due to many false positives, and they also

require large-scale dictionaries. Several solutions have adopted

machine-learning based methods for aumatically detection,

but their performance is fairly disappointing. Elisa Costante

et al [14] proposed a DLP framework combined signature-

based and anomaly-based methods, which enable detection

and prevention simultaneously. First, this framework trains

a model to recognize user behaviors using machine learning

algorithms. Then building and updating the attack signatures

automatically according to operation feedbacks on alerts.

However, the accuracy of these automatically approaches has

been lower than some manually specified methods. Gomez-

Hidalg et al. [15] presented an automatic approach using NER

(Named Entity Recognition). They used a dataset extracted

from Twitter using Google Insight [16]. Unfortunately, this

approach cannot be extended to other data types (such as files

and images), and only works for the textual data. Ong Y J et al

[17] introduced a system that can detect sensitive information

on various degrees of granularity within the document by

using machine learning and deep learning algorithms. Their

deep-learning based detection models use semantic context

information about documents to predict whether they contain

sensitive information. This system effectively detects sensitive

data from the documents and help users mitigate future threats.

However, it also shows shortcomings and limitations. First, this

system cannot detect sensitive information in images and other

non-document data. Second, it is only applied to a specific

domain that cannot be applied to the general domain.

Cloud Access Security Broker (CASB) [11] is a proxy-

based approach to protect user privacy. Many companies such

as CipherCloud [7] and Skyhigh Network [12] launched their

own CASB products. CASB is deployed between a user

and an application. When the proxy intercepts sensitive data

through protocol analysis, it encrypts the data and sends to the

application. However, users need to know the protocol of each

application in advance; when the application protocol changes,

it may not work. Therefore, this approach is difficult to apply

to every cloud application.

Other works. ShadowCrypt [8] runs as a browser extension

and encrypts data before the application code accesses it. It

replaces input elements in a page with secure, isolated shadow

inputs and replaces cleartext with the encrypted text. However,

ShadowCrypt is unable to achieve encryption for non-textual

data such as complicated documents, images, etc., and can

not support any mobile applications. CryptDB [18] encrypts

user confidential data between an application server and a

database server. CryptDB includes a proxy that interposes

user operations and translates normal queries into queries on

encrypted data. CryptDB effectively protects confidential data

against the database administrator and allows the user to query

transparently on encrypted data. However, it only protects

the database and does not support cloud applications. Mylar

[19] is an encryption system which using Meteor JavaScript

framework. Users encrypt their data by programming in the

Meteor JavaScript framework. However, Mylar not only suf-

fers from the lack of compatibility, but also cannot perform

data analysis in a cloud environment. Virtru [20] is an email

encryption system used to protect webmail contents of being

leaked. Although it can protect webmail data very well, it

cannot be extended to other non-mail web applications and

also only work for a few mail providers. These solutions are

only used for specific domains.

III. SYSTEM ARCHITECTURE

A. Design Goals

In this paper, we aim to develop methods to protect sensitive

information of images and documents from leaking out of



Fig. 1. System Architecture of CloudDLP.

enterprise on-premises to insecure cloud storage via browser-

based interfaces. Developing a privacy preservation approach

for browser-based cloud storage services is usually not an easy

task, due to the following requirements:

1. Security. The solution need ensure that sensitive data

is protected before leaving enterprise on-premises to the

cloud.

2. Usability. The method need better preserve user experi-

ences and application functionalities, such as document

previewing and editing.

3. Scalability. The solution must be easy to maintain and

be highly scalable for various applications.

B. Threat Model

CloudDLP should be deployed at the edge of an enterprise

network, where main security restricted policies can keep most

attackers out. We assume that an internal enterprise network is

security and trustworthy. But cloud storage service providers

may be malicious. Sometimes, they may compromise the se-

curity of valuable user data due to commercial interests, legal

requirements, or when they are compromised. Meanwhile,

the client-side application code and the middleware on the

network channel may also be exploited to exfiltrate sensitive

information.

