978-1-5386-7117-7/19/$31.00 ©2019 IEEE

2019 IEEE Conference on Communications and Network Security (CNS)

FileCrypt: Transparent and Scalable Protection of
Sensitive Data in Browser-based Cloud Storage

Peiyi Han*, Chuanyi LiuY, Yingfei Dong?, Hezhong Pan*, QiYang Song®, Binxing Fang!
*Beijing University of Posts and Telecommunications, Beijing, China
THarbin Institute of Technology (Shenzhen), Shenzhen, China
fFUniversity of Hawaii, Hawaii, USA
§Tsinghua University, Beijing, China
YCorrespondence to: cy-liu04 @mails.tsinghua.edu.cn

Abstract—While cloud storage has become a common practice
for more and more organizations, many severe cloud data
breaches in recent years show that protecting sensitive data in the
cloud is still a challenging problem. Although various mitigation
techniques have been proposed, they are not scalable for large
scale enterprise users with strict security requirements or often
depend on error-prone human interventions. To address these
issues, we propose FileCrypt, a generic proxy-based technique for
enterprise users to automatically secure sensitive files in browser-
based cloud storage. To the best of our knowledge, FileCrypt
is the first attempt towards transparent and fully automated
file encryption for browser-based cloud storage services. More
importantly, it does not require active cooperations from cloud
providers or modifications of existing cloud applications. By in-
strumenting mandatory file-related JavaScript APIs in browsers,
FileCrypt can naturally support new cloud storage services and
guarantee the file encryption cannot be bypassed. We have
evaluated the efficacy of FileCrypt on a number of popular real-
world cloud storage services. The results show that it can protect
files on the public cloud with relatively low overheads.

I. INTRODUCTION

More and more organizations now adopt cloud storage (e.g.
Dropbox, Box) and enterprise cloud services with file storage
(e.g. Gmail, Salesforces) as an essential part of their business.
While enterprises can lower their storage ownership costs and
support better mobility, data security remains serious con-
cerns. We have seen many headlines regarding cloud storage
(or cloud data sharing) breaches. Many major cloud storage
service providers such as Google Drive, Dropbox, and their
customers have already been the victims of such attacks [1]—
[3]. Meanwhile, cloud providers have incentives to look into,
mine, and sell sensitive user data or files.

Skyhigh Network analyzed the cloud usage of 18 million
users and found that an average company uses about 923 cloud
services, most of which have browser-based cloud storage
capabilities. Particularly, 21% of uploaded files in cloud-based
file sharing services contain sensitive data, such as intellectual
property and trade secrets [4]. To protect sensitive data on
browser-based cloud storage, a promising solution is to encrypt
files before sending them to the service providers. However,
in practice, applying an encryption solution to browser-based
cloud storage is still very challenging. In particular, we
need to: 1) maintain good user experience while preserving
application functionality; 2) provide scalability for various

applications. Consequently, we have to achieve the following
three requirements:

1. Security. An ideal solution should ensure that any file
data uploaded into cloud storage must be encrypted
before leaving an enterprise’s premise. While using direct
solutions such as end-to-end encryption (E2EE) may
solve the problem, these solutions often require cloud
providers to modify applications. Moreover, we can not
completely trust cloud providers to provide E2EE. There-
fore, we must investigate new solutions.

2. Usability. The solution must be easy to use and preserve
common user experience and application functionality.
Traditional solutions (such as PGP) force users to encrypt
files before uploading them into the cloud. Although it
is effective, enterprise users are unlikely to adopt it due
to the overheads of switching between applications for
daily tasks. A user should be able to interact with an
application as usual without having to change its normal
process. More importantly, the solution should not affect
normal application functionalities such as search, which
may be affected by encryption. For example, Security
Overlay [5], [6] does not meet this requirement because
a file is uploaded in the overlay (instead of the original
file uploading functionality), which makes the cloud
application as a “dumb” storage and degrades its mass
storage and search capabilities. In addition, because the
data integrity is usually verified at the cloud storage, we
must ensure that encryption does not cause verification
failures and file-uploading failures.

3. Scalability. A proposed solution must be easy to maintain
and scalable. It should require minimal user efforts and
automatically supporting new (or updated) applications.
Due to thousands of cloud applications use various
logic and protocols, cloud access security broker (CASB)
solutions (adopted by commercial companies like Sky-
high Networks and CipherCloud [?], [7]) struggle to
adapt various services by reverse engineering service-
specific protocols (further discussed in Sec. II). It is
time-consuming and labor intensive. Also, it is difficult
to convince cloud providers to reveal their proprietary
protocols or participate in collaborations. Therefore, a

46

2019 IEEE Conference on Communications and Network Security (CNS)

practical solution should be able to integrate data pro-
tection without reverse engineering or cooperation from
cloud providers.

In this paper, we introduce FileCrypt, the first system that
automatically and transparently secures sensitive files and
preserves user experience and application functionality on
browser-based cloud storage, without cooperations from cloud
providers or modifying existing applications. With FileCrypt,
security conscious users have the choice of uploading en-
crypted data to cloud applications (e.g., Gmail, Google Drive,
Dropbox, Salesforce, etc.) and still use important functionali-
ties (such as search, image preview, and file sharing).

