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1. Introduction

Cold atmospheric plasma (CAP) jet is formed by ionization of 
a noble gas (such as helium and argon) when the gas jet fows 
through a high electric feld. As its temperature remains close 
to the room temperature, it is also referred to as non-thermal 
plasma jet or non-equilibrium plasma jet [1, 2]. For the mech-
anism of the CAP jet, the streamer propagates by ionizing 
neutral particles at the front and it leaves a plasma column 

behind [3–5]. This process is also called ionization wave. At 
the wave front region, the ion cloud called streamer head, with 
a positive potential for cathode directed streamer discharge, 
roughly equals the discharge voltage near the nozzle and grad-
ually decreases along the jet [6, 7]. The photons emitted from 
the ionization region make the wave front area visible, and it 
is usually named as plasma bullet for its bullet shape [6, 8]. It 
accelerates electrons into nearby atoms and molecules leading 
to a cascade effect of ionization, excitation, and dissociation 
processes, ultimately creating a unique environment of posi-
tive and negative charges, UV radiation, reactive species, and 
neutral molecules [8–10].
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Abstract

Cold atmospheric plasma (CAP) jet exhibits remarkable properties that trigger cell death 
in cancer cells. The effect of CAP on cancer cells is infuenced by several factors including 
plasma jet discharge voltages, gas composition and cancer cell type. Consequently in clinics 
it becomes challenging to plan plasma cancer treatments for a particular cancer types. To 
address this, we present preliminary results for an in vitro model which includes an optimal 
feedback control scheme that can adjust treatment conditions based on the actual cancer cell 
response. Translation to an in vivo model will be the next objective of the presented project. 
First, a mathematical model is presented for the dynamic response of cancer cells to CAP 
jets based on experimental data that provide temporal measurements of cancer cell viability 
after CAP treatments. A differential equation is developed to model the infuence of CAP on 
the viability of two cancer cell lines, U-87 MG and MDA-MB-231, under varying treatment 
duration and plasma discharge voltages. Subsequently, a control scheme is presented to 
determine CAP treatment conditions in an optimal fashion by reducing cancer cell viability 
less than a prescribed goal while minimizing a weighted sum of the treatment duration and 
the discharge voltage. This is further extended to a model predictive control framework such 
that a pre-planned CAP treatment schedule is revised according to the actual cancer cell 
response. The effcacy of the proposed approach is illustrated by numerical simulations based 
on experimental data.
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CAP jet has attracted a lot of attention in the past decade 
due to its potential application in cancer therapy. CAP has been 
reported to trigger cell death in cancer cells while leaving normal 
cells unharmed. Several researchers have linked its therapeutic 
effect with some of the species generated by it including: the 
reactive oxygen and nitrogen species (RONS), including atomic 
nitrogen and oxygen, hydroxyl (OH), singlet delta oxygen, 
superoxide and nitric oxide (NO) [11–17]. For instance, Kim 
et al used a micro plasma cancer endoscope for lung carcinoma 
treatment [18]. The result showed that the CAP jet was capable 
of inducing apoptosis in both cultured mouse lung carcinoma 
and fbroblast cells. Ahn et al investigated the effect of CAP jet 
in cancer cell death by utilizing air and nitrogen from a micro 
nozzle array [19]. Dezest et al reported apoptotic cell death in 
human cervical cancer HeLa cells, simultaneously with depo-
larization of mitochondrial membrane potential [20]. Wang 
et al investigated a CAP-based therapy in vitro for bone meta-
static breast cancer treatment and it showed that breast cancer 
cells are more sensitive to CAP treatment than mesenchymal 
stem cells (MSCs). CAP jet was reported to selectively ablate 
metastatic breast cancer cells without damaging healthy MSCs 
at the metastatic bone site [21].
Despite success in various in vitro and in vivo experiments, 

there are several challenges that need to be addressed with 
CAP treatment [22]. First, the therapeutically effect of the 
CAP jet is susceptible to the variability of plasma parameters 
such as discharge voltage, fow rate and frequency and exog-
enous disturbances such as temperature, target properties, 
and gas composition of surrounding environment [23–27]. 
Second, different types of cancers exhibit different responses 
when exposed to the same CAP treatment conditions. Change 
in (1) cancer type, (2) properties of the cell culture medium 
when in contact with the CAP jet and (3) the duration of 
CAP exposure, can drastically infuence the characteristics 
of plasma and its effect on the cancer cell viability [28]. 
Consequently the well-known linear dynamic systems theory 
for time-invariant systems is not suffcient for describing the 
plasma effect on cancer cells. The theory indicates that the 
time-integral property of plasma exposure makes the treating 
effect irreversible once the CAP jet is applied to cancer cells 
[29]. In cancer the underlying biological mechanisms of 
novel therapy approaches have not been fully understood and 
guidelines on how to schedule these therapies still need to be 
established. Additionally, due to the complexity of clinical 
trials the scheduling of treatments is often guided by exhaus-
tive and expensive trial-and-error approaches. The problems 
above prompt researchers in plasma medicine to investigate 
adaptive and traceable treatment control schemes. The idea 
of adaptive plasmas for medical application was proposed 
recently in [30, 31].
Graves et  al presented control schemes for a device that 

