
FileCrypt: Transparent and Scalable Protection of

Sensitive Data in Browser-based Cloud Storage

Peiyi Han∗, Chuanyi Liu†¶, Yingfei Dong‡, Hezhong Pan∗, QiYang Song§, Binxing Fang†

∗Beijing University of Posts and Telecommunications, Beijing, China
†Harbin Institute of Technology (Shenzhen), Shenzhen, China

‡University of Hawaii, Hawaii, USA
§Tsinghua University, Beijing, China

¶Correspondence to: cy-liu04@mails.tsinghua.edu.cn

Abstract—While cloud storage has become a common practice
for more and more organizations, many severe cloud data
breaches in recent years show that protecting sensitive data in the
cloud is still a challenging problem. Although various mitigation
techniques have been proposed, they are not scalable for large
scale enterprise users with strict security requirements or often
depend on error-prone human interventions. To address these
issues, we propose FileCrypt, a generic proxy-based technique for
enterprise users to automatically secure sensitive files in browser-
based cloud storage. To the best of our knowledge, FileCrypt
is the first attempt towards transparent and fully automated
file encryption for browser-based cloud storage services. More
importantly, it does not require active cooperations from cloud
providers or modifications of existing cloud applications. By in-
strumenting mandatory file-related JavaScript APIs in browsers,
FileCrypt can naturally support new cloud storage services and
guarantee the file encryption cannot be bypassed. We have
evaluated the efficacy of FileCrypt on a number of popular real-
world cloud storage services. The results show that it can protect
files on the public cloud with relatively low overheads.

I. INTRODUCTION

More and more organizations now adopt cloud storage (e.g.

Dropbox, Box) and enterprise cloud services with file storage

(e.g. Gmail, Salesforces) as an essential part of their business.

While enterprises can lower their storage ownership costs and

support better mobility, data security remains serious con-

cerns. We have seen many headlines regarding cloud storage

(or cloud data sharing) breaches. Many major cloud storage

service providers such as Google Drive, Dropbox, and their

customers have already been the victims of such attacks [1]–

[3]. Meanwhile, cloud providers have incentives to look into,

mine, and sell sensitive user data or files.

Skyhigh Network analyzed the cloud usage of 18 million

users and found that an average company uses about 923 cloud

services, most of which have browser-based cloud storage

capabilities. Particularly, 21% of uploaded files in cloud-based

file sharing services contain sensitive data, such as intellectual

property and trade secrets [4]. To protect sensitive data on

browser-based cloud storage, a promising solution is to encrypt

files before sending them to the service providers. However,

in practice, applying an encryption solution to browser-based

cloud storage is still very challenging. In particular, we

need to: 1) maintain good user experience while preserving

application functionality; 2) provide scalability for various

applications. Consequently, we have to achieve the following

three requirements:

1. Security. An ideal solution should ensure that any file

data uploaded into cloud storage must be encrypted

before leaving an enterprise’s premise. While using direct

solutions such as end-to-end encryption (E2EE) may

solve the problem, these solutions often require cloud

providers to modify applications. Moreover, we can not

completely trust cloud providers to provide E2EE. There-

fore, we must investigate new solutions.

2. Usability. The solution must be easy to use and preserve

common user experience and application functionality.

Traditional solutions (such as PGP) force users to encrypt

files before uploading them into the cloud. Although it

is effective, enterprise users are unlikely to adopt it due

to the overheads of switching between applications for

daily tasks. A user should be able to interact with an

application as usual without having to change its normal

process. More importantly, the solution should not affect

normal application functionalities such as search, which

may be affected by encryption. For example, Security

Overlay [5], [6] does not meet this requirement because

a file is uploaded in the overlay (instead of the original

file uploading functionality), which makes the cloud

application as a “dumb” storage and degrades its mass

storage and search capabilities. In addition, because the

data integrity is usually verified at the cloud storage, we

must ensure that encryption does not cause verification

failures and file-uploading failures.

3. Scalability. A proposed solution must be easy to maintain

and scalable. It should require minimal user efforts and

automatically supporting new (or updated) applications.

Due to thousands of cloud applications use various

logic and protocols, cloud access security broker (CASB)

solutions (adopted by commercial companies like Sky-

high Networks and CipherCloud [?], [7]) struggle to

adapt various services by reverse engineering service-

specific protocols (further discussed in Sec. II). It is

time-consuming and labor intensive. Also, it is difficult

to convince cloud providers to reveal their proprietary

protocols or participate in collaborations. Therefore, a

2019 IEEE Conference on Communications and Network Security (CNS)

978-1-5386-7117-7/19/$31.00 ©2019 IEEE 46

practical solution should be able to integrate data pro-

tection without reverse engineering or cooperation from

cloud providers.