FileCrypt is designed to be able to support different kinds
of applications with minimal efforts. Therefore, a critical step
is how to automatically capture and identify file operations
such as uploading or downloading. With the support of an
enterprise proxy, FileCrypt injects JavaScript (JS) snippets
to web pages before they are delivered to client browsers.
Then the JS snippets overwrite native JavaScript APIs (such as
XMLHttpRequest) so that uploading requests can be identified
and file content can be encrypted on the fly. This process
successfully isolates the sensitive data from the file source
and fundamentally address the adaptation issue of various
applications. Furthermore, cloud services always perform file
integrity checks based on specific parameters (such as file size
or file hash) before the cloud servers receive the uploading file,
file encryption may cause this step to fail due to inconsistency
between encrypted and the original parameters. To address
this challenge, FileCrypt replaces the original data with the
encrypted data before calculating hash values by overriding
the File API of JavaScript.

However, because encrypting data always affects important
application functionalities like search operations, we design
and integrate a new searchable encryption scheme named Bro-
ker Executed Searchable Encryption (BESE) into FileCrypt.
BESE enables search operations over encrypted data in real
applications without any modification on the cloud service.
We briefly describe the details of BESE in Sec. III-G.

As a proof of concept, we have implemented FileCrypt and
evaluated it with ten real-time browser-based cloud storage
applications, including email, storage, office, which demon-
strates the effectiveness and generality of our approach. The
performance evaluation shows that adopting FileCrypt to
protect enterprise sensitive data with fairly low overheads.
These applications maintain important functionalities (such as
search) while providing transparent encryption.

Our contributions can be summarized as follows:

o We propose FileCrypt, the first system that automatically
and transparently protects sensitive files in browser-based
cloud storage, which achieves transparent encryption
without requiring active cooperation from cloud providers
and the modification of existing cloud services. It is
scalable and automatically adapts to new applications.

« To ensure essential application functionalities (especially
search), while preserving user privacy, we design a new

searchable encryption scheme without requiring server-
side modification.

o We have implemented FileCrypt and tested it with various
popular cloud applications including Gmail, Box, Drop-
box, Salesforce, etc. Our experimental results demon-
strate that FileCrypt is effective in real-time applications
with fairly low overheads.

The remainder of the paper is organized as follows. Section
IT describes background and related work. Section III discusses
the design goals, our threat model, the architecture and the
implementation of FileCrypt. Section IV presents performance
evaluation and case studies. Section V concludes our work.

II. BACKGROUND AND RELATED WORK

We first present the file uploading models used by browser-
based cloud storage services and then discuss related work. We
first examine the existing file uploading models by studying
their communication protocols.

A. File Uploading Models

o Initialization Step. Users need to initiate a file uploading
operation and apply for access to the service. Before this
operation, a cloud application may verify file names and
check available space [8]. It may also check the meta-
data, which is generated based on the file name, size or
hash value on the client side. Please note that not all
applications have this step.

o Uploading Step. In this step, the application determines
whether a file should be sent entirely in one request, or
several chunks in multiple requests for performance and
scalability. Once the server receives the file, it compares
the data against the parameters received in the initializa-
tion step; it will cancel the procedure if inconsistency is
found. Therefore, if the file is modified during uploading,
the operation will be canceled due to the failure of
verification.

o Finalization Step. Once the uploading procedure is fin-
ished, users may have a chance to confirm the upload was
successful. This step is usually optional too.

From the above discussion, we can see that encrypting

sensitive files and passing file verification in the cloud storage
applications is a non-trivial technical challenge.

B. Related Work

A number of existing solutions are proposed to encrypt sen-
sitive data handled by browser-based cloud storage services.
In this section, we discuss the pros and cons of each solution
and summarize their main differences in Table 1.

File Encryption Tools. File encryption applies cryptography
to individual files. File encryption tools such as PGP [9] can be
used by end users to encrypt and decrypt files locally, which
isolates private data from cloud applications. However, users
have to manually encrypt files before uploading or decrypt
encrypted files after downloading. This solution degrades the
user experience and requires users to maintain secret keys for
each file.

47

2019 IEEE Conference on Communications and Network Security (CNS)

SOLUTION COMPARISON
Soluti Encryption | No client-side | Transparent | Nonspecific | Key Manager | o~
Solution Location | deployment | Encryption | App Support Location “xamples
File Encryption Tools Client x x v User g"gy\;ﬂ'bn Dog [10]
]) Key Virtru [6],
Security Overlay Browser X v X server MessageGuard 5]
ccess Sceurity Skyhigh [?].
Cloud Access Security Broker | Proxy v v X Proxy CinhexCloud (7]
FileCrypt Browser v v v Proxy

Security Overlay. Security overlay [11] is a technique that
provides a window where users can view and interact with
secure contents. The solution leverages security overlays to
replace the original functionality of an application, which
requiring developers to override the functionality. For exam-
ple, MessageGuard [S5] and Virtru [6] create a file upload
overlay using HTML iFrames to protect data while sacrific-
ing the mass storage and search functionality. The famous
ShadowCrypt [12] replaces input elements in a page with
secure, isolated shadow inputs, and encrypted text with secure,
isolated cleartext. However, ShadowCrypt only supports en-
crypting cleartexts and is unable to achieve encryption for files.
M-Aegis [13] not only provides isolation but also preserves
the user experience through the creation of a conceptual layer
called Layer 7.5 (L-7.5), which is interposed between the
application (OSI Layer 7) and the user (Layer 8). But M-Aegis
only supports encryption for textual data.

Cloud Access Security Brokers. Cloud Access Security
Brokers (CASB) [14] focuses on protecting user privacy via a
proxy, which adopted by commercial companies like Skyhigh
Networks [?] and CipherCloud [7]. The proxy sits between a
cloud application and a user, where it intercepts and encrypts
sensitive data before sending to the cloud. Nevertheless, de-
velopers have to specifically integrate with different services
through protocol analysis one by one. Also, this approach
suffers from the problem that it may not work when the
application protocol changes. Indeed, this approach is hard to
apply in every cloud applications as it requires a lot of effort
to maintain.

