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ABSTRACT

The learning data requirements are analyzed for the construc-
tion of stealth attacks in state estimation. In particular, the
training data set is used to compute a sample covariance ma-
trix that results in a random matrix with a Wishart distribu-
tion. The ergodic attack performance is defined as the av-
erage attack performance obtained by taking the expectation
with respect to the distribution of the training data set. The
impact of the training data size on the ergodic attack perfor-
mance is characterized by proposing an upper bound for the
performance. Simulations on the IEEE 30-Bus test system
show that the proposed bound is tight in practical settings.

Index Terms— stealth attacks, data injection attacks, ran-
dom matrix theory, information theory

1. INTRODUCTION

Data injection attacks [1] are one of the main threats that the
smart grid faces. Attack constructions that exploit the sparsity
of the data injection vector have been proposed [2] as practical
constructions that can disrupt the state estimation performed
by the operator. Distributed attack construction and detection
strategies are studied in [3, 4, 5, 6] where it is shown that the
bad data detection procedures put in place by the operator can
be defeated by several attackers that control a subset of the
sensing infrastructure in the grid. Modelling the state vari-
ables as a random process, attack constructions that exploit
the statistical knowledge of the state variables are proposed in
[7, 8]. The addition of probabilistic structure to the state vari-
ables opens the door to the definition of information theoretic
attacks for which the damage and probability of detection are
characterized in terms of information measures [9]. In [10]
the assumption of perfect knowledge of the statistics of the
state variables is relaxed by considering a training data set to
learn the statistics. Therein, it is numerically shown that the
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performance of the attack when imperfect knowledge of the
statistics is available changes significantly with respect to the
case with perfect knowledge. In this paper, we analytically
characterize the impact of the training data size and the cor-
relation between state variables over the attack performance.

2. SYSTEM MODEL

2.1. State Estimation and Bad Data Detection

The measurement model for state estimation with linearized
dynamics is given by

yM =—uaxN 4 zM, (1)

where YM € RM is a vector of random variables describ-
ing the measurements; X N ¢ RY is a vector of random
variables describing the state variables; H € RM*N i the
linearized Jacobian measurement matrix which is determined
by the power network topology and the admittances of the
branches; and ZM ¢ RM is the additive white Gaussian
noise (AWGN) with distribution (0, 0%1,,) where o2 is
the variance of the error introduced by the sensors [11], [12,
Chapter 15]. The vector of the state variables is assumed to
follow a multivariate Gaussian distribution given by XV ~
N (0,3 xx), where X xx is the positive-definite covariance
matrix of the distribution of the state variables. The Gaussian
assumption for the vector of the state variables is also adopted
by [7] and [8]. As a result of the linear measurement model
in (1), the vector of measurements also follows a multivariate
Gaussian distribution denoted by Y ~ N(0, Zyy ), where
vy = HEX)(HT + O'2IM.

Data injection attacks corrupt the measurements available
to the operator by adding an attack vector to the measure-
ments. The resulting vector of compromised measurements is
given by

Vil =HXY 4 ZM 4 AM, 2)

where AM e RM is the attack vector and YM e RM
is the vector containing the compromised measurements
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[1]. Following the approach in [9] we adopt a Gaussian
framework for the construction of the attack vector, i.e.
AM ~ N(0,%44), where 344 is the covariance matrix
of the attack distribution. The rationale for choosing a Gaus-
sian distribution for the attack vector follows from the fact
that for the attack model in (2) the additive attack distri-
bution that minimizes the mutual information between the
vector of state variables and the compromised measure-
ments is Gaussian [13]. Because of the Gaussianity of
the attack distribution, the vector of compromised mea-
surements is distributed as Y} ~ AN(0,%y,y,), where
EYAYA = HzxxHT + O'2IM + X44.

