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Abstract

Cold atmospheric plasma (CAP) jet exhibits remarkable properties that trigger cell death

in cancer cells. The effect of CAP on cancer cells is influenced by several factors including
plasma jet discharge voltages, gas composition and cancer cell type. Consequently in clinics
it becomes challenging to plan plasma cancer treatments for a particular cancer types. To
address this, we present preliminary results for an in vifro model which includes an optimal
feedback control scheme that can adjust treatment conditions based on the actual cancer cell
response. Translation to an in vive model will be the next objective of the presented project.
First, a mathematical model is presented for the dynamic response of cancer cells to CAP
jets based on experimental data that provide temporal measurements of cancer cell viability
after CAP treatments. A differential equation is developed to model the influence of CAP on
the viability of two cancer cell lines, U-87 MG and MDA-MB-231, under varying treatment
duration and plasma discharge voltages. Subsequently, a control scheme is presented to
determine CAP treatment conditions in an optimal fashion by reducing cancer cell viability
less than a prescribed goal while minimizing a weighted sum of the treatment duration and
the discharge voltage. This is further extended to a model predictive control framework such
that a pre-planned CAP treatment schedule is revised according to the actual cancer cell
response. The efficacy of the proposed approach is illustrated by numerical simulations based
on experimental data.
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1. Introduction behind [3-5]. This process is also called ionization wave. At
the wave front region, the ion cloud called streamer head, with
a positive potential for cathode directed streamer discharge,
roughly equals the discharge voltage near the nozzle and grad-

ually decreases along the jet [6, 7]. The photons emitted from

Cold atmospheric plasma (CAP) jet is formed by ionization of
a noble gas (such as helium and argon) when the gas jet flows
through a high electric field. As its temperature remains close

to the room temperature, it is also referred to as non-thermal
plasma jet or non-equilibrium plasma jet [1, 2]. For the mech-
anism of the CAP jet, the streamer propagates by ionizing
neutral particles at the front and it leaves a plasma column

! Present Address: College of Energy and Power Engineering, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, People’s
Republic of China

1361-6463/19/185202+10$33.00

the ionization region make the wave front area visible, and it
is usually named as plasma bullet for its bullet shape [6, 8]. It
accelerates electrons into nearby atoms and molecules leading
to a cascade effect of ionization, excitation, and dissociation
processes, ultimately creating a unique environment of posi-
tive and negative charges, UV radiation, reactive species, and
neutral molecules [8—10].
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CAP jet has attracted a lot of attention in the past decade
due to its potential application in cancer therapy. CAP has been
reported to trigger cell death in cancer cells while leaving normal
cells unharmed. Several researchers have linked its therapeutic
effect with some of the species generated by it including: the
reactive oxygen and nitrogen species (RONS), including atomic
nitrogen and oxygen, hydroxyl (OH), singlet delta oxygen,
superoxide and nitric oxide (NO) [11-17]. For instance, Kim
et al used a micro plasma cancer endoscope for lung carcinoma
treatment [18]. The result showed that the CAP jet was capable
of inducing apoptosis in both cultured mouse lung carcinoma
and fibroblast cells. Ahn ef al investigated the effect of CAP jet
in cancer cell death by utilizing air and nitrogen from a micro
nozzle array [19]. Dezest et al reported apoptotic cell death in
human cervical cancer HeLa cells, simultaneously with depo-
larization of mitochondrial membrane potential [20]. Wang
et al investigated a CAP-based therapy in vitro for bone meta-
static breast cancer treatment and it showed that breast cancer
cells are more sensitive to CAP treatment than mesenchymal
stem cells (MSCs). CAP jet was reported to selectively ablate
metastatic breast cancer cells without damaging healthy MSCs
at the metastatic bone site [21].