Other Work. There are also some proposals investigated
encrypting data handled by cloud applications in recent years.
Ada Popa proposed CryptDB [15] that transparently encrypts
user confidential data between the client side and the database
server to adequately protect confidential data. Mylar [16]
is based on the Meteor JavaScript framework and builds
applications that encrypt all their data sent to the server.

III. FILECRYPT DESIGN
A. Design Goals

In this paper, we aim to protect files sent from a trusted
computing base to cloud storage via browser-based interfaces.
As there are already many existing cloud storage services
and more will be created, we are interested in finding a
solution that is not specific to a given group of services
but generic enough to automatically support new ones. In

particular, we consider that the intended protection is achieved
if the following goals are satisfied:

1. Provide a secure isolated environment where to per-
form encryption against malicious or compromised cloud
providers.

2. Preserve user experience by providing transparent encryp-
tion and guarantee rich functionalities including search.

3. Easy to maintain and highly scalable for various applica-
tions.

B. Threat Model

The goal of FileCrypt is to ensure the data confidentiality
in browser-based cloud storage services. FileCrypt should be
deployed in the enterprises network edge whose prime security
restricted policies can keep most attackers out. Additionally,
The secret kyes stores in the TPM used to prevent malicious
insiders who may control the proxy of FileCrypt. Therefore,
the internal enterprise network is security and trustworthy.
Thus, we assume several parties are not trusted in our threat
model:

e Cloud storage service (CSS) providers. CSS providers
have strong motivations to compromise user privacy. They
may have strong commercial interests or sometimes be
required to access sensitive user data by law; they may
also be compromised by hackers to steal sensitive data.

e Client-side applications. Client-side application codes
from the CSS providers are also considered untrusted.

e Middleware between the CSS and the enterprise premise.
The critical files may be compromised outside the corpo-
rate network. The middleware between the CSS and the
enterprise premise may be exploited to perform man-in-
the-middle attacks for exfiltrating sensitive data.

FileCrypt ensures that sensitive file data, which is transmit-
ted over a secure connection or read by client-side code, is
encrypted through secure overridden native JavaScript API,
even if the client-side code is malicious. Even though the
cloud servers conspire, they can not exfiltrate users’ private
data because they can not get the corresponding key that is
located in the Trusted Platform Module (TPM) of FileCrypt.
Outside the FileCrypt, even if the user’s account is stolen by
somebody, the stealer can only access encrypted data, because
the encrypted data does not go through the broker and there
is no decryption process. We assume the operating systems,
browsers, and network devices inside an enterprise firewall
are trusted, which is a practical trusted computing base (TCB)
in most organizations. FileCrypt does not provide protection
against side-channel attacks.

C. FileCrypt Architecture

Fig. 1 illustrates the architecture of FileCrypt. FileCrypt
is an internet gateway for on-premises, deployed between
enterprise users and cloud service providers to protect outgo-
ing sensitive data. The user still uses common file functions
as usual while FileCrypt seamlessly replaces encrypted data
read by the application’s JavaScript code with clear data

48

2019 IEEE Conference on Communications and Network Security (CNS)

1.request a web page of a application

JavaScript verificat

on & injection

JavaScript Wrapper)

2.upload
plain file

.

AN

. Main Tihread/Web Worker

XMLHttpRequest
Wrapper

file data

User

3.donwload
encrypted file|

FileReader
Wrapper

FileCrypt
JS wrapper

file data

request
’

XMLHttpRequest

A 4

data x

encryption

encryptionf—»

key,

key

| data .!

A 4

FileReader

4

| data .!

forward request

client-side
JS code

decryption

»
| 4

Key M

¢ - -

Browser

The proxy of FileCrypt

Fig. 1. Architecture of FileCrypt.

Cloud
Application

Cloud Storage

appeared in the overwritten APIs. FileCrypt consists of two
main components:

1) Secure Proxy: The secure proxy is referred to as the
first-mile technology that sits closer to enterprise users. The
proxy intercepts HTTP/HTTPS traffic between a browser (also
called a client) and the cloud applications via the “SSL
man-in-the-middle” technique. FileCrypt acts as a man-in-the-
middle component and intercepts the TLS connection with the
company trusted certificate. Inspecting traffic is reasonable for
enterprises as they must ensure that company data issued by
their employees is protected. FileCrypt based on the proxy’s
ability to inject the JavaScript Wrapper into web pages.
Moreover, The proxy is also responsible for automatically
identifying encrypted data and decrypting ciphertexts.

2) JavaScript Wrapper: The JavaScript Wrapper is made
up of an XMLHttpRequest Wrapper and a FileReader Wrap-
per. These wrappers are JavaScript code snippets to over-
ride the JavaScript native API such as XMLHttpRequest
and FileReader. The XMLHttpRequest Wrapper intercepts all
the XHR requests then screens and identifies file uploading
requests. The FileReader Wrapper encrypts a file by capturing
the file read I/O. Although third-party JavaScript libraries can
provide various file and web access interfaces, many of them
eventually need to invoke the primitive File and Web interface
of JavaScript. Meanwhile, the File and XMLHttpRequest API
Standard are fairly mature and rarely updated in recent years.
So the implementation of FileCrypt can easily keep up with
the current standard and has a low risk of out of sync with
the existing JavaScript File and Web API. This is a very low-

frequency event compared with other development of cloud
services. Therefore, we believe this is still a practical solution
in the long run.