Additionally, we assume the operating systems, browsers,

and network devices inside an enterprise firewall are trusted,

which is a practical trusted zone in most organizations. Cloud-

DLP does not provide protection against side-channel attacks.

C. CloudDLP Architecture

In this section, we present the architecture of CloudDLP.

CloudDLP is an internet gateway deployed within the premises

of an enterprise. A user interacts with the application as usual

while CloudDLP seamlessly detects and redacts outgoing

sensitive data. Fig. 1 shows the overall system architecture,

which consists of several main components: (a) Interceptor,

(b) Parser, (c) Automatic Sanitization, and (d) Packer. In the

following, we will briefly describe the functionality of each

component.

1) Interceptor: The interceptor is implemented as a secure

proxy between enterprise users and cloud service providers. It

intercepts network traffic such as HTTP/HTTPS from premises

to the cloud. Furthermore, the interceptor can intercept the

TLS connections with a certificate authorized by the enter-

prise via the “SSL man-in-the-middle” technique. Inspecting

traffic is enforced to prevent sensitive user information be-

ing disclosed outside enterprises. It is also responsible for

injecting the JavaScript snippets into the web pages of cloud

applications. The JavaScript snippets are used to override

the JavaScript native API such as XMLHttpRequest and Fil-

eReader. The snippets can intercept all the XHR requests, and

then screen and identify file uploading requests.

Although third-party JavaScript libraries can provide various

file and web access interfaces, many of them eventually need

to invoke the primitive File and Web interface of JavaScript.

Meanwhile, the File and XMLHttpRequest API Standard are

fairly mature and have been rarely updated in recent years.

So the implementation of CloudDLP can easily keep up with

the current standard and has a low risk of out of sync with

the current JavaScript File and Web API. This is a very low-

frequency event compared with other development of cloud

services. Therefore, we believe that CloudDLP is a practical

solution both at present and in the near future.

2) Parser: The Parser is for application protocol parsing,

file content extraction and document parsing, based on syntax

and semantics analysis. It obtains data buffered for a user

session and analyzes the request content format (including

key-value, multi-part, etc.) to extract document fields.

3) Sanitizer: The Sanitizer has two main tasks: (a) detec-

tion of sensitive information within images and documents;

(b) sensitive information hiding, in a way that the disclosure

risk is minimized and, ideally, the utility of the sanitized

image and text is maximized. We have developed several

methods to detect sensitive information in images and textual

documents through several advanced deep learning models.

For example, we are using the scene text reading approach

based on convolutional neural network (CNN) and recurrent

neural network (RNN). CloudDLP associates the discovery of

sensitive data in text to the recognition of Named Entities in

Natural language processing (NLP). Thus private information

in images can be redacted while preserving the utility.

4) Packer: The Packer module is able to assemble the

sanitized images or documents and then to send them back for

corresponding requests. At the end, the gateway can forward

the protected request to the cloud.

As a concrete example, when an enterprise user visits a

cloud storage service via CloudDLP. The interceptor injects the

JavaScript Snippets into the requested web pages. Then, the

snippets executed in the user’s browser would hook the native

JavaScript APIs including XMLHttpRequest and FileReader. It

intercepts and labels all requests that include files. Algorithm

1 shows the CloudDLP workflow. CloudDLP first receives a

connection from the browser of the user (line 1). The connec-

tion is always over HTTP or HTTPS. When the user interacts

with the cloud application, the requests sent by the browser

always include web pages. Then the interceptor of CloudDLP

instruments the JavaScript snippets at the head of the web

pages (line 3). The snippets can override the native JavaScript



Algorithm 1 The main CloudDLP algorithm

Input: B: the browser

Input: CSS: the Cloud Storage Service

Input: C: CloudDLP

1: while a connection c from B do

2: if c.request contains html page then

3: c.response ← C.inject js snippet(c.response)