Despite success in various in vifro and in vivo experiments,
there are several challenges that need to be addressed with
CAP treatment [22]. First, the therapeutically effect of the
CAP jet is susceptible to the variability of plasma parameters
such as discharge voltage, flow rate and frequency and exog-
enous disturbances such as temperature, target properties,
and gas composition of surrounding environment [23-27].
Second, different types of cancers exhibit different responses
when exposed to the same CAP treatment conditions. Change
in (1) cancer type, (2) properties of the cell culture medium
when in contact with the CAP jet and (3) the duration of
CAP exposure, can drastically influence the characteristics
of plasma and its effect on the cancer cell viability [28].
Consequently the well-known linear dynamic systems theory
for time-invariant systems is not sufficient for describing the
plasma effect on cancer cells. The theory indicates that the
time-integral property of plasma exposure makes the treating
effect irreversible once the CAP jet is applied to cancer cells
[29]. In cancer the underlying biological mechanisms of
novel therapy approaches have not been fully understood and
guidelines on how to schedule these therapies still need to be
established. Additionally, due to the complexity of clinical
trials the scheduling of treatments is often guided by exhaus-
tive and expensive trial-and-error approaches. The problems
above prompt researchers in plasma medicine to investigate
adaptive and traceable treatment control schemes. The idea
of adaptive plasmas for medical application was proposed
recently in [30, 31].

Graves ef al presented control schemes for a device that
generates atmospheric pressure plasma jet (APPJ) for plasma
medicine. Their approach was to control the temperature of
the target [32, 33]. A model predictive control (MPC) strategy
was proposed for real-time feedback control of a radio-fre-
quency APPJs in argon. Challenges for reproducible and
therapeutically effective application were pointed out and
included: nonlinear nature of system dynamics, constraining

operating region and cumulative dose metrics to control the
temperature. A lumped-parameter, the physics-based model
was developed for describing the jet dynamics. The closed-
loop performance of the MPC strategy was compared to that of
a basic proportional-integral control system. It was indicated
that the MPC strategy provided a versatile framework for dose
delivery in the presence of disturbances. Additionally, Graves
et al conducted the feedback control of a kHz-excited APPJs
in helium using a PI control scheme and an MPC scheme.
The real time result revealed that feedback control is crucial
for effective operation in the presence of step disturbances.
The MPC scheme can more effectively regulate the multivar-
iate dynamics of the APP]J for effective setpoint tracking and
constraint handling in the face of disturbances. However, the
objective of these work was to maintain treatment conditions
of a device producing CAP jet, such as substrate temperature,
plasma current and power at a certain desired level, and the
actual cellular and/or living tissue response constant.

In this paper, we present a feedback control scheme for
CAP cancer therapy where the cancer cell response is moni-
tored and plasma operational parameters are adjusted accord-
ingly. The CAP treatment can be adjusted in real-time such
that the plasma therapy is tailored to the particular type of
cancer cell undergoing treatment. We develop a mathematical
model that represents the temporal variation of cell viability
under varying CAP exposure time and plasma discharge
voltages obtained in [34]. This is used to predict cancer cell
response to CAP under a nominal condition. Subsequently,
an optimal control problem is formulated to regulate the
minimum parameters which include treatment duration and
voltage, while constraining cancer cell viability under a pre-
scribed acceptable range Finally, it is extended to a MPC such
that CAP cancer treatment is scheduled for multiple sessions
and each session is optimized according to the response of
the prior session. The presented modeling and control frame-
work are further discussed for their potential application in the
development of an adaptive CAP platform. In short, the main
contribution of this paper is in utilizing dynamic system mod-
eling and optimal feedback control in CAP cancer therapy
for constructing an independent cancer therapy that can be
adjusted adaptively to a specific cancer cell type.

2. Modeling for CAP treatments

A mathematical model is developed to represent the dynamic
response of cancer cells under CAP treatment, based on the
data from the in vifro experiments presented in [34]. The
model predicts the temporal response of cancer cell viability
for varying treatment conditions in CAP exposure time and
discharge voltage. The proposed dynamic model will be used
for the development of optimal feedback controls in the sub-
sequent sections.