Let us start with a concrete example. Alice, a user of a cloud
storage application browses a web page and the requests go
through FileCrypt, which consequently injects the JS Wrapper
into the head of the web page. The injected page is executed
by the browser, then the JS Wrapper is first executed and
installs function hooks to modify the native APIs (such as
XHR inside the JavaScript execution environment). It captures
calls to JavaScript API functions and object methods in the
web page and associated web workers (for a web page to
execute scripts in the background).

Algorithm 1 shows the FileCrypt workflow. It first receives
an HTTP/HTTPS connection from the client (line 1). The
initial request to access the cloud service always includes
web pages. It then injects a JS Wrapper into the head of the
web pages (line 3). The JS Wrapper will run in the browser
and override the native API. The XMLHttpRequest Wrapper
starts to intercept network traffic and the FileReader Wrapper
captures file operations invoked by the JavaScript code of
the application. FileCrypt encrypts the file extracted from the
request and rewrites the request body data replaced with the
associated ciphertext when the request is labeled with a tag
indicating that data need to be protected (line 5). When the
signature of the encrypted file returns in the response, the
proxy extracts the secret key ID, looks up the right key used
to decrypt the ciphertext, then decrypts the ciphertext, rewrites
the decrypted data into the response body and returns to the

49

2019 IEEE Conference on Communications and Network Security (CNS)

client (line 7).

Algorithm 1 The main FileCrypt algorithm

Input: B: the browser

Input: C: the Cloud Storage Service

Input: F: FileCrypt

1: while a HTTP/HTTPS connection ¢ from B do

2 if c.request contains html page then

3 c.response < inject_js_wrapper(c.response)
4 if c.request is identified as file uploading then

5: c.request < proxy_encryption(request)

6 if c.response contains the encrypted data then

7 c.response <— proxy_decryption(response)
8

send(c)

D. Identifing Uploading Requests

One of the most important design goals of FileCrypt is
to provide a generic automatic approach for existing and
new applications. A fundamental prerequisite for FileCrypt
is to adaptively identify the uploading requests of various
applications at the proxy. In this section, we first discuss
two unsatisfactory approaches and then introduce the dynamic
analysis of JavaScript and discuss how we use it in FileCrypt.

Strawman 1. We can simply use a regular expression match
to extract features from uploading requests to determine which
request satisfies the file uploading request. But this approach
requires to accumulate match rules by analyzing all application
protocols one by one. Furthermore, these rules in the proxy
have to be updated as soon as a cloud service protocol is
modified.

Strawman 2. We can also extract an upload request’s
URL string, HTTP methods, and the corresponding request
data using an inter-procedural string analysis, according to
[17]. However, service providers usually compress and mix
JavaScript codes which lead to low precision of extracting
requests in this way.

In fact, the JavaScript codes always invoke the XML-
HttpRequest object to send a file in cloud applications.
XMLHttpRequest defines a programming interface to transfer
data between a web browser and a web server. All modern
browsers have a built-in XMLHttpRequest object. The code
(shown in Listing 1) defines the file sending procedure with
XMLHttpRequest. At line 2, the input element object is saved
in variable filesToBeUploaded whose property “files” is a file
list. Line 9 passes the file object to the send method of the
XMLHttpRequest object. Note that the type of file object in
the example can be Blob, File, FormData, and ArrayBuffer.
Blob and File always represent the object of immutable file
data. FormData consists of a set of key/value pairs representing
form fields and their values; they can contain Blob/File Object
as values. ArrayBuffer is used to represent a generic, fixed-
length raw binary data buffer read from a file. The object type
of the file variable (which may be Blob, File or FormData) is
enough evidence to determine if an incoming request should

be a file uploading request. In the following, we will discuss
the conditions when the type of the file is ArrayBuffer.

Therefore, we choose to override the XMLHttpRequest API
and add a hook method used to check the argument type in
the send method for identifying uploading requests. Listing 2
shows FileCrypt overrides the XMLHttpRequest object with a
new XMLHttpRequest object that keeps the original method
but can easily intercept and modify XMLHttpRequest requests
and responses.

E. Handling File Verification

To deal with data corruption, most cloud storage services
validate the uploaded files using either file name, file size,
CRC, MD?5 hash, and other checksums. If the validation fails,
the service replies a failure message. Note that encryption
leads to many changes in the file content and length which
usually cause validation failures. As mentioned before, an
application always submits the initialization parameters like
file name, file size, and content checksums to the server
before uploading a file. Thus ensuring valid parameters of
an encrypted file to pass the validation check is a serious
challenge.

The JavaScript File API is used to read the contents of
files in the vast majority of modern websites, the JavaScript
in a web page will calculate the checksums for the contents
and transfer the checksums to the server. Hence, we choose to
override the relevant JavaScript API and ensure that uploading
encrypted files passes the validation by the cloud server.

FileReader provides efficient ways to access file contents
through API functions such as ReadAsArrayBuffer, readAs-
BinaryString, and readAsText. Here, we use an example to
show the handling of readAsArrayBuffer in Listing 3. The
reference to the original readAsArrayBuffer is saved in line 1.
Line 4 invokes underlying _readAsArrayBuffer method that
references to the original readAsArrayBuffer to read the file.
In lines 3-8, the ‘result’ getter in the readAsArrayBuffer is
overridden and performs the file encryption. In lines 13-14,
the ‘resulting’ getter of the FileReader is overridden to replace
the original data with the encrypted data. When the client-side
code in the page invokes the readAsArrayBuffer API to read
the file, the application code will obtain the encrypted data
returned from the overridden method and calculate the hash
values for the encrypted data.