In this paper, we introduce FileCrypt, the first system that

automatically and transparently secures sensitive files and

preserves user experience and application functionality on

browser-based cloud storage, without cooperations from cloud

providers or modifying existing applications. With FileCrypt,

security conscious users have the choice of uploading en-

crypted data to cloud applications (e.g., Gmail, Google Drive,

Dropbox, Salesforce, etc.) and still use important functionali-

ties (such as search, image preview, and file sharing).

FileCrypt is designed to be able to support different kinds

of applications with minimal efforts. Therefore, a critical step

is how to automatically capture and identify file operations

such as uploading or downloading. With the support of an

enterprise proxy, FileCrypt injects JavaScript (JS) snippets

to web pages before they are delivered to client browsers.

Then the JS snippets overwrite native JavaScript APIs (such as

XMLHttpRequest) so that uploading requests can be identified

and file content can be encrypted on the fly. This process

successfully isolates the sensitive data from the file source

and fundamentally address the adaptation issue of various

applications. Furthermore, cloud services always perform file

integrity checks based on specific parameters (such as file size

or file hash) before the cloud servers receive the uploading file,

file encryption may cause this step to fail due to inconsistency

between encrypted and the original parameters. To address

this challenge, FileCrypt replaces the original data with the

encrypted data before calculating hash values by overriding

the File API of JavaScript.

However, because encrypting data always affects important

application functionalities like search operations, we design

and integrate a new searchable encryption scheme named Bro-

ker Executed Searchable Encryption (BESE) into FileCrypt.

BESE enables search operations over encrypted data in real

applications without any modification on the cloud service.

We briefly describe the details of BESE in Sec. III-G.

As a proof of concept, we have implemented FileCrypt and

evaluated it with ten real-time browser-based cloud storage

applications, including email, storage, office, which demon-

strates the effectiveness and generality of our approach. The

performance evaluation shows that adopting FileCrypt to

protect enterprise sensitive data with fairly low overheads.

These applications maintain important functionalities (such as

search) while providing transparent encryption.

Our contributions can be summarized as follows:

• We propose FileCrypt, the first system that automatically

and transparently protects sensitive files in browser-based

cloud storage, which achieves transparent encryption

without requiring active cooperation from cloud providers

and the modification of existing cloud services. It is

scalable and automatically adapts to new applications.

• To ensure essential application functionalities (especially

search), while preserving user privacy, we design a new

searchable encryption scheme without requiring server-

side modification.

• We have implemented FileCrypt and tested it with various

popular cloud applications including Gmail, Box, Drop-

box, Salesforce, etc. Our experimental results demon-

strate that FileCrypt is effective in real-time applications

with fairly low overheads.

The remainder of the paper is organized as follows. Section

II describes background and related work. Section III discusses

the design goals, our threat model, the architecture and the

implementation of FileCrypt. Section IV presents performance

evaluation and case studies. Section V concludes our work.

II. BACKGROUND AND RELATED WORK

We first present the file uploading models used by browser-

based cloud storage services and then discuss related work. We

first examine the existing file uploading models by studying

their communication protocols.

A. File Uploading Models

• Initialization Step. Users need to initiate a file uploading

operation and apply for access to the service. Before this

operation, a cloud application may verify file names and

check available space [8]. It may also check the meta-

data, which is generated based on the file name, size or

hash value on the client side. Please note that not all

applications have this step.

• Uploading Step. In this step, the application determines

whether a file should be sent entirely in one request, or

several chunks in multiple requests for performance and

scalability. Once the server receives the file, it compares

the data against the parameters received in the initializa-

tion step; it will cancel the procedure if inconsistency is

found. Therefore, if the file is modified during uploading,

the operation will be canceled due to the failure of

verification.

• Finalization Step. Once the uploading procedure is fin-

ished, users may have a chance to confirm the upload was

successful. This step is usually optional too.

From the above discussion, we can see that encrypting

sensitive files and passing file verification in the cloud storage

applications is a non-trivial technical challenge.

B. Related Work

A number of existing solutions are proposed to encrypt sen-

sitive data handled by browser-based cloud storage services.

In this section, we discuss the pros and cons of each solution

and summarize their main differences in Table I.