generates atmospheric pressure plasma jet (APPJ) for plasma 
medicine. Their approach was to control the temperature of 
the target [32, 33]. A model predictive control (MPC) strategy 
was proposed for real-time feedback control of a radio-fre-
quency APPJs in argon. Challenges for reproducible and 
therapeutically effective application were pointed out and 
included: nonlinear nature of system dynamics, constraining 

operating region and cumulative dose metrics to control the 
temperature. A lumped-parameter, the physics-based model 
was developed for describing the jet dynamics. The closed-
loop performance of the MPC strategy was compared to that of 
a basic proportional-integral control system. It was indicated 
that the MPC strategy provided a versatile framework for dose 
delivery in the presence of disturbances. Additionally, Graves 
et al conducted the feedback control of a kHz-excited APPJs 
in helium using a PI control scheme and an MPC scheme. 
The real time result revealed that feedback control is crucial 
for effective operation in the presence of step disturbances. 
The MPC scheme can more effectively regulate the multivar-
iate dynamics of the APPJ for effective setpoint tracking and 
constraint handling in the face of disturbances. However, the 
objective of these work was to maintain treatment conditions 
of a device producing CAP jet, such as substrate temperature, 
plasma current and power at a certain desired level, and the 
actual cellular and/or living tissue response constant.
In this paper, we present a feedback control scheme for 

CAP cancer therapy where the cancer cell response is moni-
tored and plasma operational parameters are adjusted accord-
ingly. The CAP treatment can be adjusted in real-time such 
that the plasma therapy is tailored to the particular type of 
cancer cell undergoing treatment. We develop a mathematical 
model that represents the temporal variation of cell viability 
under varying CAP exposure time and plasma discharge 
voltages obtained in [34]. This is used to predict cancer cell 
response to CAP under a nominal condition. Subsequently, 
an optimal control problem is formulated to regulate the 
minimum parameters which include treatment duration and 
voltage, while constraining cancer cell viability under a pre-
scribed acceptable range Finally, it is extended to a MPC such 
that CAP cancer treatment is scheduled for multiple sessions 
and each session is optimized according to the response of 
the prior session. The presented modeling and control frame-
work are further discussed for their potential application in the 
development of an adaptive CAP platform. In short, the main 
contribution of this paper is in utilizing dynamic system mod-
eling and optimal feedback control in CAP cancer therapy 
for constructing an independent cancer therapy that can be 
adjusted adaptively to a specifc cancer cell type.

2. Modeling for CAP treatments

A mathematical model is developed to represent the dynamic 
response of cancer cells under CAP treatment, based on the 
data from the in vitro experiments presented in [34]. The 
model predicts the temporal response of cancer cell viability 
for varying treatment conditions in CAP exposure time and 
discharge voltage. The proposed dynamic model will be used 
for the development of optimal feedback controls in the sub-
sequent sections.

2.1. Experimental data

The experimental data presented in [34] is utilized for the 
development of a mathematical model. Cell response to CAP 
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treatment is monitored in two types of cancer cell lines, U-87 
MG and MDA-MB-231. In the in vitro experiments con-
ducted in [34], CAP-induced cell death was investigated by 
the RealTime-Glo MT Cell Viability Luminesce Assay from 
Promega with a continuous read method for up to 48 h after 
CAP exposure. The assay measures cell metabolic activity 
which served as a proxy for cell viability and was indicated by 
the intensity of the luminescent signal which was proportional 
to the number of live cells. Duration of CAP exposure varying 
from 0 to 180 s and plasma discharge voltages of 3.16 kV and 
3.71 kV were investigated in the study to identify the correla-
tion between cell viability, CAP exposure time and discharge 
voltage.

2.2. Exponential growth model

A phenomenological model for the growth of cell population 
can be written in the following form [35],

ṗ=pF(t,p). (1)

In general, p∈  denotes the population of cancer cell mea-
sured in terms of the number viable cells. To have the consis-
tent value of p  for several experiments presented in [34], we 
normalize the cancer cell viability under CAP treatments with 
the initial cancer cell viability just before the CAP exposure. 
Therefore the initial value always is p(0)=1 and the variable 
p  is unit-less. This variable p  is simply referred to as cancer 
cell viability. Next, F: →  models its net exponential 
proliferation rate, which is the difference between the rate of 
proliferation and death. It is diffcult to infer the proliferation 
rate and death rate separately from experimental data, and 
thus often the net proliferation rate is used.
Here we present an expression of the net proliferation rate 

corresponding to the above experimental data presented in 
[34]. There are common patterns in the viability of cancer 
cells under CAP treatment as reported in [34]:

 •  immediately after CAP treatment, an instantaneous 
reduction of cell viability is observed (more than 50%); 

 •  from 0 min to 6 h, the cell viability increases rapidly; 
 •  from 6 h to 24 h, the cell viability decreases when the 
treatment duration is suffciently large; 

 •  from 24 h to 48 h, the cell viability approaches its steady 
state value

 •  for the effect of treating duration and voltage, the cell 
numbers decrease with the increase of the treating dura-
tion and voltage.