F. Key Management

To enforce the browser-side file encryption transparently
and share encrypted files among different enterprises, we
introduce a key management mechanism based on Identity-
Based Encryption (IBE) [18]. In FileCrypt, each user owns a
master key pair (pk,,, sk,,) that is used to encrypt different file
keys, where pk, is the public key and sk, is the secret key.
The encrypted format of the file key is called the wrapper key.
In practice, a fully transparent browser-based file encryption
framework requires no local storage. Thus users need to
delegate secret key storage and management to the trusted
intra-enterprise proxy. For security consideration, the proxy

50

2019 IEEE Conference on Communications and Network Security (CNS)

Listing 1. A exmaple of upload file with XMLHttpRequest
function uploadFile () {

2 wvar filesToBeUploaded = document.getElementById (
)i
3 wvar file = filesToBeUploaded.files[0];
4 wvar xhrObj = new XMLHttpRequest ();
5
6 xhrObj.open (, , true);
7 xhrObj.setRequestHeader (,
file.type);
8 xhrObj.setRequestHeader (, file.name
)i
9 xhrObj.send(file);
10 }
Listing 2. Function hooking via function redefinition
1 wvar xhr = XMLHttpRequest () ;
2 // new a original XMLHttpRequest object
3 wvar NativeXMLHttp = XMLHttpRequest;
4 XHookHttpRequest = function () {
5 // hooked method and member
6
7 XMLHttpRequest = XHookHttpRequest;
8 wvar newxhr = XMLHttpRequest ();
9 // new a hooked XMLHttpRequest object

is supposed to preserve the secret user keys in the Trusted
Platform Module (TPM) [19] against adversaries.

Each standalone enterprise holds the public key pairs of
different members, we need a mechanism to integrate key
information of different parties. Public Key Infrastructure
(PKI) is always involved in managing key information in
a traditional cryptosystem, but its deployment is a heavy
burden for enterprises. To eliminate the overhead of PKI, we
leverage advanced IBE schemes to implement a public key
cryptosystem. IBE schemes enable Alice to encrypt messages
using Bob’s identity (e.g., email address), thus there is no need
to introduce a third party to manage public keys.

G. Searchable Encryption

While encryption guarantees data security, some functional-
ities (such as search) are sacrificed in the applications. Search-
able encryption schemes achieve different trade-offs between
security, usability, and practicability. More academic projects
focus on index-based Searchable Encryption (SE), in which
the cloud can search the encrypted index with search trapdoor
generated by the user and return encrypted documents [20]—
[25]. We name this approach as Cloud Executed Searchable
Encryption (CESE). But CESE requires modifications on the
cloud, which is difficult in practice. We present a new search-
able encryption scheme called Broker Executed Searchable
Encryption (BESE). The BESE scheme builds the index in
the broker (proxy) with identifiers pointing to encrypted data
in the cloud servers. After FileCrypt uploads the encrypted
file to the cloud, the cloud will return the file identifier.
With buffered data before encryption and the encrypted file
identifier, FileCrypt can index the data, associate it with an
encrypted file identifier in the proxy and storage it on a remote

Listing 3. Function hooking via function redefinition
1 FileReader.prototype._readAsArrayBuffer =
FileReader.prototype.readAsArrayBuffer;

3 FileReader.prototype.readAsArrayBuffer =
function readAsArrayBuffer () {

4 this._readAsArrayBuffer.apply(this, arguments)
’
5 Object.defineProperty (FileReader.prototype,
{
’

6 get: function () {
7 var string = this.resultString;
8 // encrypting data
9 var result = encryption(string);
10 return result;
11 }
12 }
13}
14
15 Object.defineProperty (FileReader.prototype,

{

’

16 get: FileReader.prototype.__ lookupGetter__ (

)
17 1)

cloud storage server as shown in Algorithm 2. The details of
BESE is depicted as follows:

1) A user uploads a document D to the cloud storage
application C1.

2) FileCrypt intercepts and encrypts the document D with
the file key K, then gets the uploaded file identifier
ID(D’) returned from Cj.

3) Next, FileCrypt extracts keywords ({wy,wsa, ..., wy,}) of
the document D cached in the proxy. It integrates the
searchable tokens of keywords into a index file I =
{t1,t2,...,t,} and uploads the encrypted index I to the
the remote cloud storage server Cs via cloud storage API.

4) FileCrypt maps the index I with corresponding index file
identifier ID(I) and associates I D(I) with correspond-
ing encrypted file identifier ID(D’).

5) When a user performs a search for a keyword w to
initiate a query request, the keyword w is replaced with
searchable token T'K,, and searched on Cs.

6) The service Cy returns the index file identifier ¢d. Then
FileCrypt obtains the encrypted file identifiers id’ from
the mappings.

7) The identifier 7d’ can be used to request the encrypted
files D’ from the storage application C.

H. FileCrypt Implementation

We have implemented FileCrypt as an enterprise gateway
prototype, which has been initially tested by several com-
panies. We will consider making our software available to
the public in the future. FileCrypt is implemented based on
Squid [26], which is a popular open-source caching proxy for
the web supporting HTTP, HTTPS, and FTP. The JavaScript
Wrapper of FileCrypt can be easily implemented by over-
riding XMLHttpRequest and FileReader API. We believe the
JavaScript Wrapper should work well on any other browsers
since we adopt standard native API in JavaScript.

