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Abstract. Brain imaging genetics is an important research topic in
brain science, which combines genetic variations and brain structures or
functions to uncover the genetic basis of brain disorders. Imaging data
collected by different technologies, measuring the same brain distinctly,
might carry complementary but different information. Unfortunately, we
do not know the extent to which phenotypic variance is shared among
multiple imaging modalities, which might trace back to the complex
genetic mechanism. In this study, we propose a novel dirty multi-task
SCCA to analyze imaging genetics problems with multiple modalities of
brain imaging quantitative traits (QTs) involved. The proposed method
can not only identify the shared SNPs and QTs across multiple modal-
ities, but also identify the modality-specific SNPs and QTs, showing a
flexible capability of discovering the complex multi-SNP-multi-QT asso-
ciations. Compared with the multi-view SCCA and multi-task SCCA,
our method shows better canonical correlation coefficients and canoni-
cal weights on both synthetic and real neuroimaging genetic data. This
demonstrates that the proposed dirty multi-task SCCA could be a mean-
ingful and powerful alternative method in multi-modal brain imaging
genetics.
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1 Introduction

Imaging genetics gains more and more attention recently. The primal aim of
imaging genetics is to uncover the genetic basis of brain disorders [6]. Hence the
genetic variations such as the single nucleotide polymorphisms (SNPs) and neu-
roimaging quantitative traits (QTs) are usually analyzed together. The imaging
QTs obtained by different image technologies, measuring the brain from different
perspectives, might carry complementary but different information. Therefore,
combining multi-modal imaging QTs, and using them to study the modality-
consistent biomarkers as well as the modality-dependent biomarkers could be
beneficial to exploit meaningful genetic mechanism for brain disorders.

Both regression-based multi-task learning (MTL) and sparse canonical cor-
relation analysis (SCCA) are widely used in brain imaging genetics [7]. The
MTL methods only select features for the predicting variables [5,8], thereby
are insufficient if we pursue a simultaneous feature selection for both SNPs and
imaging QTs. SCCA improves the MTL methods, and yields a pair of canonical
weights showing the relevance of SNPs and QTs simultaneously [2,10]. How-
ever, they could not load multi-modal imaging QTs in a unified model, resulting
in the lack of the identification ability. The multi-view/multi-set SCCA studies
the relationship among multiple sets of data, thereby could handle multi-modal
imaging genetics. Unfortunately, similar to the multi-task SCCA (MTSCCA)
[1,3], it could not identify diverse imaging genetic patterns such as the modality-
consistent and modality-dependent associations.

In this paper, we propose a novel multi-modal imaging data oriented imaging
genetic learning method. Our method takes advantage of MTL and parameters
decomposition. The MTL modeling strategy makes it easier and reasonable to
incorporate multiple modalities of imaging QTs, and the parameters decompo-
sition accommodates a flexible regularization. We call it the dirty MTSCCA fol-
lowing the terminology in [4]. The proposed dirty method decomposes the canon-
ical weights into two parts, i.e. the task-consistent component which is shared
among all tasks, and the task-dependent component which is close related to a
specific task. By penalizing both components distinctly, the proposed method
is able to identify both SNPs and imaging QTs that are revealed by all imag-
ing technologies, as well as SNPs and QTs that could be only revealed using
a specific imaging technology. We propose an efficient algorithm to solve the
dirty MTSCCA which converges to a local optimum. The results on the real
neuroimaging genetics data from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database [9] show that, the dirty MTSCCA learns improved bi-
multivariate associations, the modality-shared SNPs and brain areas, as well as
the modality-specific SNPs and brain areas, exhibiting a flexible and meaningful
identification capability. Therefore, our dirty MTSCCA model is quite suitable to
multi-modal imaging genetics, and further a significant addition to the existing
method library.
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2 The Dirty Multi-task SCCA