4: if c.request is identified as file uploading then

5: file ← C.parse(c.request)
6: file ← C.sanitize(file)
7: c.request ← C.pack(c.request, file)

8: send(c)

API such as XMLHttpRequest and FileReader. Thus, the

snippets can intercept network traffic, capture file operations

invoked by the application, and identify file requests. The tag

label of each request indicates that this is a file request and

the file content needs to be detected and sanitized. Then the

parser will analyze the semantic of the request, extracts files

from the connection and parses the documents (line 5). The

sensitive information of the extracted files will be removed by

the automatic sanitization (line 6). Finally, the packer rebuilds

each file in associated requests and rewrites the sanitized file

contents into the requests to ensure full usability and privacy

of outgoing contents (line 7).

D. Automatic Identification of Files

Building a generic automatic approach for new and existing

applications is one of the most significant design goals of

CloudDLP. To achieve this goal, we need first recognize

upload requests from a variety of applications at the proxy. In

the following section, we first discuss two unsatisfactory ap-

proaches to identifying uploading requests, and then introduce

the dynamic analysis of JavaScript and it use in FileCrypt.

One method is to only use regular expression matching for

features extraction from uploading requests to test on whether

it meets the uploading requirements. It calls for accumulated

and sophisticated match rules derived from the analysis of all

application protocols respectively. In addition, the matching

rules in the proxy have to be adaptive once a cloud service

protocol changes. Therefore, simply using regular expression

matching has serious limitations. The second naive method is

to use an inter-procedural string analysis [21], which can also

extract an upload requests URL string, HTTP methods, and

the relevant request data. However, this method usually leads

to a low accuracy, since service suppliers normally compress

and mix JavaScript codes. So inter-procedural string analysis

cannot extract request information precisely.

In reality, file transmission in cloud applications is always

accompanied by invoking of the XMLHttpRequest object. No

contemporary browsers are lacking in a built-in XMLHttpRe-

quest object, which plays a key role in defining a programming

interface for data transfer between a web browser and a web

server. Note that a file object here can be Blob [22], File,

Fig. 2. The Model of Automatic Image Sanitization.

FormData [23], or ArrayBuffer [24]. Among these types, Blob

and File refer to the constant file data object, while FormData

stands for a set of key/value pairs revealed from fields and their

values. As values, a Blob or File Object can be included in a

FormData. Besides, ArrayBuffer is to represent a prevailing,

and fixed length raw binary data buffer read from a file. The

file variable, which can be either a Blob, File or FormData,

is sufficient to determine an incoming request to be a file

uploading request or not.

Therefore, CloudDLP overrides and hooks the XMLHttpRe-

quest API by the injected JavaScript snippets for checking the

argument type in the send method to identify file uploading

requests.

E. Automatic Image Sanitization

The first step of detecting privacy information in images

is to extract texts in the form of pixels presents. This step

presents a great challenge according to the variety of images

coming from different cloud applications. To address this

challenge, we adopts the automated method, named scene text

reading. This model consists of two processes: text detection

and text recognition. The text detection process is to locate

the regions possibly containing text from the given images.

The text recognition process focuses on transforming the text

in detected regions into editable characters. The scene text

reading model in this paper is based on deep learning, and its

structure is shown in Fig. 5:

Text detection process: Different text detection models

are designed for various purposes, attempting to solve unique

difficulties in detecting scene text. For example, R2CNN

[25], SegLink [26] and PixelLink [27] are designed to detect

extremely long texts which have much larger height-width

ratio. Aiming at the multi-oriented text, models such as [28],

[29] and [30] have been proposed. Because texts in images in

the cloud privacy preserving are usually horizontal and low-

pixel, we choose the Connectionist Text Proposal Network

(CTPN) model in [31], [32] and [33], which performs well on

such images (like the dataset ICDAR2013) and has been wildly

applied. The structure of CTPN is as follow: First, images are

divided into small blocks with 16× 16 pixels, and we define

several proposals in each block. Then, we extract a feature

map from these images with a convolutional neural network

(CNN), in this paper, the CNN layer is built by referenced to



the standard practice of VGG-16 and an additional convolution

layer is added after the fifth convolution layer of CNN, in order

to change the feature maps into a sequence. Then, a Recurrent

Neural Network (RNN) is connected after the CNN to analyze

a feature sequence. RNN is designed for processing sequence

data, and it combines all the features in the line of this

proposal. A full-connect network with 60 hidden units based

on RNN predicts the location (center point coordinate), size

(the fixed-width of proposal) and score (whether this proposal

is text or non-text) for each proposal defined. The RNN we

adopted in this paper is a bidirectional Long Short Term

Memory (LSTM) with 256 hidden units. With the prediction

of RNN and the full-connect layer, we filter out proposals with

a low score and connect the high score proposals into a text

region.

Text recognition process: Text recognition tasks can also

be classified into horizontal text recognition [34], [35] and

curved text recognition [36]. At the post-processing of the text

recognition, the output text may be revised by an established

word list called ‘lexicon.’ Using lexicon can improve the

accuracy of the recognition model to certain extent, but this

method is not suitable for cloud privacy preserving task that

do not have a predetermined word list. The text recognition

model we chose in this paper called Convolutional Recurrent

Neural Network (CRNN) [37], which is dedicated to analyzing

horizontal text issues and achieve good results without lexicon.

The structure of CRNN is as follows: Before inputting into

the recognition process, all of the text regions are scaled to

a height of 32 pixels by bilinear sampling. At the beginning

of this process, we use a special CNN to extract the feature

of the text region and directly transform these features into

sequential vector representations. This CNN adopts 1×2 sized

maxpooling windows instead of the 2 × 2 ones in the CNN

layer, in order to directly get feature sequences from the text

regions. After the CNN layer, a bidirectional LSTM is used in

this layer as the replacement of traditional RNN to predict a

label for each vector and output a label sequence. This label

sequence may contain blanks and redundancies like ‘-c-ll-ouu-

d’. At the end, Connectionist Temporal Classification (CTC)

[38] is adopted to change the label sequence into the final

result ‘cloud’.

The recognized text will be recognized by the NER model

mentioned in the Section F, if it is a sensitive data category,

its pixel corresponding to the sensitive information will be

blacking-out.

F. Automatic Textual Document Sanitization

Confidential data of companies and organizations, such as

intellectual property, financial information, personal credit card

data and other information depending upon the business, is

often in the form of textual documents. The most intuitive

way is to upload the documents to the cloud after encryption.

Unfortunately, encrypted files can cause features on the cloud

to be unusable. For example, online document editing and

preview cannot be used after file encryption. Hence, document

sanitization not only removes privacy-sensitive information

Fig. 3. The Model of Automatic Textual Document Sanitization

but also preserves document semantic information. Thus how

to automatically localizing and sanitizing private content in

textual documents is a serious challenge. Named Entity Recog-

nition [15] is an information extraction technology to locate

and classify elements in text into pre-defined categories such

as the person names, organization, places, and so on. NER is

applied in intelligently detecting sensitive data in documents.

Recently, BERT (Bidirectional Encoder Representations

from Transformers) [39] is published by researchers at Google

AI Language. It is trained on large text corpora with an

unsupervised loss and has the state-of-the-art performance on

NER. Thus we develop an automatic sanitization of textual

documents using transfer learning on BERT. The network

architecture is shown in Fig. 3. For a given document, we first

break down the document into sentences using ‘n’, ‘.’, ‘?’, ‘!’,

and then split the sentence into tokens according to WordPiece

tokenization. For a given token, its input representation is

constructed by summing the corresponding token, segment and

position embeddings which are implemented by Transformer

and BERT. Furthermore, the first token of every sequence is

always the special classification embedding ([CLS]) and end

with another token ([SEP]). The BERTs model architecture

is a multi-layer bidirectional Transformer encoder. We used

the BERT base model, which has 12 Transformer blocks, a

hidden size of 768, and the number of self-attention head

as 12. The transformer can extract features efficiently, and it

can be computed parallelly. The bidirectional Transformer can

extract bidirectional representations by jointly conditioning on

both left and right context in all layers. The outputs of the

Transformer are the transformed embedding of every token.