51

2019 IEEE Conference on Communications and Network Security (CNS)

Algorithm 2 BESE algorithm

D = {wy,wa,...,w,} A document contains n words
D’ The encrypted file of D

k The secret key k used to generate searchable tokens
K The file key

K’ The wrapper key

E(D) A symmetric encryption scheme

ID(D) The identifier of document D

fi(w;) A pseudo-random function

I The encrypted index

KeyGen(1°)

Given a security parameter s, output keys K, k.

BuildIndex(K, D)

: Compute D’ = Ei(D) and upload it to the cloud Cy;

: Compute K’ = E,, (K) and store it in the proxy;

. Get the document identifier /D(D’) returned from Ci;

. for each keyword w; in D do

token ¢; = fi.(w;)

. Build the index file I = {t1, 12, ...
the server Cs;

7: Get the index identifier ID(I) returned from C5 and
build the mapping Map, < ID(I),I > and Mapy <
ID(I),ID(D') >

8: Output the index and the mapping (I, Mapi, Maps).

o U A W~

,tn} and upload I to

Trapdoor(w)
1: Output TK,, = fr(w).
Search(I,TK,,)

1: Search T'K,, in the index I of C'; and get the correspond-
ing index identifiers {ID(I), [D(l2)...}.

2: Output the corresponding document identifiers
{ID(D}),ID(D})...} from the mappings according
to the above index identifiers.

FileCrypt encrypts files using the AES algorithm in the CTR
mode. Since the AES CTR mode outperforms the CBC mode
and does not require the plaintext to be encrypted in blocks,
it guarantees that the length of the plaintext is always the
same as the length of the ciphertext. We use the Stanford
JavaScript Crypto Library (SJICL) [27] to perform encryption
in the JavaScript Wrapper and adopt the OpenSSL library to
perform encryption in the proxy. The filename of the encrypted
file like “YAB-098...7F6”, includes a formatted signature and
the ID of the wrapped key. “YAB’ is the formatted signature,
which explicitly marks encrypted files. The wrapper key is an
encoded format of file key encrypted by the user’s secret key.
FileCrypt adopts Stanford IBE library [28] to protect file keys
discussed in Sec. III-F. We also utilized HMAC-SHA-256 to
generate searchable tokens in BESE.

IV. EXPERIMENTAL EVALUATION

In this section, we measure the performance overhead of
FileCrypt and discuss its effectiveness in a wide variety
of popular applications. The experimental setup consists of

10000

—e-- wrapper_enc L]
=%+ proxy_enc 7

10001 —— proxy_dec 4
100 4

101

Time taken to encryption/decryption (ms)

106KB 1MB 10’MB IOdMB

File length (byte)

1KB 10KB

Fig. 2. Time taken for FileCrypt to encrypt/decrypt a file. “wrapper_enc”
is the encryption time with the JavaScript Wrapper. “proxy_enc” is the
encryption time of the proxy. “proxy_enc” is the decryption time of the proxy.

a client machine that has Intel i7 2.20GHz CPU with 4
cores and 16 GB RAM, and a virtual machine with Intel i7
2.20GHz CPU with 2 cores and 4 GB RAM, which running
FileCrypt. We simulate users interactions with an application
via FileCrypt on the client machine.

A. Performance Evaluation

We first measure the overhead introduced by cryptographic
operations from FileCrypt. The JavaScript Wrapper performs
encryption before the data read by the client-side code. The
proxy encrypts data before sending to the application. We
invoked the FileCrypt cryptographic interfaces to encrypt
plaintexts and decrypt ciphertexts, then measured the delays
as we varied the message length from 1 KB to 100 MB. Fig. 2
shows the median time overhead for 100 trials for each case.
The JavaScript Wrapper shows an overhead of 5089.3 ms
to encrypt a 100MB file. However, most applications adapt
to upload files in smaller file chunks with a maximum size
that less than 10 MB. A file reading with a chunk size of
100 KB only takes an extra 5.5 ms, which is not noticeable
for users. The proxy consumes 520.311 ms to a 100-MB
file and 1631.370 ms to decrypt a 100-MB file. Clearly, the
overhead introduced by cryptographic operations is relatively
small compared with the total delay of file uploading or
downloading.

Next, we test FileCrypt with five major applications (for a
wide range of users) to evaluate its overheads. Among above
applications, Gmail and QQMail are the popular email services
which can transfer email attachments; Box and Dropbox
provide lots of users and businesses with the ability to store,
access easily, and share files and folders; Google Docs and
Salesforce are most popular services with cloud storage among
companies. Because the use of a proxy server is very common
in enterprise networks to protect the internal machines, we
just compare the overhead of the proxy that just forwards
traffic with the overhead of FileCrypt which encrypts files.
To estimate FileCrypt overhead for real-world applications,
we upload files that vary from 1 KB to 100 MB to the service
and download the encrypted file from the service with the