The Model. In this paper, we denote scalars as italic letters, column vectors as
boldface lowercase letters, and matrices as boldface capitals. The i-th row and
j-th column of X = (xij) is denoted as xi and xj respectively. ‖x‖2 denotes the

Euclidean norm, ‖X‖F =
√∑

i

∑
j x2

ij denotes the Frobenius norm, and ‖X‖2,1

denotes the �2,1-norm. X ∈ R
n×p loads the genetic data with n subjects and p

SNPs, and Yc ∈ R
n×q(c = 1, · · · , C) loads the c-th modality of phenotype data

with q imaging QTs, where C is the number of imaging modalities (tasks).
To discover the flexible imaging genetic patterns in a multi-modal scene, we

propose the dirty multi-task SCCA as follows

min
S,W,B,Z

C∑

c=1

−(sc + wc)
�
X

�
Yc(bc + zc)

+ λs ‖S‖G2,1
+ βs ‖S‖2,1 + λw ‖W‖1 + βb ‖B‖2,1 + λz ‖Z‖1

s.t. ‖X(sc + wc)‖2
2 ≤ 1, ‖Yc(bc + zc)‖2

2 ≤ 1, ∀c. (1)

In this model, the conventional canonical weights U and V are decomposed as
U = S + W and V = B + Z. The S and W are associated with the SNP data,
where S is the task-consistent component shared by multiple tasks, and W is
the task-dependent component only associated with a single task. Similarly, B
is the task-consistent component and Z is the task-dependent component for
imaging QTs. The λs, βs, λw, βb, λz are nonnegative tuning parameters.

The model above encourages the modality-shared sparsity [4] and modality-
dependent sparsity via distinct regularization terms. It penalizes the task-
consist-ent component jointly by the block-sparse regularization, such as the
G2,1-norm (definition is in [8]) and �2,1-norm for SNPs and �2,1-norm for QTs.
This could help identify the shared SNPs and imaging QTs repeated by different
imaging technologies. In addition, the task-dependent component is penalized
differently by the �1-norm to induce element-wise sparsity for both SNPs and
imaging QTs. This might uncover the SNPs and QTs that could only be identi-
fied using a specific imaging technology. Owing to this decomposition strategy,
the proposed method is able to facilitate joint feature selection while allowing dis-
parities as well. Since simultaneously demanding features being task-consistent
and task-dependent is conflicting, the proposed dirty model is flexible and thus
practical.

The Optimization Algorithm. The Eq. (1) is not a jointly convex function
and thus can not be solved directly. Fortunately, it is convex in S if we fix W,
B and Z. Likewise, Eq. (1) is also convex in W, B and Z alternately with those
remaining weight matrices being fixed. On this account, the dirty multi-task
SCCA problem can be solved using the alternative iteration algorithm.
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Updating S and W: When B and Z are fixed to constants, the objective with
respect to S and W can be rewritten as

min
S,W

C∑

c=1

−(sc+wc)
�
X

�
Yc(bc+zc)+λs ‖S‖G2,1

+βs ‖S‖2,1+λw ‖W‖1 , s.t. ‖X(sc + wc)‖2
2 ≤ 1,

(2)
which can be solved by the following theorem.

Theorem 1. The solution of Eq. (2) is given by s∗
c = ŝc

‖X(ŝc+ŵc)‖2
and w∗

c =
ŵc

‖X(ŝc+ŵc)‖2
, where ŝc is the solution of

min
S

C∑

c=1

1

2
‖Xsc − Yc(bc + zc)‖2

2 + λs ‖S‖G2,1
+ βs ‖S‖2,1 , (3)

and ŵc is the solution of

min
W

C∑

c=1

1

2
‖Xwc − Yc(bc + zc)‖2

2 + λw ‖W‖1 . (4)

Theorem 1 can be proved following the same procedure in [10] (Appendix
A.2). Now Eq. (3) becomes a multi-task regression, and can be solved using the
off-the-shelf methods. Given that sc’s can be solved jointly, we take the derivative
of the objective of Eq. (3) with respect to S, and then let it be zero, i.e.