File Encryption Tools. File encryption applies cryptography

to individual files. File encryption tools such as PGP [9] can be

used by end users to encrypt and decrypt files locally, which

isolates private data from cloud applications. However, users

have to manually encrypt files before uploading or decrypt

encrypted files after downloading. This solution degrades the

user experience and requires users to maintain secret keys for

each file.

2019 IEEE Conference on Communications and Network Security (CNS)

47

TABLE I
SOLUTION COMPARISON

Solution
Encryption

Location
No client-side
deployment

Transparent

Encryption

Nonspecific

App Support

Key Manager

Location
Examples

File Encryption Tools Client 7 7 3 User
PGP [9],
Encryption Dog [10]

Security Overlay Browser 7 3 7
Key

server
Virtru [6],
MessageGuard [5]

Cloud Access Security Broker Proxy 3 3 7 Proxy
Skyhigh [?],

CipherCloud [7]

FileCrypt Browser
or proxy 3 3 3 Proxy

Security Overlay. Security overlay [11] is a technique that

provides a window where users can view and interact with

secure contents. The solution leverages security overlays to

replace the original functionality of an application, which

requiring developers to override the functionality. For exam-

ple, MessageGuard [5] and Virtru [6] create a file upload

overlay using HTML iFrames to protect data while sacrific-

ing the mass storage and search functionality. The famous

ShadowCrypt [12] replaces input elements in a page with

secure, isolated shadow inputs, and encrypted text with secure,

isolated cleartext. However, ShadowCrypt only supports en-

crypting cleartexts and is unable to achieve encryption for files.

M-Aegis [13] not only provides isolation but also preserves

the user experience through the creation of a conceptual layer

called Layer 7.5 (L-7.5), which is interposed between the

application (OSI Layer 7) and the user (Layer 8). But M-Aegis

only supports encryption for textual data.

Cloud Access Security Brokers. Cloud Access Security

Brokers (CASB) [14] focuses on protecting user privacy via a

proxy, which adopted by commercial companies like Skyhigh

Networks [?] and CipherCloud [7]. The proxy sits between a

cloud application and a user, where it intercepts and encrypts

sensitive data before sending to the cloud. Nevertheless, de-

velopers have to specifically integrate with different services

through protocol analysis one by one. Also, this approach

suffers from the problem that it may not work when the

application protocol changes. Indeed, this approach is hard to

apply in every cloud applications as it requires a lot of effort

to maintain.

Other Work. There are also some proposals investigated

encrypting data handled by cloud applications in recent years.

Ada Popa proposed CryptDB [15] that transparently encrypts

user confidential data between the client side and the database

server to adequately protect confidential data. Mylar [16]

is based on the Meteor JavaScript framework and builds

applications that encrypt all their data sent to the server.

III. FILECRYPT DESIGN

A. Design Goals

In this paper, we aim to protect files sent from a trusted

computing base to cloud storage via browser-based interfaces.

As there are already many existing cloud storage services

and more will be created, we are interested in finding a

solution that is not specific to a given group of services

but generic enough to automatically support new ones. In

particular, we consider that the intended protection is achieved

if the following goals are satisfied:

1. Provide a secure isolated environment where to per-

form encryption against malicious or compromised cloud

providers.

2. Preserve user experience by providing transparent encryp-

tion and guarantee rich functionalities including search.

3. Easy to maintain and highly scalable for various applica-

tions.

B. Threat Model

The goal of FileCrypt is to ensure the data confidentiality

in browser-based cloud storage services. FileCrypt should be

deployed in the enterprises network edge whose prime security

restricted policies can keep most attackers out. Additionally,

The secret kyes stores in the TPM used to prevent malicious

insiders who may control the proxy of FileCrypt. Therefore,

the internal enterprise network is security and trustworthy.

Thus, we assume several parties are not trusted in our threat

model:

• Cloud storage service (CSS) providers. CSS providers

have strong motivations to compromise user privacy. They

may have strong commercial interests or sometimes be

required to access sensitive user data by law; they may

also be compromised by hackers to steal sensitive data.

• Client-side applications. Client-side application codes

from the CSS providers are also considered untrusted.

• Middleware between the CSS and the enterprise premise.

The critical files may be compromised outside the corpo-

rate network. The middleware between the CSS and the

enterprise premise may be exploited to perform man-in-

the-middle attacks for exfiltrating sensitive data.

FileCrypt ensures that sensitive file data, which is transmit-

ted over a secure connection or read by client-side code, is

encrypted through secure overridden native JavaScript API,

even if the client-side code is malicious. Even though the

cloud servers conspire, they can not exfiltrate users’ private

data because they can not get the corresponding key that is

located in the Trusted Platform Module (TPM) of FileCrypt.