52

2019 IEEE Conference on Communications and Network Security (CNS)

TABLE II
THE PERFORMANCE OF FILECRYPT
. . . . o . Uploading Downloading
Cloud A Fil load interf: Verificat Fil
ouc App tle uploac Infertace erflication He stze w/ Proxy (ms) ‘ w/ FileCrypt (ms) ‘ Overhead | w/ Proxy (ms) ‘ w/ FileCrypt (ms) ‘ Overhead
1IKB 187.89 190.41 1.30% 343 25.5 10.52%
10KB 256.50 262.20 2.17% 45 49.2 8.53%
[y 0
MailQQ send(ArrayBuffer) size.checksum 100KB 397.09 408.26 2.73% 129.6 138.2 0.62%
IMB 1381.80 1417.90 2.55% 1145.7 1168.5 1.95%
10MB 8654.71 9612.43 9.96% 1480.20 1496 1.05%
100MB 106321.70 118351.82 10.16% 10319.40 11368.60 9.23%
1KB 1366 1532 10.83% 7922 799.4 0.90%
10KB 2291 2559 10.47% 2318.40 2460.80 5.78%
. . 100KB 3907 3954 1.19% 2701.4 28253 4.38%
Box send(File) size
IMB 3924 4132 5.03% 4878.80 5300.20 7.95%
10MB 12578 12919 2.64% 6332.80 6561.60 3.48%
100MB 235714.30 249600 5.56% 22209.60 23120.80 3.94%
1KB 2069 2261 8.49% 384.8 390.2 1.38%
10KB 1595 1667 4.31% 517.20 528 2.04%
(v (7
Dropbox send(File) size.checksum 100KB 1592 1627 2.15% 1638 17712 7.52%
IMB 1410.77 1466.44 3.79% 3113.20 3181.80 2.15%
10MB 7223 77891 7.26% 11270.80 11679.40 3.50%
100MB 295116 331158.30 10.88% 23403.60 24701.40 5.25%
1KB 644.8 714.1 9.70% 1410.20 1422 0.829%
10KB 1143 1205 5.14% 1748 1830.40 4.50%
Google Docs send(Blob) size 100KB 1908 2039 6.42% 2388.60 2411.40 0.945%
IMB 4771 4877 2.17% 2768.80 2800.60 1.13%
10MB 11189 12043 7.09% 3659.40 3865 5.32%
100MB 87420 97800 10.61% 18140.2 18575.20 2.34%
1IKB 575.89 577.07 8.87% 1410.20 1422 0.83%
10KB 578.19 587.09 1.52% 7254 744.5 2.56%
. 100KB 986.35 990.61 0.43% 985.3 990.7 0.54%
Salesforce send(FormData) size
IMB 1961 1999 1.90% 1815.5 1919 5.39%
10MB 9823 10117 291% 25231 26364 4.30%
100MB 142800 153000 6.67% 176071 183848 4.23%

proxy or with the FileCrypt 10 times, then take the average
delay. As shown in the Table. II, these operations usually are
in milliseconds. Comparing the delay for the same operation
in the FileCrypt with the proxy, we observe that FileCrypt has
low overheads and could be applied in real-world applications.
Cryptographic operations introduce negligible overheads (less
than 11%) for a file operation in the cloud. We find that
there is a downloading overhead of 10.52% for 1KB and
9.23% for 100MB, but all the intermediate values have a
much lower overhead. This significant difference is due to
that network environment changes in real time, which have
much more impact on small files. In addition, as the data
size increases, a large number of memory operations occur
in the code, causing performance degradation. So we believe
that continuous code optimization will considerably improve
the performance. Besides, the performance of search is 11
operations per second, indicating that the latency of searching
is negligible.

B. Case Study

We test the FileCrypt on a wide variety of applications
that handle files based on browsers, which is the focus of
FileCrypt. We discuss these applications that retained or lost
functionality when using them with FileCrypt. The result
shows that FileCrypt retains some important functionality of
these applications while protecting sensitive critical data.

MailQQ [29] is an email service developed by Tencent.
The service provides input fields including the subject field,
the body field, and email attachments. The implementation
of MailQQ’s file uploading is the most complicated in the
applications we have tested. Moreover, the MailQQ checks
the file size and the chunk size strictly and it is hard to extract
and encrypt files by direct protocol and code analysis. The JS
Wrapper injected by FileCrypt encrypts a file before loading
by the client-side code from the application, which ensures
that the MDS5 checksum computed with the uploaded data
is the encrypted file’s MDS5. Nonetheless, this demonstrated
that FileCrypt is scalable to applications with a complicated
implementation on file uploading with no additional effort.
Since the server does not parse the encrypted content of a
file, users cannot preview and edit documents like PDF and
WORD stored in the cloud. Although losing document preview
and editing functions, it deserves to prevent cloud providers
from peeping and leaking the users’ data. We also used
Gmail [30] with FileCrypt, and found that encrypting email
attachments did break the Gmail’s document editing feature.
The future of document editing and previewing are provided
with cloud applications by parsing the original documents and
compressing the original images. The user needs to pay a
little price for keeping sensitive data safe from prying eyes
of compromised cloud providers.

We also tested FileCrypt with typical browser-based cloud
storage applications such as Dropbox [31], Box [32],

53

2019 IEEE Conference on Communications and Network Security (CNS)

OneDrive [33], Google Drive [34], and Mega.nz [35]. File-
Crypt successfully encrypts uploaded files and decrypts en-
crypted files downloaded from the cloud. Two broken features
are the document preview and sharing files with the outside
of an enterprise network. In some cases, companies want to
encrypt the sensitive data before it leaves their firewalls, so
they prefer FileCrypt to sit on premises and handle encryption,
decryption, and sharing of data within their networks.

On using FileCrypt with office applications, namely Sales-
force [36], Google Docs [37], and Slack [38]. The uploaded
files of Salesforce and Google Docs can be encrypted by
FileCrypt. Importing a file into a trading repository and report
forms did not work with Salesforce due to the encrypted
imported data. Fortunately, users can choose whether to enable
encryption by clicking the hovering button in the head of the
web page. Further, we found that Slack relies on WebSocket
connections to transfer files, and we believe that our solution
can extend to data encryption based on WebSocket in future
work.