(X
�
X + λsD̃ + βsD)S = X

�
[Y1(b1 + z1) · · · YC(bC + zC)], (5)

where D̃ is a block diagonal matrix with the k-th block being 1
‖Sk‖F

Ik, and Ik is
an identity matrix of size equaling to the size of the k-th group. The grouping
information could be previously defined according to the linkage disequilibrium
(LD) structure of SNPs. D is a diagonal matrix with the i-th diagonal element
being 1

‖si‖2
(i = 1, · · · , p). Then we can easily obtain Ŝ from Eq. (5), which can

be efficiently solved via the iterative algorithm [8].
Due to the �1-norm regularization, wc’s are not coupled and thus can be

updated separately. By first taking the derivative of Eq. (4) regarding each wc,
and letting it be zero, we arrive at

(X
�
X + λwD̆c)wc = X

�
Yc(bc + zc), (6)

with D̆c being a diagonal matrix whose i-th element is 1
|wic| (i = 1, · · · , p).

Updating B and Z: Once we obtain S and W, we can fix them to solve B and
Z. Since each bc and zc are associated with each modality of imaging QTs, i.e.
Yc, they are not closely coupled too. Thus bc and zc for different task can be
solved separately.
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With this observation, we follow the same procedure to that of updating wc

according to Theorem 1. Taking the derivative of the objective with respect to
every bc, we easily obtain

(Y
�
c Yc + βbQ)bc = Y

�
c X(sc + wc), (7)

with Q being a diagonal matrix and the j-th element is 1
‖bj‖2

(j = 1, · · · , q).
Similarly, we have

(Y
�
c Yc + λzQ̆c)zc = Y

�
c X(sc + wc), (8)

where Q̆c is a diagonal matrix whose j-th diagonal element is 1
|zj | (j = 1, · · · , q).

Equations (5)–(8) pave the way to solve the problem Eq. (1), and then we
present the pseudo-code in Algorithm 1. The algorithm iteratively updates S,
W, B and Z till the predefined stopping conditions are satisfied. Further, this
algorithm is guaranteed to converge to a local optimum since Eqs. (5–8) converge
according to the Theorem 1 in [8].

Algorithm 1. The Dirty Multi-task SCCA Algorithm
Require:

X ∈ Rn×p, Yc ∈ Rn×q, c = 1, · · · , C, λs, βs, λw, βb, λz

Ensure:
Output S, W, B, Z.

1: Initialize S ∈ Rp×C , W ∈ Rp×C , B ∈ Rq×C and Z ∈ Rq×C ;
2: while not convergence do
3: Update Ŝ according to Eq. (5), and update ŵc according to Eq. (6);
4: Compute S∗ and W∗ according to Theorem 1;
5: Update b̂c according to Eq. (7), and update ẑc according to Eq. (8);

6: Compute B∗ and Z∗ according to b∗
c = b̂c

‖Yc(b̂c+ẑc)‖2

, and z∗
c = ẑc

‖Yc(b̂c+ẑc)‖2

;

7: end while

3 Experiments

We choose the most related MTSCCA (multi-task SCCA) [1] and mSCCA
(multi-view/multi-set SCCA) [10] as benchmarks. The experiments are con-
ducted via a nested 5-fold cross-validation method where the inner loop is for
parameter tuning. In this study, all methods run on the same platform and data
partition, and employ the same stopping condition, i.e. both maxc |(sc+wc)t+1−
(sc + wc)t| ≤ 10−5 and maxc |(bc + zc)t+1 − (bc + zc)t| ≤ 10−5.