Outside the FileCrypt, even if the user’s account is stolen by

somebody, the stealer can only access encrypted data, because

the encrypted data does not go through the broker and there

is no decryption process. We assume the operating systems,

browsers, and network devices inside an enterprise firewall

are trusted, which is a practical trusted computing base (TCB)

in most organizations. FileCrypt does not provide protection

against side-channel attacks.

C. FileCrypt Architecture

Fig. 1 illustrates the architecture of FileCrypt. FileCrypt

is an internet gateway for on-premises, deployed between

enterprise users and cloud service providers to protect outgo-

ing sensitive data. The user still uses common file functions

as usual while FileCrypt seamlessly replaces encrypted data

read by the application’s JavaScript code with clear data

2019 IEEE Conference on Communications and Network Security (CNS)

48

client (line 7).

Algorithm 1 The main FileCrypt algorithm

Input: B: the browser

Input: C: the Cloud Storage Service

Input: F: FileCrypt

1: while a HTTP/HTTPS connection c from B do

2: if c.request contains html page then

3: c.response ← inject js wrapper(c.response)

4: if c.request is identified as file uploading then

5: c.request ← proxy encryption(request)

6: if c.response contains the encrypted data then

7: c.response ← proxy decryption(response)

8: send(c)

D. Identifing Uploading Requests

One of the most important design goals of FileCrypt is

to provide a generic automatic approach for existing and

new applications. A fundamental prerequisite for FileCrypt

is to adaptively identify the uploading requests of various

applications at the proxy. In this section, we first discuss

two unsatisfactory approaches and then introduce the dynamic

analysis of JavaScript and discuss how we use it in FileCrypt.

Strawman 1. We can simply use a regular expression match

to extract features from uploading requests to determine which

request satisfies the file uploading request. But this approach

requires to accumulate match rules by analyzing all application

protocols one by one. Furthermore, these rules in the proxy

have to be updated as soon as a cloud service protocol is

modified.

Strawman 2. We can also extract an upload request’s

URL string, HTTP methods, and the corresponding request

data using an inter-procedural string analysis, according to

[17]. However, service providers usually compress and mix

JavaScript codes which lead to low precision of extracting

requests in this way.

In fact, the JavaScript codes always invoke the XML-

HttpRequest object to send a file in cloud applications.

XMLHttpRequest defines a programming interface to transfer

data between a web browser and a web server. All modern

browsers have a built-in XMLHttpRequest object. The code

(shown in Listing 1) defines the file sending procedure with

XMLHttpRequest. At line 2, the input element object is saved

in variable filesToBeUploaded whose property “files” is a file

list. Line 9 passes the file object to the send method of the

XMLHttpRequest object. Note that the type of file object in

the example can be Blob, File, FormData, and ArrayBuffer.

Blob and File always represent the object of immutable file

data. FormData consists of a set of key/value pairs representing

form fields and their values; they can contain Blob/File Object

as values. ArrayBuffer is used to represent a generic, fixed-

length raw binary data buffer read from a file. The object type

of the file variable (which may be Blob, File or FormData) is

enough evidence to determine if an incoming request should

be a file uploading request. In the following, we will discuss

the conditions when the type of the file is ArrayBuffer.

Therefore, we choose to override the XMLHttpRequest API

and add a hook method used to check the argument type in

the send method for identifying uploading requests. Listing 2

shows FileCrypt overrides the XMLHttpRequest object with a

new XMLHttpRequest object that keeps the original method

but can easily intercept and modify XMLHttpRequest requests

and responses.

E. Handling File Verification

To deal with data corruption, most cloud storage services

validate the uploaded files using either file name, file size,

CRC, MD5 hash, and other checksums. If the validation fails,

the service replies a failure message. Note that encryption

leads to many changes in the file content and length which

usually cause validation failures. As mentioned before, an

application always submits the initialization parameters like

file name, file size, and content checksums to the server

before uploading a file. Thus ensuring valid parameters of

an encrypted file to pass the validation check is a serious

challenge.

The JavaScript File API is used to read the contents of

files in the vast majority of modern websites, the JavaScript

in a web page will calculate the checksums for the contents

and transfer the checksums to the server. Hence, we choose to

override the relevant JavaScript API and ensure that uploading

encrypted files passes the validation by the cloud server.