The outputs are fed into a linear-chain conditional random filed

(CRF) [40]. The CRF is able to find the labeling sequence in

a sentence with the highest probability. The determination of

the token label can make use of both previous and subsequent



Fig. 4. Text Detection and Recognition Network

label information.

G. CloudDLP Implementation

So far, we have implemented CloudDLP on an enterprise

gateway. Several companies are initially using our system

to prevent data leakage. The implementation of CloudDLP

proxy is in C++, based on a popular open-source proxy,

Squid [41]. Squid is a caching proxy for the web supporting

HTTP, HTTPS, and more. The JavaScript Snippets is easier to

implement in JavaScript to override native JavaScript API. The

Parser, the Sanitizer, and the Packer are implemented as mi-

croservices which are easier to scale. The deep learning model

in CloudDLP is implemented in Python using Tensorflow [42]

or Pytorch [43]. In the future, we will consider making the

system open source.

IV. EXPERIMENTAL EVALUATION

In this section, we first measure the performance of image

and textual sanitization. We then discuss its effectiveness in

a wide variety of popular applications. We evaluate both

accuracy and time cost of CloudDLP system. Comparing

with the image sanitization module and textual document

sanitization module, the time cost of network communications

can be ignored. So we only focus on the time cost evaluation

of these two sanitization modules. Our experiments are carried

out on a server for deep learning with an Intel(R) Xeon(R)

Silver 4116 2.10GHz CPU, 64GB RAM, and an NVIDIA

Quadro P4000 GPU.

A. Image Sanitization Performance

Deep learning based text reading model needs to be well

trained with mass data to improving accuracy. In this paper,

text detection process and text recognition process are trained

respectively. The training data of text detection come from

benchmark datasets CRTW-17 (ICDAR2017 Competition on

Reading Chinese Text in the Wild) and ICPR Text Detection.

The text recognition process is trained with synthetic data be-

cause of the lack of Chinese-English Mixed open source data.

We choose suitable fonts, backgrounds and corpus to make

synthetic data more real. Both the text detection model and

the text recognition model use Stochastic Gradient Descent

Fig. 5. The Result of Image Sanitization

(SGD) for CNN training and Back-Propagation Through Time

(BPTT) for RNN training. We use ADADELTA [44] to control

the learning rate and batch normalization technique to speed

up the training process. The details of network parameters is

shown in Fig. 4, where s is step size, p is the padding size, c is

the number of channels, and k is the kernel size of convolution.

In these experiments, we adopt DetEval algorithm [45] to

evaluate the performance of text detection, and Edit Distance

to evaluate the accuracy of text recognition. The result is

shown in Table. II. These models are tested on three mutually-

exclusive data sets, images in these data sets are collected from

three different wildly used cloud applications. The final result

shows that the accuracy is about 93.4%, which is acceptable

for information extraction. The average time-consuming is also

shown in Table. II. The result shows that most of the time is in

text detection. Fig. 5 shows image sanitization module detects

and sanitize sensitive information such as person name, age,

and ID number in medical image pictures.

B. Textual Document Sanitization Performance

The main data set used to evaluate the model of textual

document sanitization is the 2014 i2b2 de-identification chal-

lenge data set [46]. CloudDLP need to strip the medical

records of any protected health information (PHI). The i2b2-

PHI categories are shown in Table. I. The data set consists

of 1,304 patient progress notes for 296 diabetic patients and

contains 56,348 sentences with 984,723 separate tokens (of

which 41,355 are separate PHI tokens), which represent 28,867

separate PHI instances. We used the standard metrics such as

precision, recall, and F1 as defined in Equation 1-3, to measure

the performance of the model. Moreover, we also compute

these three metrics for each PHI category.