Based on these common features, we formulate an expression 
for the net proliferation rate. The experimental data is nor-
malized such that the initial cell viability before CAP treatment 
is one, i.e. p(0)=1. To represent the instantaneous reduction 
of the cell viability, the cell viability immediately after the 
treatment is given by p(0+)=p0 for p0∈ . Afterwards, the 
cell viability evolves according to (1), where the net prolifera-
tion rate is chosen as

F(t,p)=(c1−c2t) exp(−c
−t
3p
c4)−c5, (2)

where c1,c2,c3,c4,c5∈  are parameters determined by the 
CAP treatment duration and the plasma discharge voltage. 
The above expression is applied to both types of cancer cells, 
namely U-87 MG and MDA-MB-231, but c5 is set to zero for 
U-87 MG.

2.3. System identifcation

Next, we identify the values of the free parameters in (2) and 
(3), according to optimal system identifcation [36]. The dis-
crepancy between the mathematical model and experimental 
data is described by the following objective function,

J(c)=

n

i=1

48

0

pexpi(t)−p(t;c)
2dt, (3)

where pexpi(t) denotes the cell viability at t for the ith exper-
imental data, and p(t;c) corresponds to the value obtained 
by the mathematical model (1) with a given parameter 
c=(c1,c2,c3,c4,c5)∈

5.
The system identifcation problem is formulated to fnd the 

optimal value of the parameters minimizing the above cost 
function as follows.

copt=arg min{J(c)}. (4)

This is solved by the nonlinear programming solver, namely 
fmincon in MATLAB for each discharge voltage of 
U=3.16 kV and 3.71 kV. For U=3.16 kV, the exper-
imental data are available in [34] for fve cases of treatment 
duration, namely 0, 30, 60, 90, 180 s. There are two cases 
of 60, 90 s available for the higher plasma discharge voltage 
U=3.71 kV. An additional bound on the parameters are 
specifed for numerical stability, and the termination tolerance 
on the function value is set to 10−6. Tables 1 and 2 summarize 
the optimized parameters for U-87 MG and MDA-MB-231, 
respectively.

Table 1. Optimized modeling parameters for U-87 MG.

∆t(s) U(kV) p 0 c1 c2 c3 c4

0 N/A 1.0000 68.8271 −6.8402 0.9985 1.2934

30 3.16 0.3015 15.2595 0.1902 0.9955 1.1302
60 3.16 0.2109 14.9141 0.9523 0.9898 1.1116
90 3.16 0.1972 8.3086 1.7457 0.9373 0.7472
180 3.16 0.3344 9.1859 2.9777 0.9008 0.7701
60 3.71 0.1546 6.1859 0.9777 0.9537 0.7701
90 3.71 0.1277 4.8930 0.7820 0.9430 0.5860
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Figures 1 and 2 illustrate the cell viability for four groups 
of experimental data and the identifed mathematical model 
for U-87 MG and MDA-MB-231 when the plasma discharge 
voltage U  =  3.16 kV. It is shown that the proposed mathemat-
ical model captures the dynamic characteristics of the exper-
imental data successfully.
Figure 3 summarizes the results of the mathematical model 

for both U-87 MG and MDA-MB-231 for varying treatment 
duration when U=3.16 kV. For U-87 MG, for the control 
group with no treatment and the CAP treatment duration of 
∆t=30 s, the normalized cell viability increases mono-
tonically, but the growth rate is smaller for ∆t=30 s. For 
∆t=90 s and ∆t=180 s, the cell viability decreases after 
6 h, and then converges to a steady-state value from 24 h to 
48 h. The responses for MDA-MB-231 exhibits similar char-
acteristics, but the peak of the viability appears sooner at 
around 3–6 h. For both cases, the normalized cell viability at 
48 h decreases as the CAP treatment duration increases. Next, 
fgure 4 illustrates the cell viability from the mathematical 
model when U=3.71 kV.