FileReader provides efficient ways to access file contents

through API functions such as ReadAsArrayBuffer, readAs-

BinaryString, and readAsText. Here, we use an example to

show the handling of readAsArrayBuffer in Listing 3. The

reference to the original readAsArrayBuffer is saved in line 1.

Line 4 invokes underlying readAsArrayBuffer method that

references to the original readAsArrayBuffer to read the file.

In lines 3-8, the ‘result’ getter in the readAsArrayBuffer is

overridden and performs the file encryption. In lines 13-14,

the ‘resulting’ getter of the FileReader is overridden to replace

the original data with the encrypted data. When the client-side

code in the page invokes the readAsArrayBuffer API to read

the file, the application code will obtain the encrypted data

returned from the overridden method and calculate the hash

values for the encrypted data.

F. Key Management

To enforce the browser-side file encryption transparently

and share encrypted files among different enterprises, we

introduce a key management mechanism based on Identity-

Based Encryption (IBE) [18]. In FileCrypt, each user owns a

master key pair (pku, sku) that is used to encrypt different file

keys, where pku is the public key and sku is the secret key.

The encrypted format of the file key is called the wrapper key.

In practice, a fully transparent browser-based file encryption

framework requires no local storage. Thus users need to

delegate secret key storage and management to the trusted

intra-enterprise proxy. For security consideration, the proxy

2019 IEEE Conference on Communications and Network Security (CNS)

50

Listing 1. A exmaple of upload file with XMLHttpRequest
1 function uploadFile(){

2 var filesToBeUploaded = document.getElementById(

"fileControl");

3 var file = filesToBeUploaded.files[0];

4 var xhrObj = new XMLHttpRequest();

5
6 xhrObj.open("POST", "upload.cfm", true);

7 xhrObj.setRequestHeader("Content-type",

file.type);

8 xhrObj.setRequestHeader("X_FILE_NAME", file.name

);

9 xhrObj.send(file);

10 }

Listing 2. Function hooking via function redefinition
1 var xhr = XMLHttpRequest();

2 // new a original XMLHttpRequest object

3 var NativeXMLHttp = XMLHttpRequest;

4 XHookHttpRequest = function () {

5 // hooked method and member

6 }

7 XMLHttpRequest = XHookHttpRequest;

8 var newxhr = XMLHttpRequest();

9 // new a hooked XMLHttpRequest object

is supposed to preserve the secret user keys in the Trusted

Platform Module (TPM) [19] against adversaries.

Each standalone enterprise holds the public key pairs of

different members, we need a mechanism to integrate key

information of different parties. Public Key Infrastructure

(PKI) is always involved in managing key information in

a traditional cryptosystem, but its deployment is a heavy

burden for enterprises. To eliminate the overhead of PKI, we

leverage advanced IBE schemes to implement a public key

cryptosystem. IBE schemes enable Alice to encrypt messages

using Bob’s identity (e.g., email address), thus there is no need

to introduce a third party to manage public keys.

G. Searchable Encryption

While encryption guarantees data security, some functional-

ities (such as search) are sacrificed in the applications. Search-

able encryption schemes achieve different trade-offs between

security, usability, and practicability. More academic projects

focus on index-based Searchable Encryption (SE), in which

the cloud can search the encrypted index with search trapdoor

generated by the user and return encrypted documents [20]–

[25]. We name this approach as Cloud Executed Searchable

Encryption (CESE). But CESE requires modifications on the

cloud, which is difficult in practice. We present a new search-

able encryption scheme called Broker Executed Searchable

Encryption (BESE). The BESE scheme builds the index in

the broker (proxy) with identifiers pointing to encrypted data

in the cloud servers. After FileCrypt uploads the encrypted

file to the cloud, the cloud will return the file identifier.

With buffered data before encryption and the encrypted file

identifier, FileCrypt can index the data, associate it with an

encrypted file identifier in the proxy and storage it on a remote

Listing 3. Function hooking via function redefinition
1 FileReader.prototype._readAsArrayBuffer =

FileReader.prototype.readAsArrayBuffer;

2
3 FileReader.prototype.readAsArrayBuffer =

function readAsArrayBuffer () {

4 this._readAsArrayBuffer.apply(this, arguments)

;

5 Object.defineProperty(FileReader.prototype, '

result', {

6 get: function () {

7 var string = this.resultString;

8 // encrypting data

9 var result = encryption(string);

10 return result;

11 }

12 }

13 }

14
15 Object.defineProperty(FileReader.prototype, '

resultString', {

16 get: FileReader.prototype.__lookupGetter__('

result')

17 });

cloud storage server as shown in Algorithm 2. The details of

BESE is depicted as follows:

1) A user uploads a document D to the cloud storage

application C1.