The operator of the power system makes use of the ac-
quired measurements to detect the attack. The detection prob-
lem is cast as a hypothesis testing problem with hypotheses

Ho: YM ~ N(0,3yy), versus 3)
Hi: YyM N(O, Yy.va)- 4

The null hypothesis H describes the case in which the power
system is not compromised, while the alternative hypothesis
‘H, describes the case in which the power system is under at-
tack. The Neyman-Pearson lemma [14] states that for a fixed
probability of Type I error, the likelihood ratio test (LRT)
achieves the minimum Type II error when compared with any
other test with an equal or smaller Type I error. Consequently,
the LRT is chosen to decide between H and H; based on the
available measurements. The LRT between H and H; takes
following form:

A f yM (¥) 7;1

= , 5
Foar(y) s ©)

L(y)

where y € R™ is a realization of the vector of random vari-
ables modelling the measurements, fy}f and fy» denote the
probability density functions (p.d.f’s) of Y/ and Y™, re-
spectively, and 7 is the decision threshold set by the operator
to meet the false alarm constraint.

2.2. Information-Theoretic Attacks

The purpose of the attacker is to disrupt the normal state esti-
mation procedure by minimizing the information that the op-
erator acquires about the state variables, while guaranteeing
that the probability of attack detection is small enough, and
therefore, remain concealed in the system. To that end, the at-
tacker aims to minimize the mutual information between the
vector of state variables and the vector of compromised mea-
surements denoted by I(X”~;YM). On the other hand, we
assess the performance of attack detection by the LRT via the
Chernoff-Stein lemma [15], which characterizes the asymp-
totic exponent of the probability of detection when the num-
ber of observations of measurement vectors grows to infinity.
In our setting, the Chernoff-Stein lemma states that for any

LRT and € € (0,1/2), it holds that

1

Jim —log f;, = —D(Py | Pyu), (6)
where D(-||-) is the Kullback-Leibler (KL) divergence, 3, is
the minimum Type II error such that the Type I error « satis-
fies o < €, and n is the number of M -dimensional measure-
ment vectors that are available for the LRT. Therefore, for
the attacker, minimizing the asymptotic detection probability
is equivalent to minimizing D (Py u || Pyar), where Py a and
Py denote the probability distributions of Y and Y| re-
spectively.

A stealthy attack construction that combines these two in-
formation measures in one cost function is proposed in [10].
Interestingly, the resulting cost function boils down to the ef-
fective secrecy proposed in [16] which can be written as

I(XN; Y‘Zx\/[) +D(Pyiw ||PY}\4):D(P)(NYI£M ||PXN,PyM),(7)

where Py~ yM is the joint distribution of XV and Y1. The
resulting attack construction problem is equivalent to solving
the following optimization problem:

Under the attack Gaussianity assumption the cost function in
(7) is a function of the attack covariance matrix 3 44. Let us
define the cost function for the Gaussian case as

1 _ _
f(= M)éi[tr(zy;z a4)—log/ S an+0 2T |-log =[] (9)

It is shown in [9] that (8) is a convex optimization problem
and that the covariance matrix for the optimal Gaussian attack

is 3%, 2 HE xxHT.
3. LEARNING ATTACK CONSTRUCTION

The stealth attack construction proposed above requires per-
fect knowledge of the covariance matrix of the state variables
and the linearized Jacobian measurement matrix. In the fol-
lowing we study the performance of the attack when the sec-
ond order statistics are not perfectly known by the attacker
but the linearized Jacobian measurement matrix is known. We
model the partial knowledge by assuming that the attacker has
access to a sample covariance matrix of the state variables.
Specifically, the training data consisting of K state variable
realizations { XV }X | is available to the attacker. That being
the case the attacker computes the unbiased estimate of the
covariance matrix of the state variables given by

K

1

ﬁZXiN(XiN)T' (10)
i=1

The stealth attack constructed using the sample covariance
matrix follows a multivariate Gaussian distribution given by

AM ~ N(0,% 57), (11)