V. CONCLUSION

In this paper, we present FileCrypt, a generic approach
that automatically performs file encryption on various cloud
applications while preserving most file storage functionality.
As a result, it has almost no impact on user experiences and
can help users against data breaches by malicious or compro-
mised cloud service providers and attackers. Our experimental
results show that FileCrypt has relatively low overheads and
can support practical use in many real-world applications.

VI. ACKNOWLEDGMENT

This research is supported by the National Key Research
and Development Program of China (No. 2016 YFB0800803)
and the National Natural Science Foundation of China (No.
61872110).

REFERENCES

“iCloud leaks of celebrity photos.” [Online]. Available:
/len.wikipedia.org/wiki/ICloud_leaks_of_celebrity_photos
“Your Sensitive Information Could Be at Risk: File Sync and
Share Security Issue,” Publishing Date: May 6, 2014. [Online].
Available: https://blogs.intralinks.com/2014/05/sensitive-information-
risk-file-sync-share-security-issue/

“Doxed by Microsofts Docs.com: Users unwittingly shared
sensitive docs publicly,” Publishing Date: March 27, 2017.
[Online]. Available: https://arstechnica.com/security/2017/03/doxed-by-
microsofts-docs-com-users-unwittingly-shared- sensitive-docs- publicly/
“Skyhigh: 9 cloud computing security risks every company faces.”
[Online]. Available: https://www.skyhighnetworks.com/cloud-security-
blog/9-cloud-computing-security-risks-every-company-faces/

S. Ruoti, J. Andersen, T. Monson, D. Zappala, and K. E. Seamons,
“Messageguard: A browser-based platform for usable, content-based
encryption research,” CoRR, vol. abs/1510.08943, 2015. [Online].
Available: http://arxiv.org/abs/1510.08943

“Virtru: Email encryption and data security for business privacy.”
[Online]. Available: https://www.virtru.com

“Ciphercloud: cloud services adoption while ensuring security,
compliance and control.” [Online]. Available: https://ciphercloud.com/
H. Chen, L.-J. Zhang, B. Hu, S.-Z. Long, and L.-H. Luo, “On developing
and deploying large-file upload services of personal cloud storage,” in
Services Computing (SCC), 2015 IEEE International Conference on.
IEEE, 2015, pp. 371-378.

https:

54

[10

[11]

[12]

[13]

[14]

[15]

[16]

[17

[18]

(21]

[22]

(23]

“Symantec desktop email encryption end-to-end email encryption
software for laptops and desktops.” [Online]. Available: http:
/lwww.symantec.com/desktop-email-encryption

“Folder encryption dog: Encrypt your folder and maintain the privacy
of your confidential data” [Online]. Available: http://soarersoft.com/
dirwatchdog.htm

S. Ruoti, N. Kim, B. Burgon, T. Van Der Horst, and K. Seamons,
“Confused johnny: when automatic encryption leads to confusion and
mistakes,” in Proceedings of the Ninth Symposium on Usable Privacy
and Security. ACM, 2013, p. 5.

W. He, D. Akhawe, S. Jain, E. Shi, and D. Song, “Shadowcrypt:
Encrypted web applications for everyone,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 1028-1039.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660326

B. Lau, S. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva, “Mimesis
aegis: A mimicry privacy shield—a systems approach to data privacy
on public cloud,” in 23rd {USENIX} Security Symposium ({USENIX}
Security 14), 2014, pp. 33-48.

“Cloud access security brokers.” [Online]. Available: https://www.
gartner.com/it- glossary/cloud-access- security-brokers-casbs/

R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 85-100.

R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M. F. Kaashoek,
and H. Balakrishnan, “Building web applications on top of encrypted
data using mylar.” in NSDI, 2014, pp. 157-172.

E. Wittern, A. T. Ying, Y. Zheng, J. Dolby, and J. A. Laredo, “Statically
checking web api requests in javascript,” in Software Engineering
(ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE,
2017, pp. 244-254.

A. Shamir, Identity-Based Cryptosystems and Signature Schemes.
Springer Berlin Heidelberg, 1984.

] T. C. Group, “Tpm,” http://www.trustedcomputinggroup.org.
] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key

encryption with keyword search,” in International conference on the
theory and applications of cryptographic techniques. Springer, 2004,
pp. 506-522.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012, pp. 965-976.
R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895-934, 2011.
Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in International Conference on
Applied Cryptography and Network Security. Springer, 2005, pp. 442—
455.

E.-J. Goh et al., “Secure indexes.” IACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on. 1EEE, 2000, pp. 44-55.
“Squid.” [Online]. Available: http://www.squid-cache.org/

Stanford, “Stanford javascript crypto library,” https://crypto.stanford.edu/
sjcl/.

“Stanford ibe library.” [Online]. Available: https://crypto.stanford.edu/
ibe/

] “Mailqq.” [Online]. Available: https://mail.qq.com/

“Gmail.” [Online]. Available: https://mail.google.com

] “Dropbox: Cloud storage service.” [Online]. Available: https:/www.

dropbox.com/

“Box: Cloud storage service.” [Online]. Available: https://www.box.com/
“Onedrive.” [Online]. Available: https://onedrive.live.com/
“Googledrive.” [Online]. Available: https://drive.google.com
“Mega.nz.” [Online]. Available: https://mega.nz/

“Salesforce.” [Online]. Available: https://www.salesforce.com
“Googledocs.” [Online]. Available: https://docs.google.com

“Slack.” [Online]. Available: https://slack.com/