2) FileCrypt intercepts and encrypts the document D with

the file key K, then gets the uploaded file identifier

ID(D0) returned from C1.

3) Next, FileCrypt extracts keywords ({w1, w2, ..., wn}) of

the document D cached in the proxy. It integrates the

searchable tokens of keywords into a index file I =
{t1, t2, ..., tn} and uploads the encrypted index I to the

the remote cloud storage server C2 via cloud storage API.

4) FileCrypt maps the index I with corresponding index file

identifier ID(I) and associates ID(I) with correspond-

ing encrypted file identifier ID(D0).
5) When a user performs a search for a keyword w to

initiate a query request, the keyword w is replaced with

searchable token TKw and searched on C2.

6) The service C2 returns the index file identifier id. Then

FileCrypt obtains the encrypted file identifiers id0 from

the mappings.

7) The identifier id0 can be used to request the encrypted

files D0 from the storage application C1.

H. FileCrypt Implementation

We have implemented FileCrypt as an enterprise gateway

prototype, which has been initially tested by several com-

panies. We will consider making our software available to

the public in the future. FileCrypt is implemented based on

Squid [26], which is a popular open-source caching proxy for

the web supporting HTTP, HTTPS, and FTP. The JavaScript

Wrapper of FileCrypt can be easily implemented by over-

riding XMLHttpRequest and FileReader API. We believe the

JavaScript Wrapper should work well on any other browsers

since we adopt standard native API in JavaScript.

2019 IEEE Conference on Communications and Network Security (CNS)

51

TABLE II
THE PERFORMANCE OF FILECRYPT

Cloud App File upload interface Verification File size
Uploading Downloading

w/ Proxy (ms) w/ FileCrypt (ms) Overhead w/ Proxy (ms) w/ FileCrypt (ms) Overhead

MailQQ send(ArrayBuffer) size,checksum

1KB 187.89 190.41 1.30% 34.3 25.5 10.52%

10KB 256.50 262.20 2.17% 45 49.2 8.53%

100KB 397.09 408.26 2.73% 129.6 138.2 0.62%

1MB 1381.80 1417.90 2.55% 1145.7 1168.5 1.95%

10MB 8654.71 9612.43 9.96% 1480.20 1496 1.05%

100MB 106321.70 118351.82 10.16% 10319.40 11368.60 9.23%

Box send(File) size

1KB 1366 1532 10.83% 792.2 799.4 0.90%

10KB 2291 2559 10.47% 2318.40 2460.80 5.78%

100KB 3907 3954 1.19% 2701.4 2825.3 4.38%

1MB 3924 4132 5.03% 4878.80 5300.20 7.95%

10MB 12578 12919 2.64% 6332.80 6561.60 3.48%

100MB 235714.30 249600 5.56% 22209.60 23120.80 3.94%

Dropbox send(File) size,checksum

1KB 2069 2261 8.49% 384.8 390.2 1.38%

10KB 1595 1667 4.31% 517.20 528 2.04%

100KB 1592 1627 2.15% 1638 1771.2 7.52%

1MB 1410.77 1466.44 3.79% 3113.20 3181.80 2.15%

10MB 7223 77891 7.26% 11270.80 11679.40 3.50%

100MB 295116 331158.30 10.88% 23403.60 24701.40 5.25%

Google Docs send(Blob) size

1KB 644.8 714.1 9.70% 1410.20 1422 0.829%

10KB 1143 1205 5.14% 1748 1830.40 4.50%

100KB 1908 2039 6.42% 2388.60 2411.40 0.945%

1MB 4771 4877 2.17% 2768.80 2800.60 1.13%

10MB 11189 12043 7.09% 3659.40 3865 5.32%

100MB 87420 97800 10.61% 18140.2 18575.20 2.34%

Salesforce send(FormData) size

1KB 575.89 577.07 8.87% 1410.20 1422 0.83%

10KB 578.19 587.09 1.52% 725.4 744.5 2.56%

100KB 986.35 990.61 0.43% 985.3 990.7 0.54%

1MB 1961 1999 1.90% 1815.5 1919 5.39%

10MB 9823 10117 2.91% 25231 26364 4.30%

100MB 142800 153000 6.67% 176071 183848 4.23%

proxy or with the FileCrypt 10 times, then take the average

delay. As shown in the Table. II, these operations usually are

in milliseconds. Comparing the delay for the same operation

in the FileCrypt with the proxy, we observe that FileCrypt has

low overheads and could be applied in real-world applications.