Sxx =
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where ¥ ;; = HSxxH".
Since the sample covariance matrix in (10) is a random
matrix with central Wishart distribution given by

1
Sxx ~ ——Wn(K-1,% 12
XX~ N ( , 2xx), 12)
the ergodic counterpart of the cost function in (7) is defined
in terms of the conditional KL divergence given by

Es,. [D (PXNY%SXX ||PXNPW)} . (13)

The ergodic cost function characterizes the expected perfor-
mance of the attack averaged over the realizations of training
data. Note that the performance using the sample covariance
matrix is suboptimal [10] and that the ergodic performance
converges asymptotically to the optimal attack construction
when the size of the training data set increases.

4. UPPER BOUND FOR ERGODIC ATTACK
PERFORMANCE

In this section, we analytically characterize the ergodic attack
performance defined in (13) by providing an upper bound us-
ing random matrix theory tools. Before introducing the upper
bound, some auxiliary results on the expected value of the ex-
treme eigenvalues of Wishart random matrices are presented
below.

4.1. Auxiliary Results in Random Matrix Theory

Lemma 1. Let Zj, be an (K — 1) x L matrix whose entries
are independent standard normal random variables, then

var (Smae(Zr)) < 1, (14)

where var (-) denotes the variance and Syq.(Z1) is the max-
imum singular value of Zy..

Proof. Note that $,,4,(Zy) is a 1-Lipschitz function of
matrix Zy, the maximum singular value of Zjy is con-
centrated around the mean [17, Proposition 5.34] given by
E[$maz(Zr)]. Then for ¢t > 0, it holds that

Pllsmaz(Zr) ~Elsmaz(Z1)]| > 1] < 2exp{~1?/2} (15)
< exp{l —t?/2}. (16)

Therefore $;,q.(Zz) is a sub-gaussian random variable with

variance proxy Uf) < 1. The lemma follows from the fact that

var (Smaz(Zr)) < O’;. O

Lemma 2. Let W, denote a central Wishart matrix distribut-
ed as ﬁWL (K —1,1y), then the non-asymptotic expected
value of the extreme eigenvalues of W r, is bounded by

(1 - mf <EDmin(Wr)]  (17)

and

Bnae(W2)] < (14 VERK D) +1/(K - 1), (18)

where Apmin(Wp) and Mpax(W1) denote the minimum
eigenvalue and maximum eigenvalue of W 1,, respectively.

Proof. Note that [17, Theorem 5.32]

VK =1 = VL < E[spmin(Z1)] (19)
and
VK =14+ VL > E[sma2(Z1)), (20)

where S5, (Z 1) is the minimum singular value of Z . Given
the fact that W, = 2~ Z] Z, then it holds that

E {smm(ZL)ﬂ - E [smin(Z1))?

EPmin W)l =————2—F—7 @D
and ,
E smaw(z ) 2
E[)\maz(wl/)}: |: L }SE[smaz(ZL)] +17 (22)

K-1 K-1
where (22) follows from Lemma 1. Combining (19) with
(21), and (20) with (22), respectively, yields the lemma. [J

4.2. Main Result

The ergodic attack performance is given by
E[f(Z4)]
1 _ _
= §E[tr(zy;zﬂ) —log % 15 +0°Iy|—log |27+ ]]

1
= 5 (r(Z73 =) ~log =} | ~E[log S 45 +0°Lu[] ). 23)

The assessment of the ergodic attack performance boils down
to evaluating the last term in (23). Closed form expressions
for this term are provided in [18] for the same case considered
in this paper. However, the resulting expressions are involved
and are only computable for small dimensional settings. For
systems with a large number of dimensions the expression-
s are computationally prohibitive. To circumvent this chal-
lenge we propose a lower bound on the term that yields an
upper bound on the ergodic attack performance. Before p-
resenting the main result we provide the following auxiliary
convex optimization result.