2.4. Generalization

While the mathematical model in the preceding section  is 
constructed for a selected set of CAP treatment duration and 
plasma discharge voltages provided in [34], it can be used 
to predict the dynamic response of cancer cells for arbitrary 
values of treatment conditions. This is based on the assump-
tion that the parameters of the mathematical model vary 
piece-wise linearly with respect to the treatment conditions. 
More explicitly, the values of parameters in tables 1 or 2 can 
be interpolated with respect to ∆t and U.
Figure 5 illustrates the resulting cell viability when the 

CAP treatment duration is varied from 0 s to 180 s contin-
uously when U=3.16 kV. It is shown that the proposed 
mathematical model can predict the cellular response under 
CAP treatment reasonably for arbitrary treatment duration. 
The irregularity around ∆t=140 for MDA-MB-231 can be 
resolved if more experimental data sets are available. Also, 
varying the treating duration while keeping the actual time 
fxed, it is obvious to fnd that cell viability decreases with 
increased CAP treatment duration.
Next, the variation of cell viability with respect to the 

plasma discharge voltage is explored. Figure 6 illustrates the 
cell viability for four plasma discharge voltages. For both of 
U-87 MG and MDA-MB-231, generalization with respect to 
the plasma discharge voltage is reasonable as the cell viability 

gradually decreases as the discharge voltage increases. 
However, this model will be valid when the treatment duration 
is between 60 and 90 s where the experimental data for the 
higher discharge voltage of U=3.71 kV are available, and 
generalization beyond this range is unreliable.
In short, the presented mathematical model characterizes 

the dynamic response of two types of cancer cells, namely 
U-87 MG and MDA-MB-231 under CAP treatment. This is 
valid for the treatment duration up to 180 s when the plasma 
discharge voltage is U  =  3.16 kV, and it is further generalized 
to the higher discharge voltage of U  =  3.71 kV when the treat-
ment duration is between 60 and 90 s.

3. Optimal cancer treatment

Optimal control aims to minimize a certain objective func-
tion formulated on a dynamical system subject to constraints. 
An optimal control problem is formulated by a mathematical 
description of a dynamic system and an objective function 
that measures the performance of the controlled system. The 
framework of optimal control is common in aerospace engi-
neering, for example in minimal fuel orbital transfer of a sat-
ellite. As introduced in [35], the objective function is often 
selected such that its value becomes smaller as the control 
system behaves in a more desired way. Optimal control theory 
addresses the question of minimize this objective function 
to determine the optimal control input. Once the computed 
optimal control input is applied, the corresponding dynamic 
response is be monitored and its performance is evaluated 
by calculating the objective function. Naturally, the actual 
response is also infuenced by external disturbances, and may 
be different from those calculated by the dynamic model. 
Adjusting the control input based on the actual response leads 
to the framework for optimal feedback control, which will be 
discussed later in this section.
The above dynamic model for the cancer cell response 

to CAP exposure shows that the treatment duration and the 
plasma discharge voltage are one of the dominant factors 
that determine the cancer viability. In this section, we aim to 
fnd the optimal value of those parameters to guarantee that 
the cancer cell viability after 48 h is suppressed within a pre-
scribed desired level.

3.1. Problem formulation

The control parameters are the CAP treatment duration 
∆t, and the plasma discharge voltage U. In future, control 

Table 2. Optimized modeling parameters for MDA-MB-231.

∆t(s) U(kV) p 0 c1 c2 c3 c4 c5

0 N/A 1.0000 9.9801 0.0987 1.0074 0.8482 0.4394
30 3.16 0.2730 9.9655 0.1611 0.9980 1.0162 0.1300
60 3.16 0.2872 6.3320 0.1633 0.9820 1.1613 0.0176
90 3.16 0.1795 8.1645 3.4716 0.8083 0.7222 0.0057
180 3.16 0.2203 7.2578 3.2766 0.7982 0.7638 0.0049
60 3.71 0.1735 6.2233 0.9562 0.9351 1.0194 0.0253
90 3.71 0.1561 6.5352 3.3511 0.7851 1.8486 0.0179
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parameters will be extended to gas fow rate, composition and 
humidity. An optimal control problem is formulated to mini-
mize a weighted sum of the CAP exposure and the discharge 
voltage, while ensuring that the cancer cell viability is reduced 
to the desired level. This is to maximize the therapeutic effect 
of CAP treatments for a prescribed level of cancer growth 
inhibition.

More specifcally, the objective function is chosen as the 
weighted sum of those two,

J(∆t,U)=w1(∆t)
2+w2U

2, (5)

where w1,w2∈  are positive weighting factors that determine 
the relative contribution of the CAP exposure duration and 
the discharge voltage to the objective function. An inequality 

Figure 1. Dynamic response of cancer cell viability for U-87 MG with U=3.16 kV (solid: mathematical model; dashed: experiments). (a) 
∆t=0. (b) ∆t=30. (c) ∆t=60. (d) ∆t=90. (e) ∆t=180.

J. Phys. D: Appl. Phys. 52 (2019) 185202
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constraint is also imposed to suppress the ratio of the terminal 
cancer cell viability to that of the untreated case as follows.

p(t=48 h;∆t,U)

p(t=48 h;∆t=0,U=0)
rd, (6)

where rd∈  is the desired ratio of the cancer cell viability 
less than one.