Cryptographic operations introduce negligible overheads (less

than 11%) for a file operation in the cloud. We find that

there is a downloading overhead of 10.52% for 1KB and

9.23% for 100MB, but all the intermediate values have a

much lower overhead. This significant difference is due to

that network environment changes in real time, which have

much more impact on small files. In addition, as the data

size increases, a large number of memory operations occur

in the code, causing performance degradation. So we believe

that continuous code optimization will considerably improve

the performance. Besides, the performance of search is 11

operations per second, indicating that the latency of searching

is negligible.

B. Case Study

We test the FileCrypt on a wide variety of applications

that handle files based on browsers, which is the focus of

FileCrypt. We discuss these applications that retained or lost

functionality when using them with FileCrypt. The result

shows that FileCrypt retains some important functionality of

these applications while protecting sensitive critical data.

MailQQ [29] is an email service developed by Tencent.

The service provides input fields including the subject field,

the body field, and email attachments. The implementation

of MailQQ’s file uploading is the most complicated in the

applications we have tested. Moreover, the MailQQ checks

the file size and the chunk size strictly and it is hard to extract

and encrypt files by direct protocol and code analysis. The JS

Wrapper injected by FileCrypt encrypts a file before loading

by the client-side code from the application, which ensures

that the MD5 checksum computed with the uploaded data

is the encrypted file’s MD5. Nonetheless, this demonstrated

that FileCrypt is scalable to applications with a complicated

implementation on file uploading with no additional effort.

Since the server does not parse the encrypted content of a

file, users cannot preview and edit documents like PDF and

WORD stored in the cloud. Although losing document preview

and editing functions, it deserves to prevent cloud providers

from peeping and leaking the users’ data. We also used

Gmail [30] with FileCrypt, and found that encrypting email

attachments did break the Gmail’s document editing feature.

The future of document editing and previewing are provided

with cloud applications by parsing the original documents and

compressing the original images. The user needs to pay a

little price for keeping sensitive data safe from prying eyes

of compromised cloud providers.

We also tested FileCrypt with typical browser-based cloud

storage applications such as Dropbox [31], Box [32],

2019 IEEE Conference on Communications and Network Security (CNS)

53

OneDrive [33], Google Drive [34], and Mega.nz [35]. File-

Crypt successfully encrypts uploaded files and decrypts en-

crypted files downloaded from the cloud. Two broken features

are the document preview and sharing files with the outside

of an enterprise network. In some cases, companies want to

encrypt the sensitive data before it leaves their firewalls, so

they prefer FileCrypt to sit on premises and handle encryption,

decryption, and sharing of data within their networks.

On using FileCrypt with office applications, namely Sales-

force [36], Google Docs [37], and Slack [38]. The uploaded

files of Salesforce and Google Docs can be encrypted by

FileCrypt. Importing a file into a trading repository and report

forms did not work with Salesforce due to the encrypted

imported data. Fortunately, users can choose whether to enable

encryption by clicking the hovering button in the head of the

web page. Further, we found that Slack relies on WebSocket

connections to transfer files, and we believe that our solution

can extend to data encryption based on WebSocket in future

work.

V. CONCLUSION

In this paper, we present FileCrypt, a generic approach

that automatically performs file encryption on various cloud

applications while preserving most file storage functionality.

As a result, it has almost no impact on user experiences and

can help users against data breaches by malicious or compro-

mised cloud service providers and attackers. Our experimental

results show that FileCrypt has relatively low overheads and

can support practical use in many real-world applications.

VI. ACKNOWLEDGMENT

This research is supported by the National Key Research

and Development Program of China (No. 2016YFB0800803)

and the National Natural Science Foundation of China (No.

61872110).

REFERENCES

[1] “iCloud leaks of celebrity photos.” [Online]. Available: https:
//en.wikipedia.org/wiki/ICloud leaks of celebrity photos

[2] “Your Sensitive Information Could Be at Risk: File Sync and
Share Security Issue,” Publishing Date: May 6, 2014. [Online].
Available: https://blogs.intralinks.com/2014/05/sensitive-information-
risk-file-sync-share-security-issue/

[3] “Doxed by Microsofts Docs.com: Users unwittingly shared
sensitive docs publicly,” Publishing Date: March 27, 2017.
[Online]. Available: https://arstechnica.com/security/2017/03/doxed-by-
microsofts-docs-com-users-unwittingly-shared-sensitive-docs-publicly/