Lemma 3. Ler B = diag(by, ...
nite diagonal matrix. Then

,bp) denote a positive defi-

p
E [log|B + W, (] = log (b + 1/x7), (24)
=1

where x7 is the solution to the convex optimization problem
given by

{mig > log (b + 1/x;) (25)
Titiz=1 1
P
s.t. Zmi =p (26)
i=1

max (z;) < (1 +Vp/(K - 1))2 +1/(K —1)(27)
min (z;) > (1 —Vp/(K - 1)>2. (28)
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Proof. Note that

P
E [log |B +W;1H = ZE {log (bi +
i=1

Az-al?vp))] @

P 1
> log (‘” * Ewwp)]) (30

where in (29), \;(W,,) is the i-th eigenvalue of W, in de-
creasing order; (30) follows from Jensen’s inequality due to
the convexity of log (b; + +) for # > 0. Constraint (26) fol-
lows from the fact that [E[trace(W,)] = p, and constraints
(27) and (28) follow from Lemma 2. This completes the
proof.

O

The following theorem provides a lower bound for the last
term in (23), and therefore, it enables us to characterize the
ergodic attack performance.

Theorem 1. Let X ;; = HS xxHT” and denote by A, =
diag(A1, ..., Ap) the diagonal matrix containing the nonzero
eigenvalues in decreasing order. Then

[log|§] —|—UQIM|]

(Zw —1—z>—p10g(K—1)
JrX:log(

>+2M10ga 31)

where (- ) is the Euler digamma function, p = rank(HX xx HT),

and {\}}¥_, is the solution to the optimization problem given
by (25) - (28) with b; = Ug,forz =1,...,p

Proof. We proceed by noticing that
E[log|= 45 +0%In|]

1
ZT
=E [log ng +2M logo (33)
—1
VA A VAY/
_ p~P iip p~'p
=E |log %1 +log 02+(K— 1) +2M log o (34)

p—1
> ( (K~ 1 —z‘)) ~ plog(K — 1)

+Zlo (

where in (32), A is a diagonal matrix containing the eigenval-
ues of HY xx HT in decreasing order; (33) follows from the
fact that p = rank(HX xx HT); (35) follows from substitut-
ing (2.12) in [19] and Lemma 3 into (34). This completes the
proof. O

> + 2M log o, (35)

2 e optimal utiity function value for p = 0.1
I Monte Carlo utility function value for p = 0.1

= = = upper bound for utiity function value for p = 0.1
260 optimal utiity function value for p = 0.8

Monte Carlo utiity function value for p = 0.8
upper bound for utiity function value for p = 0.8

utility function value

number of samples

Fig. 1. Performance of the upper bound in Theorem 2 as a
function of number of sample for p = 0.1 and p = 0.8 when
SNR = 20 dB.

Theorem 2. The ergodic attack performance given in (23) is
upper bounded by

E[f(Z147)]< ;<tr(zylyzjm) —log[E3y| — 2M log o

(Zzp 12>+plog(K1)
—;mg <02 + A) > (36)

Proof. The proof follows immediately from combing Theo-
rem 1 with (23). O

5. NUMERICAL RESULTS

The numerical results are obtained on the IEEE 30-Bus test
system where the Jacobian matrix H is obtained using MAT-
POWER [20]. For the construction of the stealth attack
the covariance matrix of the state variables is chosen to
be a Toeplitz matrix with exponential decay parameter p
as in [8]. Specifically, the Toeplitz matrix of dimension
N x N with exponential decay parameter p is given by
Sxx = [sij = plt7ili,j = 1,2,..., N]. We define the
Signal-to-Noise Ratio (SNR) as

(37

HY (HT
SNR = 10log;, (tr(XX)> :

Mo?

Fig.1 depicts the upper bound in Theorem 2 as a function of
number of samples for p = 0.1 and p = 0.8 when SNR =
20 dB. Interestingly, the upper bound in Theorem 2 is tight
for large values of the training data set size for all values of
the exponential decay parameter determining the correlation.
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