2.1. Experimental data

The experimental data presented in [34] is utilized for the
development of a mathematical model. Cell response to CAP
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Table 1. Optimized modeling parameters for U-87 MG.

At (s) U (kV) Po 1 2 c3 ca

0 N/A 1.0000 68.8271 —6.8402 0.9985 1.2934
30 3.16 0.3015 15.2595 0.1902 0.9955 1.1302
60 3.16 0.2109 14.9141 0.9523 0.9898 1.1116
90 3.16 0.1972 8.3086 1.7457 0.9373 0.7472
180 3.16 0.3344 9.1859 29777 0.9008 0.7701
60 3.71 0.1546 6.1859 0.9777 0.9537 0.7701
90 3.71 0.1277 4.8930 0.7820 0.9430 0.5860

treatment is monitored in two types of cancer cell lines, U-87
MG and MDA-MB-231. In the in vitro experiments con-
ducted in [34], CAP-induced cell death was investigated by
the RealTime-Glo MT Cell Viability Luminesce Assay from
Promega with a continuous read method for up to 48h after
CAP exposure. The assay measures cell metabolic activity
which served as a proxy for cell viability and was indicated by
the intensity of the luminescent signal which was proportional
to the number of live cells. Duration of CAP exposure varying
from O to 180 s and plasma discharge voltages of 3.16kV and
3.71kV were investigated in the study to identify the correla-
tion between cell viability, CAP exposure time and discharge
voltage.

2.2. Exponential growth model

A phenomenological model for the growth of cell population
can be written in the following form [35],

p = pF(t.p). (1)

In general, p € R denotes the population of cancer cell mea-
sured in terms of the number viable cells. To have the consis-
tent value of p for several experiments presented in [34], we
normalize the cancer cell viability under CAP treatments with
the initial cancer cell viability just before the CAP exposure.
Therefore the initial value always is p(0) = 1and the variable
p is unit-less. This variable p is simply referred to as cancer
cell viability. Next, F : ® = R models its net exponential
proliferation rate, which is the difference between the rate of
proliferation and death. It is difficult to infer the proliferation
rate and death rate separately from experimental data, and
thus often the net proliferation rate is used.

Here we present an expression of the net proliferation rate
corresponding to the above experimental data presented in
[34]. There are common patterns in the viability of cancer
cells under CAP treatment as reported in [34]:

e immediately after CAP treatment, an instantaneous
reduction of cell viability is observed (more than 50%);

e from Omin to 6 h, the cell viability increases rapidly;

e from 6h to 24h, the cell viability decreases when the
treatment duration is sufficiently large;

e from 24 h to 48h, the cell viability approaches its steady
state value

e for the effect of treating duration and voltage, the cell
numbers decrease with the increase of the treating dura-
tion and voltage.

Based on these common features, we formulate an expression
for the net proliferation rate. The experimental data is nor-
malized such that the initial cell viability before CAP treatment
is one, i.e. p(0) = 1. To represent the instantaneous reduction
of the cell viability, the cell viability immediately after the
treatment is given by p(0™) = pg for py € R. Afterwards, the
cell viability evolves according to (1), where the net prolifera-
tion rate is chosen as

F(t.p) = (c1 — cat) exp(—c3 'p™) — cs, 2

where ¢y, €2, €3, ¢4, 5 € R are parameters determined by the
CAP treatment duration and the plasma discharge voltage.
The above expression is applied to both types of cancer cells,
namely U-87 MG and MDA-MB-231, but cs is set to zero for
U-87 MG.