Precision =
No. of correctly identified PHI Tokens

No. of identified as PHI Tokens
(1)

Recall =
No. of correctly identified PHI Tokens

TotalNo. of PHI Tokens
(2)

F1 = 2 ∗
precision ∗ recall

precision + recall
(3)

We used a BERT-based model which have 12 layers of

Transformer Blocks, 768 hidden size, 12 self-attention heads,

and 110M parameters. We evaluated the model on i2b2-PHI



Fig. 6. The Result of Textual Document Sanitization

TABLE I
PHI CATEGORIES ON I2B2

HIPPA i2b2

Name Patient, Doctor, Username
Profession Profession
Location Street, City, State, Country,Zip,Hospital,Organization

Age Age
Date Date

Contact Phone,Fax,Email,URL,IP Address
ID Medical Record,ID No,SSN,License No

TABLE II
IMAGE SANITIZATION PERFORMANCE

Dataset
Text Detection Text Recognition

Precision Recall F-Score Time (s) Accuracy Time (s)

Image Set 1 76 73 75

4.686

95

0.415Image Set 2 79 81 80 92

Image Set 3 77 76 76 93

categories for the i2b2 data set based on token-level labels.

Table. III, summarizes the performance of our model on i2b2-

PHI categories. As we can see in Table. III, our model achieves

an impressive precision of 0.9796 and a recall of 0.9836.

Fig. 6 shows textual document sanitization module detects

and sanitize sensitive information such as person name, phone

number, mailing address, and so on in the pdf file.

C. Case Study

We test CloudDLP with typical cloud applications and ob-

serve the potentially affected functionalities including search,

online document editing, document previews, and thumbnail

previews. The result shows that CloudDLP retains prominent

functionality of these applications while protecting sensitive

critical data. We tested CloudDLP with typical browser-based

cloud storage applications such as Gmail, Dropbox, Box,

OneDrive, Google Drive, and Mega.nz. CloudDLP success-

fully detects and sanitizes sensitive information in files up-

loaded to the cloud. Online editing, previewing, and sharing of

TABLE III
IMAGE SANITIZATION PERFORMANCE

Category Precision Recall F1-Score

Username 0.9468 0.9674 0.9570

Doctor 0.9516 0.9449 0.9483

Patient 0.9402 0.9391 0.9396

Profession 0.7727 0.8293 0.8000

State 0.8186 0.8930 0.8542

Street 0.8904 0.9559 0.9220

Age 0.9632 0.9819 0.9725

Date 0.9830 0.9750 0.9750

Phone 0.8900 0.9490 0.9185

Zip 0.9568 0.9568 0.9568

ID 0.8093 0.8220 0.8156

MedicalRecord 0.9731 0.9827 0.9779

average 0.9796 0.9836 0.9816

documents can still be used normally because the sanitization

of a small amount of sensitive information does not destroy

the document structure and makes it impossible to parse in the

cloud. On using CloudDLP with office applications, namely

Salesforce, Google Docs, and Slack, the uploaded files of

Salesforce and Google Docs can be protected by CloudDLP.

Importing a file into a trading repository and report forms

may be wrong with Salesforce. The sanitization data, if it is a

numeric type, would affect the results of statistical analysis in

the report. Fortunately, users can choose whether to enable the

protected mode by clicking the hovering button in the head of

the web page.

V. CONCLUSION

In this paper, we present CloudDLP, a generic approach that

transparently and automatically performs data sanitization on

various cloud applications while preserving most functionali-

ties of the cloud. As a result, CloudDLP can help enterprises

effectively prevent core data leakage, as well as can ensure



sensitive data security and regulatory compliance in the cloud.

In addition, our experimental results show that CloudDLP has

fairly low overheads and can support practical use in many

real-world applications.
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