[4] “Skyhigh: 9 cloud computing security risks every company faces.”
[Online]. Available: https://www.skyhighnetworks.com/cloud-security-
blog/9-cloud-computing-security-risks-every-company-faces/

[5] S. Ruoti, J. Andersen, T. Monson, D. Zappala, and K. E. Seamons,
“Messageguard: A browser-based platform for usable, content-based
encryption research,” CoRR, vol. abs/1510.08943, 2015. [Online].
Available: http://arxiv.org/abs/1510.08943

[6] “Virtru: Email encryption and data security for business privacy.”
[Online]. Available: https://www.virtru.com

[7] “Ciphercloud: cloud services adoption while ensuring security,
compliance and control.” [Online]. Available: https://ciphercloud.com/

[8] H. Chen, L.-J. Zhang, B. Hu, S.-Z. Long, and L.-H. Luo, “On developing
and deploying large-file upload services of personal cloud storage,” in
Services Computing (SCC), 2015 IEEE International Conference on.
IEEE, 2015, pp. 371–378.

[9] “Symantec desktop email encryption end-to-end email encryption
software for laptops and desktops.” [Online]. Available: http:
//www.symantec.com/desktop-email-encryption

[10] “Folder encryption dog: Encrypt your folder and maintain the privacy
of your confidential data.” [Online]. Available: http://soarersoft.com/
dirwatchdog.htm

[11] S. Ruoti, N. Kim, B. Burgon, T. Van Der Horst, and K. Seamons,
“Confused johnny: when automatic encryption leads to confusion and
mistakes,” in Proceedings of the Ninth Symposium on Usable Privacy

and Security. ACM, 2013, p. 5.
[12] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song, “Shadowcrypt:

Encrypted web applications for everyone,” in Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 1028–1039.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660326

[13] B. Lau, S. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva, “Mimesis
aegis: A mimicry privacy shield–a systems approach to data privacy
on public cloud,” in 23rd {USENIX} Security Symposium ({USENIX}
Security 14), 2014, pp. 33–48.

[14] “Cloud access security brokers.” [Online]. Available: https://www.
gartner.com/it-glossary/cloud-access-security-brokers-casbs/

[15] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-

ceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles. ACM, 2011, pp. 85–100.
[16] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M. F. Kaashoek,

and H. Balakrishnan, “Building web applications on top of encrypted
data using mylar.” in NSDI, 2014, pp. 157–172.

[17] E. Wittern, A. T. Ying, Y. Zheng, J. Dolby, and J. A. Laredo, “Statically
checking web api requests in javascript,” in Software Engineering

(ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE,
2017, pp. 244–254.

[18] A. Shamir, Identity-Based Cryptosystems and Signature Schemes.
Springer Berlin Heidelberg, 1984.

[19] T. C. Group, “Tpm,” http://www.trustedcomputinggroup.org.
[20] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key

encryption with keyword search,” in International conference on the

theory and applications of cryptographic techniques. Springer, 2004,
pp. 506–522.

[21] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM conference

on Computer and communications security. ACM, 2012, pp. 965–976.
[22] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable

symmetric encryption: improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[23] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in International Conference on

Applied Cryptography and Network Security. Springer, 2005, pp. 442–
455.

[24] E.-J. Goh et al., “Secure indexes.” IACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

[25] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S&P 2000.

Proceedings. 2000 IEEE Symposium on. IEEE, 2000, pp. 44–55.
[26] “Squid.” [Online]. Available: http://www.squid-cache.org/
[27] Stanford, “Stanford javascript crypto library,” https://crypto.stanford.edu/

sjcl/.
[28] “Stanford ibe library.” [Online]. Available: https://crypto.stanford.edu/

ibe/
[29] “Mailqq.” [Online]. Available: https://mail.qq.com/
[30] “Gmail.” [Online]. Available: https://mail.google.com
[31] “Dropbox: Cloud storage service.” [Online]. Available: https://www.

dropbox.com/
[32] “Box: Cloud storage service.” [Online]. Available: https://www.box.com/
[33] “Onedrive.” [Online]. Available: https://onedrive.live.com/
[34] “Googledrive.” [Online]. Available: https://drive.google.com
[35] “Mega.nz.” [Online]. Available: https://mega.nz/
[36] “Salesforce.” [Online]. Available: https://www.salesforce.com
[37] “Googledocs.” [Online]. Available: https://docs.google.com
[38] “Slack.” [Online]. Available: https://slack.com/

2019 IEEE Conference on Communications and Network Security (CNS)

54