2.3. System identification

Next, we identify the values of the free parameters in (2) and
(3), according to optimal system identification [36]. The dis-
crepancy between the mathematical model and experimental
data is described by the following objective function,

n A8
=Y /0 e (1) — pt: ) ek, 3)
i=1

where peyp,(t) denotes the cell viability at  for the ith exper-
imental data, and p(#;c) corresponds to the value obtained
by the mathematical model (1) with a given parameter
¢ = (c1,¢2,€3,¢4,C5) € R,

The system identification problem is formulated to find the
optimal value of the parameters minimizing the above cost
function as follows.

Cope = arg min{J(c)}. 4)

This is solved by the nonlinear programming solver, namely
fmincon in MATLAB for each discharge voltage of
U=3.16kV and 3.71 kV. For U =3.16 kV, the exper-
imental data are available in [34] for five cases of treatment
duration, namely 0, 30, 60, 90, 180 s. There are two cases
of 60, 90 s available for the higher plasma discharge voltage
U =3.71 kV. An additional bound on the parameters are
specified for numerical stability, and the termination tolerance
on the function value is set to 10~°. Tables 1 and 2 summarize
the optimized parameters for U-87 MG and MDA-MB-231,
respectively.
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Table 2. Optimized modeling parameters for MDA-MB-231.

At (s) U (kV) Po c 2 c3 ca s

0 N/A 1.0000 9.9801 0.0987 1.0074 0.8482 0.4394
30 3.16 0.2730 9.9655 0.1611 0.9980 1.0162 0.1300
60 3.16 0.2872 6.3320 0.1633 0.9820 1.1613 0.0176
90 3.16 0.1795 8.1645 34716 0.8083 0.7222 0.0057
180 3.16 0.2203 7.2578 3.2766 0.7982 0.7638 0.0049
60 37 0.1735 6.2233 0.9562 0.9351 1.0194 0.0253
90 37 0.1561 6.5352 3.3511 0.7851 1.8486 0.0179

Figures 1 and 2 illustrate the cell viability for four groups
of experimental data and the identified mathematical model
for U-87 MG and MDA-MB-231 when the plasma discharge
voltage U = 3.16kV. It is shown that the proposed mathemat-
ical model captures the dynamic characteristics of the exper-
imental data successfully.

Figure 3 summarizes the results of the mathematical model
for both U-87 MG and MDA-MB-231 for varying treatment
duration when U = 3.16 kV. For U-87 MG, for the control
group with no treatment and the CAP treatment duration of
At =30 s, the normalized cell viability increases mono-
tonically, but the growth rate is smaller for At = 30 s. For
At =90 s and At = 180 s, the cell viability decreases after
6h, and then converges to a steady-state value from 24h to
48h. The responses for MDA-MB-231 exhibits similar char-
acteristics, but the peak of the viability appears sooner at
around 3—6h. For both cases, the normalized cell viability at
48h decreases as the CAP treatment duration increases. Next,
figure 4 illustrates the cell viability from the mathematical
model when U = 3.71 kV.

2.4. Generalization

While the mathematical model in the preceding section is
constructed for a selected set of CAP treatment duration and
plasma discharge voltages provided in [34], it can be used
to predict the dynamic response of cancer cells for arbitrary
values of treatment conditions. This is based on the assump-
tion that the parameters of the mathematical model vary
piece-wise linearly with respect to the treatment conditions.
More explicitly, the values of parameters in tables 1 or 2 can
be interpolated with respect to At and U.

Figure 5 illustrates the resulting cell viability when the
CAP treatment duration is varied from 0 s to 180 s contin-
uously when U = 3.16 kV. It is shown that the proposed
mathematical model can predict the cellular response under
CAP treatment reasonably for arbitrary treatment duration.
The irregularity around Ar = 140 for MDA-MB-231 can be
resolved if more experimental data sets are available. Also,
varying the treating duration while keeping the actual time
fixed, it is obvious to find that cell viability decreases with
increased CAP treatment duration.