3.2. Optimal cancer treatment

Once the value of (∆t,U) is given, the above objective function 
and the inequality constraint can be evaluated by integrating 
the dynamic model (1). As such, the presented optimization can 
be addressed by any numerical parameter optimization tool. 
We use the function, fmincon of MATLAB to solve it with 

Figure 2. Dynamic response of cancer cell viability for MDA-MB-231 with U=3.16 kV (solid: mathematical model; dashed: 
experiments). (a) ∆t=0. (b) ∆t=30. (c) ∆t=60. (d) ∆t=90. (e) ∆t=180.

J. Phys. D: Appl. Phys. 52 (2019) 185202
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Figure 3. Summery of dynamic response from mathematical model for varying CAP treatment duration ∆t when U=3.16 kV. (a) U-87 
MG. (b) MDA-MB-231.

Figure 4. Summery of dynamic response from mathematical model for varying CAP treatment duration ∆t, when U=3.71 kV. (a) U-87 
MG. (b) MDA-MB-231.

Figure 5. Dynamic response of cell viability from generalized mathematical model for arbitrarily varying CAP treatment duration ∆t, 
when U=3.16 kV. (a) U-87 MG. (b) MDA-MB-231.

J. Phys. D: Appl. Phys. 52 (2019) 185202
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the tolerance on the objective function of 10−6. The weighting 
factors are chosen as w1=1/(180)

2 and w2=1/(3.71)
2.

Two cases are considered. For U-87 MG, the desired ratio 
of the cancer cell viability is chosen as rd  =  0.5,  and  the 

corresponding optimal treatment duration and the plasma dis-
charge voltage are obtained as

(∆t,U)=(65.1 s, 3.367 kV).

Figure 6. Dynamic response of cell viability from generalized mathematical model for varying plasma discharge voltage U. (a) U-87 MG, 
∆t=60. (b) MDA-MB-231, ∆t=60. (c) U-87 MG, ∆t=90. (d) MDA-MB-231, ∆t=90.

Figure 7. Simulation results of the proposed optimal control for U-87 MG and MDA-MB-231. (a) U-87 MG. (b) MDA-MB-231.

J. Phys. D: Appl. Phys. 52 (2019) 185202
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Next, we consider treatment of MDA-MB-231 with rd  =  0.3, 
and the resulting optimal treatment conditions are given by

(∆t,U)=(71.6 s, 3.315 kV).

Figure 7 illustrates the dynamic response of cell viability 
under the optimal treatment for both U-87 MG and MDA-
MB-231. It is shown that the terminal relative cancer cell via-
bility is reduced as specifed by the inequality constraint (6).

3.3. Model predictive control for optimal feedback treatment

The above formulation of optimal control provides CAP 
treatment schedule for a specifc level of cancer cell growth 
inhibition. However, cancer cell response to CAP treatments 
depends on various intrinsic and extrinsic factors, and the pre-
sented mathematical model may not accurately characterize 
the actual response of the cancer cells under treatments. This 
may cause that the terminal value of the relative cancer cell 
viability becomes greater than the desired level, or it may 
yield unnecessarily intensive CAP treatments.
We address this by optimal feedback framework based 

on MPC. The objective is to adjust the treatment parameters 
adaptive based on the actual cell response. The key idea of 
MPC is solving an optimal control problem repeatedly over 
a fnite time horizon, where each optimization is initialized 
by the actual response at the beginning of the time horizon 
considered. While each optimization is completed in an open-
loop fashion, MPC is a feedback mechanism as it is repeat-
edly applied based on the actual response. In control system 

engineering, MPC is one of the most popular methods to 
extend the results of optimization into an optimal feedback 
control. It is desirable as nonlinear constraints can be easily 
imposed in feedback controls.
We consider a case of in vitro CAP treatments for U-87 

MG, where cancer cells in a petri dish are exposed to CAP jet 
four times at the interval of 48 h. It is assumed that the cancer 
cell viability is measured at the end of each 48 h period, and 
the treatment at the next period is determined accordingly. 
The weighting factors for the objective function is chosen as 
w1  =  1  and w2  =  0, and the plasma discharge voltage is fxed 
at U=3.16 kV. This is to explore a wide range of treatment 
duration ∆t in feedback controls without being restricted by 
the limit of 60–90 s for higher discharge voltages. For cancer 
growth inhibition, it is required that after completing four treat-
ments the relative cancer cell viability defned as rd in (6) is less 

than 0.1. Ideally, the desired relative cell viability can be chosen 

as rd=(0.1)
1/4 0.56 for the optimization of each treatment 

period such that the terminal relative viability is reduced to 0.1 
after the course of four treatments. Instead, in the presented 
MPC, the desired relative cell viability is chosen as

rd=
0.11/4 first treatment

0.11/4×(predicted ratio of cell viability)(actual ratio of cell viability) remaining treatments
.