Next, the variation of cell viability with respect to the
plasma discharge voltage is explored. Figure 6 illustrates the
cell viability for four plasma discharge voltages. For both of
U-87 MG and MDA-MB-231, generalization with respect to
the plasma discharge voltage is reasonable as the cell viability

gradually decreases as the discharge voltage increases.
However, this model will be valid when the treatment duration
is between 60 and 90 s where the experimental data for the
higher discharge voltage of U = 3.71 kV are available, and
generalization beyond this range is unreliable.

In short, the presented mathematical model characterizes
the dynamic response of two types of cancer cells, namely
U-87 MG and MDA-MB-231 under CAP treatment. This is
valid for the treatment duration up to 180 s when the plasma
discharge voltage is U = 3.16kV, and it is further generalized
to the higher discharge voltage of U = 3.71kV when the treat-
ment duration is between 60 and 90 s.

3. Optimal cancer treatment

Optimal control aims to minimize a certain objective func-
tion formulated on a dynamical system subject to constraints.
An optimal control problem is formulated by a mathematical
description of a dynamic system and an objective function
that measures the performance of the controlled system. The
framework of optimal control is common in aerospace engi-
neering, for example in minimal fuel orbital transfer of a sat-
ellite. As introduced in [35], the objective function is often
selected such that its value becomes smaller as the control
system behaves in a more desired way. Optimal control theory
addresses the question of minimize this objective function
to determine the optimal control input. Once the computed
optimal control input is applied, the corresponding dynamic
response is be monitored and its performance is evaluated
by calculating the objective function. Naturally, the actual
response is also influenced by external disturbances, and may
be different from those calculated by the dynamic model.
Adjusting the control input based on the actual response leads
to the framework for optimal feedback control, which will be
discussed later in this section.

The above dynamic model for the cancer cell response
to CAP exposure shows that the treatment duration and the
plasma discharge voltage are one of the dominant factors
that determine the cancer viability. In this section, we aim to
find the optimal value of those parameters to guarantee that
the cancer cell viability after 48h is suppressed within a pre-
scribed desired level.

3.1. Problem formulation

The control parameters are the CAP treatment duration
At, and the plasma discharge voltage U. In future, control
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LVS]
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Figure 1. Dynamic response of cancer cell viability for U-87 MG with U = 3.16 kV (solid: mathematical model; dashed: experiments). (a)

At = 0. (b) Ar = 30. (c) At = 60. (d) Ar = 90. (e) Ar = 180.

parameters will be extended to gas flow rate, composition and
humidity. An optimal control problem is formulated to mini-
mize a weighted sum of the CAP exposure and the discharge
voltage, while ensuring that the cancer cell viability is reduced
to the desired level. This is to maximize the therapeutic effect
of CAP treatments for a prescribed level of cancer growth
inhibition.

More specifically, the objective function is chosen as the
weighted sum of those two,

J(AL,U) = wy(A1)? +w,yU?, 5)

where wy, wp € R are positive weighting factors that determine
the relative contribution of the CAP exposure duration and
the discharge voltage to the objective function. An inequality
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Figure 2. Dynamic response of cancer cell viability for MDA-MB-231 with U = 3.16 kV (solid: mathematical model; dashed:
experiments). (a) Atr = 0. (b) Ar = 30. (c) Ar = 60. (d) Ar = 90. (e) Ar = 180.

constraint is also imposed to suppress the ratio of the terminal ~ 3.2. Optimal cancer treatment

11 viability to that of the untreated follows.
cancer cell viability fo that of the untreated case as foflows Once the value of (At, U)is given, the above objective function

p(t =48 h; A, U) < and the inequality constraint can be evaluated by integrating
p(t=48h;At=0,U=0) Td: ©)  the dynamic model (1). As such, the presented optimization can
be addressed by any numerical parameter optimization tool.
‘We use the function, fmincon of MATLAB to solve it with