 (7)

This is to reduce the desired viability of the next treatment 
further if the actual cell viability at the end of the preceding 
treatment is greater than its predicted value.
The proposed approach is verifed by a numerical simula-

tion, where the preceding mathematical model is considered 
as the actual cancer response, and the parameters of the math-
ematical model are altered to represent a mathematical model 
available to MPC. Therefore, the mathematical model avail-
able to the controller is different from the dynamic model rep-
resenting the actual cancer cell response.
The corresponding simulation results for U-87 MG are 

illustrated in table 3 and fgure 8. In table 3, the three columns 
from the second to the fourth correspond to the ideal case 
when the exact model is available to MPC. In this case, the 
relative cancer viability reduces exactly by the desired factor 
rd at each treatment. The treatment duration for all four treat-
ments are identical to ∆t=78.47 s, and the terminal relative 
viability after four treatments is 0.1 as desired. The next three 
columns are the results of MPC when the exact model is not 
available to MPC. Due to the modeling error, the frst treat-
ment duration is ∆t=70.34 s, which is less than the ideal 
value. Consequently, at the end of the frst treatment, the 
relative viability becomes greater than the desired value, i.e. 
0.62  >  0.52  =  rd. In MPC, the treatment goal and the dura-
tion of the second treatment are adjusted accordingly, and it is 
repeated at each treatment. After four treatment, the terminal 
relativity viability for MPC is 0.11.
Figure 8 illustrates the temporal response of the relative cell 

viability. The red, dotted lines show the desired relative cell 
viability at the end of each period. The red, solid curves illus-
trate the ideal case when the mathematical model for the actual 
response is available to optimization. In this ideal case, the cell 
viability of the U-87 MG is reduced to the desired level at the 
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Figure 8. Simulation results of the proposed MPC for U-87 MG.

Table 3. Model predictive control of U-87 MG.

Treatment

Ideal case MPC

rd ∆t
Relative  
viability rd ∆t

Relative 
viability

1 0.56 78.47 0.56  =  0.11/4 0.56 70.34 0.62

2 0.56 78.47 0.31  =  0.12/4 0.45 80.38 0.33

3 0.56 78.47 0.17  =  0.13/4 0.47 75.38 0.22

4 0.56 78.47 0.10 0.40 82.95 0.11
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end of each period, as observed in the above table. Here we con-
sider an additional case when the mathematical model available 
to optimal control is not identical to the actual model, but the 
proposed MPC scheme is not applied. This is illustrated by blue 
curves in fgure 8, and it is shown that the cell viability becomes 
greater than the desired level always, resulting in the terminal 
ratio of 0.15 that is 50% greater than the desired value. Finally, 
when the proposed MPC is introduced, as illustrated by black 
lines, the controlled cell viability reduces close to the desired 
level even with the discrepancy in the mathematical modeling. 
As such, this simulation result suggests that by adjusting CAP 
treatment conditions adaptive to the actual cancer response, the 
adverse effects of modeling errors can be mitigated.

4. Conclusion

This work proposes a mathematical model for describing 
the dynamic response of cancer cell to CAP by utilizing the 
optimal feedback control. A mathematical model, which 
refects the cell viability variation with respect to time, is 
developed based on the experiments presented in [34]. The 
proposed differential equation describes the infuence of the 
CAP on two particular cancer cells, namely U-87 MG and 
MDA-MB-231, based on two key factors, plasma treatment 
duration and discharge voltage. It was observed that from 
0 h to 1 h, the plasma exposure promotes cell division, then 
such promotion effect gradually shifted to inhibition effect, 
and the proliferation rate ratio became negative from 2 h to 
48 h. Additionally, an optimal control problem is formulated 
to minimize a weighted sum of the treatment duration and the 
discharge voltage while guaranteeing that cancer cell viability 
is reduced to the desired level. This is further generalized to 
an optimal feedback framework according to model predic-
tive controls, so that the CAP treatment is adaptively adjusted 
based on the actual cancer cell response. Future works include 
the validation of the proposed approach with in vitro experi-
ments, and incorporation of the dynamic response of health 
cells to maximize the selectivity of CAP treatment.

Acknowledgments

This work was supported by the National Science Foundation, 
Grant No. 1747760.

ORCID iDs

Li Lin  https://orcid.org/0000-0003-0176-8858
Taeyoung Lee  https://orcid.org/0000-0003-4982-4150
Michael Keidar  https://orcid.org/0000-0003-0869-4310

References

 [1] Lu X, Naidis G, Laroussi M and Ostrikov K 2014 Phys. Rep. 
540 123–66

 [2] Keidar M and Beilis I 2013 Plasma Engineering: Applications 
from Aerospace to Bio and Nanotechnology (New York: 
Academic)

 [3] Robert E, Sarron V, Riès D, Dozias S, Vandamme M 
and Pouvesle J M 2012 Plasma Sources Sci. Technol. 
21 034017

 [4] Naidis G 2013 Plasma Sources Sci. Technol. 22 035015
 [5] Puač N, Maletić D, Lazović S, Malović G, Ðorđević A and 

Petrović Z L 2012 Appl. Phys. Lett. 101 024103
 [6] Shashurin A, Shneider M and Keidar M 2012 Plasma Sources 

Sci. Technol. 21 034006
 [7] Lin L, Lyu Y, Shneider M N and Keidar M 2018 Rev. Sci. 

Instrum. 89 113502
 [8] Lin L and Keidar M 2016 Phys. Plasmas 23 083529
 [9] Laroussi M, Kong M, Morfll G and Stolz W 2012 Plasma 

Medicine: Applications of Low-Temperature Gas Plasmas 
in Medicine and Biology (Cambridge: Cambridge 
University Press)

 [10] Weltmann K and von Woedtke T 2016 Plasma Phys. Control. 
Fusion 59 014031

 [11] Knake N, Niemi K, Reuter S, Schulz-von der Gathen V and 
Winter J 2008 Appl. Phys. Lett. 93 131503

 [12] Waskoenig J, Niemi K, Knake N, Graham L, Reuter S, Schulz-
Von Der Gathen V and Gans T 2010 Plasma Sources Sci. 
Technol. 19 045018

 [13] Ninomiya K, Ishijima T, Imamura M, Yamahara T, 
Enomoto H, Takahashi K, Tanaka Y, Uesugi Y and 
Shimizu N 2013 J. Phys. D: Appl. Phys. 46 425401

 [14] Sousa J, Niemi K, Cox L, Algwari Q T, Gans T and 
O’connell D 2011 J. Appl. Phys. 109 123302

 [15] Conway G E, Casey A, Milosavljevic V, Liu Y, Howe O, 
Cullen P J and Curtin J F 2016 Br. J. Cancer 114 435

 [16] Vandamme M et al 2012 Int. J. Cancer 130 2185–94
 [17] Schlegel J, Köritzer J and Boxhammer V 2013 Clin. Plasma 

Med. 1 2–7
 [18] Kim J Y, Ballato J, Foy P, Hawkins T, Wei Y, Li J and 

Kim S O 2011 Biosens. Bioelectron. 28 333–8
 [19] Ahn H J, Kim K I, Kim G, Moon E, Yang S S and Lee J S 

2011 PLoS One 6 e28154
 [20] Dezest M et al 2017 Sci. Rep. 7 41163
 [21] Wang M, Holmes B, Cheng X, Zhu W, Keidar M and 

Zhang L G 2013 PLoS One 8 e73741
 [22] Keidar M 2018 Phys. Plasmas 25 083504
 [23] Dünnbier M, Schmidt-Bleker A, Winter J, Wolfram M, 

Hippler R, Weltmann K and Reuter S 2013 J. Phys. D: 
Appl. Phys. 46 435203

 [24] Bradley J W, Oh J S, Olabanji O T, Hale C, Mariani R and 
Kontis K 2011 IEEE Trans. Plasma Sci. 39 2312–3

 [25] Darny T, Pouvesle J M, Fontane J, Joly L, Dozias S and 
Robert E 2017 Plasma Sources Sci. Technol. 26 105001

 [26] Darny T, Pouvesle J M, Puech V, Douat C, Dozias S and 
Robert E 2017 Plasma Sources Sci. Technol. 26 045008

 [27] Klarenaar B, Guaitella O, Engeln R and Sobota A 2018 
Plasma Sources Sci. Technol. 27 085004

 [28] Georgescu N and Lupu A R 2010 IEEE Trans. Plasma Sci. 
38 1949–55

 [29] Kalghatgi S, Friedman G, Fridman A and Clyne A M 2010 
Ann. Biomed. Eng. 38 748–57

 [30] Keidar M 2016 J. Nanomed. Res. 3 3–5
 [31] Keidar M, Yan D, Beilis I I, Trink B and Sherman J H 2018 

Trends Biotechnol. 36 586–93
 [32] Gidon D, Curtis B, Paulson J A, Graves D B and Mesbah A 

2018 IEEE Trans. Radiat. Plasma Med. Sci. 2 129–37
 [33] Gidon D, Graves D B and Mesbah A 2017 Plasma Sources 

Sci. Technol. 26 085005
 [34] Gjika E, Pal-Ghosh S, Tang A, Kirschner M, Tadvalkar G, 

Canady J, Stepp M A and Keidar M 2018 ACS Appl. Mater. 
Interfaces 10 9269–79

 [35] Schättler H and Ledzewicz U 2015 Optimal Control for 
Mathematical Models of Cancer Therapies (Berlin: 
Springer)

 [36] Bryson H 1975 Applied Optimal Control: Optimization, 
Estimation, and Control (London: Taylor and Francis)