where r; € R is the desired ratio of the cancer cell viability
less than one.
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Figure 3. Summery of dynamic response from mathematical model for varying CAP treatment duration At when U = 3.16 kV. (a) U-87
MG. (b) MDA-MB-231.
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Figure 4. Summery of dynamic response from mathematical model for varying CAP treatment duration At, when U = 3.71 kV. (a) U-87
MG. (b) MDA-MB-231.
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Figure 5. Dynamic response of cell viability from generalized mathematical model for arbitrarily varying CAP treatment duration Ar,
when U = 3.16 kV. (a) U-87 MG. (b) MDA-MB-231.
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Figure 6. Dynamic response of cell viability from generalized mathematical model for varying plasma discharge voltage U. (a) U-87 MG,
At = 60. (b) MDA-MB-231, At = 60. (c) U-87 MG, Ar = 90. (d) MDA-MB-231, Ar = 90.
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Figure 7. Simulation results of the proposed optimal control for U-87 MG and MDA-MB-231. (a) U-87 MG. (b) MDA-MB-231.

the tolerance on the objective function of 10~%. The weighting ~ corresponding optimal treatment duration and the plasma dis-
factors are chosen as wy; = 1/(180)? and w, = 1/(3.71)%. charge voltage are obtained as
Two cases are considered. For U-87 MG, the desired ratio

of the cancer cell viability is chosen as ry;= 0.5, and the (Ar.U) = (65.15,3.367kV).
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Table 3. Model predictive control of U-87 MG.

Ideal case MPC
Relative Relative
Treatment ry At viability rq At viability
1 056 7847 056=0.1"* 056 70.34 0.62
2 056 7847 031=0.1* 045 8038 033
3 056 7847 0.17=0.1** 047 7538 022
4 056 7847 0.10 0.40 8295 0.11
1 :
§ — — treatment goal
—ideal response
0.8 —w/o MPC
—MPC

=
I~

o
[

Relative cancer cell viability

t (days)

Figure 8. Simulation results of the proposed MPC for U-87 MG.

Next, we consider treatment of MDA-MB-231 with r; = 0.3,
and the resulting optimal treatment conditions are given by

(At,U) = (71.6 5,3.315kV).

Figure 7 illustrates the dynamic response of cell viability
under the optimal treatment for both U-87 MG and MDA-
MB-231. It is shown that the terminal relative cancer cell via-
bility is reduced as specified by the inequality constraint (6).

3.3. Model predictive control for optimal feedback treatment

The above formulation of optimal control provides CAP
treatment schedule for a specific level of cancer cell growth
inhibition. However, cancer cell response to CAP treatments
depends on various intrinsic and extrinsic factors, and the pre-
sented mathematical model may not accurately characterize
the actual response of the cancer cells under treatments. This
may cause that the terminal value of the relative cancer cell
viability becomes greater than the desired level, or it may
yield unnecessarily intensive CAP treatments.

We address this by optimal feedback framework based
on MPC. The objective is to adjust the treatment parameters
adaptive based on the actual cell response. The key idea of
MPC is solving an optimal control problem repeatedly over
a finite time horizon, where each optimization is initialized
by the actual response at the beginning of the time horizon
considered. While each optimization is completed in an open-
loop fashion, MPC is a feedback mechanism as it is repeat-
edly applied based on the actual response. In control system

engineering, MPC is one of the most popular methods to
extend the results of optimization into an optimal feedback
control. It is desirable as nonlinear constraints can be easily
imposed in feedback controls.

We consider a case of in vifro CAP treatments for U-87
MG, where cancer cells in a petri dish are exposed to CAP jet
four times at the interval of 48h. It is assumed that the cancer
cell viability is measured at the end of each 48h period, and
the treatment at the next period is determined accordingly.
The weighting factors for the objective function is chosen as
wi=1 and w; = 0, and the plasma discharge voltage is fixed
at U = 3.16 kV. This is to explore a wide range of treatment
duration At in feedback controls without being restricted by
the limit of 60-90 s for higher discharge voltages. For cancer
growth inhibition, it is required that after completing four treat-
ments the relative cancer cell viability defined as r; in (6) is less
than 0.1. Ideally, the desired relative cell viability can be chosen
asrg = (0.1)'/* ~ 0.56 for the optimization of each treatment
period such that the terminal relative viability is reduced to 0.1
after the course of four treatments. Instead, in the presented
MPC, the desired relative cell viability is chosen as