J. Phys. D: Appl. Phys. 52 (2019) 185202

https://orcid.org/0000-0003-0176-8858
https://orcid.org/0000-0003-0176-8858
https://orcid.org/0000-0003-4982-4150
https://orcid.org/0000-0003-4982-4150
https://orcid.org/0000-0003-0869-4310
https://orcid.org/0000-0003-0869-4310
https://doi.org/10.1016/j.physrep.2014.02.006
https://doi.org/10.1016/j.physrep.2014.02.006
https://doi.org/10.1016/j.physrep.2014.02.006
https://doi.org/10.1088/0963-0252/21/3/034017
https://doi.org/10.1088/0963-0252/21/3/034017
https://doi.org/10.1088/0963-0252/22/3/035015
https://doi.org/10.1088/0963-0252/22/3/035015
https://doi.org/10.1063/1.4735156
https://doi.org/10.1063/1.4735156
https://doi.org/10.1088/0963-0252/21/3/034006
https://doi.org/10.1088/0963-0252/21/3/034006
https://doi.org/10.1063/1.5027836
https://doi.org/10.1063/1.5027836
https://doi.org/10.1063/1.4961924
https://doi.org/10.1063/1.4961924
https://doi.org/10.1088/0741-3335/59/1/014031
https://doi.org/10.1088/0741-3335/59/1/014031
https://doi.org/10.1063/1.2995983
https://doi.org/10.1063/1.2995983
https://doi.org/10.1088/0963-0252/19/4/045018
https://doi.org/10.1088/0963-0252/19/4/045018
https://doi.org/10.1088/0022-3727/46/42/425401
https://doi.org/10.1088/0022-3727/46/42/425401
https://doi.org/10.1063/1.3601347
https://doi.org/10.1063/1.3601347
https://doi.org/10.1038/bjc.2016.12
https://doi.org/10.1038/bjc.2016.12
https://doi.org/10.1002/ijc.26252
https://doi.org/10.1002/ijc.26252
https://doi.org/10.1002/ijc.26252
https://doi.org/10.1016/j.cpme.2013.08.001
https://doi.org/10.1016/j.cpme.2013.08.001
https://doi.org/10.1016/j.cpme.2013.08.001
https://doi.org/10.1016/j.bios.2011.07.039
https://doi.org/10.1016/j.bios.2011.07.039
https://doi.org/10.1016/j.bios.2011.07.039
https://doi.org/10.1038/srep41163
https://doi.org/10.1038/srep41163
https://doi.org/10.1371/annotation/5fa9cfb4-9964-4586-845d-d8205f318d68
https://doi.org/10.1371/annotation/5fa9cfb4-9964-4586-845d-d8205f318d68
https://doi.org/10.1063/1.5034355
https://doi.org/10.1063/1.5034355
https://doi.org/10.1088/0022-3727/46/43/435203
https://doi.org/10.1088/0022-3727/46/43/435203
https://doi.org/10.1109/TPS.2011.2157940
https://doi.org/10.1109/TPS.2011.2157940
https://doi.org/10.1109/TPS.2011.2157940
https://doi.org/10.1088/1361-6595/aa8877
https://doi.org/10.1088/1361-6595/aa8877
https://doi.org/10.1088/1361-6595/aa5b15
https://doi.org/10.1088/1361-6595/aa5b15
https://doi.org/10.1088/1361-6595/aad4d7
https://doi.org/10.1088/1361-6595/aad4d7
https://doi.org/10.1109/TPS.2010.2041075
https://doi.org/10.1109/TPS.2010.2041075
https://doi.org/10.1109/TPS.2010.2041075
https://doi.org/10.1007/s10439-009-9868-x
https://doi.org/10.1007/s10439-009-9868-x
https://doi.org/10.1007/s10439-009-9868-x
https://doi.org/10.15406/jnmr.2016.03.00052
https://doi.org/10.15406/jnmr.2016.03.00052
https://doi.org/10.15406/jnmr.2016.03.00052
https://doi.org/10.1016/j.tibtech.2017.06.013
https://doi.org/10.1016/j.tibtech.2017.06.013
https://doi.org/10.1016/j.tibtech.2017.06.013
https://doi.org/10.1109/TRPMS.2017.2764629
https://doi.org/10.1109/TRPMS.2017.2764629
https://doi.org/10.1109/TRPMS.2017.2764629
https://doi.org/10.1088/1361-6595/aa7c5d
https://doi.org/10.1088/1361-6595/aa7c5d
https://doi.org/10.1021/acsami.7b18653
https://doi.org/10.1021/acsami.7b18653
https://doi.org/10.1021/acsami.7b18653

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Mathematical modeling and control for cancer treatment with cold atmospheric plasma jet﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Modeling for CAP treatments
	﻿﻿2.1. ﻿﻿﻿Experimental data
	﻿﻿2.2. ﻿﻿﻿Exponential growth model
	﻿﻿2.3. ﻿﻿﻿System identification
	﻿﻿2.4. ﻿﻿﻿Generalization

	﻿﻿3. ﻿﻿﻿Optimal cancer treatment
	﻿﻿3.1. ﻿﻿﻿Problem formulation
	﻿﻿3.2. ﻿﻿﻿Optimal cancer treatment
	﻿﻿3.3. ﻿﻿﻿Model predictive control for optimal feedback treatment

	﻿﻿4. ﻿﻿﻿Conclusion
	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