0.11/4 first treatment
Fg = 014 % ( predicted ratio of cell viability)

(actual ratio of call viability) remaining treatments

N
This is to reduce the desired viability of the next treatment
further if the actual cell viability at the end of the preceding
treatment is greater than its predicted value.

The proposed approach is verified by a numerical simula-
tion, where the preceding mathematical model is considered
as the actual cancer response, and the parameters of the math-
ematical model are altered to represent a mathematical model
available to MPC. Therefore, the mathematical model avail-
able to the controller is different from the dynamic model rep-
resenting the actual cancer cell response.

The corresponding simulation results for U-87 MG are
illustrated in table 3 and figure 8. In table 3, the three columns
from the second to the fourth correspond to the ideal case
when the exact model is available to MPC. In this case, the
relative cancer viability reduces exactly by the desired factor
rq at each treatment. The treatment duration for all four treat-
ments are identical to At = 78.47 s, and the terminal relative
viability after four treatments is 0.1 as desired. The next three
columns are the results of MPC when the exact model is not
available to MPC. Due to the modeling error, the first treat-
ment duration is At = 70.34 s, which is less than the ideal
value. Consequently, at the end of the first treatment, the
relative viability becomes greater than the desired value, i.e.
0.62 > 0.52 = ry. In MPC, the treatment goal and the dura-
tion of the second treatment are adjusted accordingly, and it is
repeated at each treatment. After four treatment, the terminal
relativity viability for MPC is 0.11.

Figure 8 illustrates the temporal response of the relative cell
viability. The red, dotted lines show the desired relative cell
viability at the end of each period. The red, solid curves illus-
trate the ideal case when the mathematical model for the actual
response is available to optimization. In this ideal case, the cell
viability of the U-87 MG is reduced to the desired level at the
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end of each period, as observed in the above table. Here we con-
sider an additional case when the mathematical model available
to optimal control is not identical to the actual model, but the
proposed MPC scheme is not applied. This is illustrated by blue
curves in figure 8, and it is shown that the cell viability becomes
greater than the desired level always, resulting in the terminal
ratio of 0.15 that is 50% greater than the desired value. Finally,
when the proposed MPC is introduced, as illustrated by black
lines, the controlled cell viability reduces close to the desired
level even with the discrepancy in the mathematical modeling.
As such, this simulation result suggests that by adjusting CAP
treatment conditions adaptive to the actual cancer response, the
adverse effects of modeling errors can be mitigated.

4. Conclusion

This work proposes a mathematical model for describing
the dynamic response of cancer cell to CAP by utilizing the
optimal feedback control. A mathematical model, which
reflects the cell viability variation with respect to time, is
developed based on the experiments presented in [34]. The
proposed differential equation describes the influence of the
CAP on two particular cancer cells, namely U-87 MG and
MDA-MB-231, based on two key factors, plasma treatment
duration and discharge voltage. It was observed that from
Oh to 1h, the plasma exposure promotes cell division, then
such promotion effect gradually shifted to inhibition effect,
and the proliferation rate ratio became negative from 2h to
48h. Additionally, an optimal control problem is formulated
to minimize a weighted sum of the treatment duration and the
discharge voltage while guaranteeing that cancer cell viability
is reduced to the desired level. This is further generalized to
an optimal feedback framework according to model predic-
tive controls, so that the CAP treatment is adaptively adjusted
based on the actual cancer cell response. Future works include
the validation of the proposed approach with in vifro experi-
ments, and incorporation of the dynamic response of health
cells to maximize the selectivity of CAP treatment.
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