Real Neuroimaging Genetics Data. The genotying and brain imaging data
used in this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). One primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), positron emission

http://www.adni.loni.usc.edu
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tomography (PET), other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date informa-
tion, see www.adni-info.org. The SNP, MRI and PET data were downloaded
from the LONI website (adni.loni.usc.edu). Table 1 shows the details of 755 non-
Hispanic Caucasian participants, including 281 AD, 292 MCI and 182 healthy
control (HC). There were three modalities of imaging data, i.e. the 18-F flor-
betapir PET (AV45) scans, fluorodeoxyglucose positron emission tomography
(FDG) scans, and structural MRI (sMRI) scans. These multi-modality imaging
data had been aligned to every participant’s same visit. The sMRI data were
processed with voxel-based morphometry (VBM) via SPM. These scans were
aligned to a T1-weighted template image, segmented into gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) maps, normalized to the
standard MNI space, and smoothed with an 8 mm FWHM kernel. The FDG
and AV45 scans were also registered into the same MNI space. Then a subsam-
ple step was conducted and 116 regions of interest (ROI) level measurements
were generated based on the MarsBaR automated anatomical labeling (AAL)
atlas. These imaging QTs were pre-adjusted to remove the effects of the baseline
age, gender, education, and handedness by the regression weights generated from
HCs. We investigated 1011 SNPs from chromosome 19 including the well-known
AD risk genes such as APOE. The LD block information is also used as prior
knowledge. Our goal was to examine correlations between the multiple modali-
ties of QTs (GM densities for sMRI scans, amyloid values for AV45 scans and
glucose utilization for FDG scans) and SNPs.

Table 1. Participant characteristics.

HC MCI AD

Num 182 292 281

Gender(M/F, %) 47.16/52.84 54.52/45.48 47.37/52.63

Handedness(R/L, %) 90.91/9.09 87.35/12.65 91.50/8.50

Age (mean±std) 72.97±6.00 71.81±7.62 72.38±7.31

Education (mean±std) 16.52±2.58 15.97±2.78 16.14±2.78

Bi-multivariate Associations. Table 2 contains both training and testing
canonical correlation coefficients (CCCs), showing the identified bi-multivariate
associations. There are three CCCs for each method since we have three imag-
ing modalities, thereby three SCCA tasks. The proposed method obtains better
CCCs than both mSCCA and MTSCCA, which is further confirmed by the p-
values (p-values for SNP-AV45 on testing set look strange, but are normal due
to the directionality of the paired t-test) between our method and benchmarks.
This demonstrates that, by decomposing the canonical weights and penalizing
them distinctly, our method has the superior modeling capability in multi-modal
scenes, thereby exhibits improved bi-multivariate associations.

www.adni-info.org
http://www.adni.loni.usc.edu
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Table 2. CCCs (mean±std.) between SNP and three modalities of imaging QTs. p-
values between our method and benchmarks are also shown in parentheses.

Training CCCs Testing CCCs

SNP-AV45 SNP-FDG SNP-VBM SNP-AV45 SNP-FDG SNP-VBM

mSCCA 0.44± 0.01 0.33± 0.01 0.25± 0.02 0.41± 0.07 0.29± 0.07 0.21± 0.07

(8.69E−09) (1.80E−07) (2.60E−05) (1.4E−01) (3.2E−01) (4.1E−01)

MTSCCA 0.47± 0.01 0.35± 0.01 0.29± 0.01 0.43± 0.07 0.30± 0.06 0.19± 0.08

(3.50E−09) (1.4E−01) (1.09E−02) (1.02E−03) (2.00E−01) (2.90E−02)

Our method 0.48± 0.01 0.36± 0.01 0.29± 0.01 0.44± 0.07 0.30± 0.06 0.21± 0.07
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Fig. 1. Comparison of canonical weights. The weights for SNPs are shown on top,
and those of imaging QTs are on bottom. Row 1–4: (1) mSCCA; (2) MTSCCA; (3)
our method. Our method has two weights for SNPs and QTs owing to the parameter
decomposition. Within each panel, there are three rows corresponding to three type of
imaging QTs, i.e. AV45, FDG and VBM.

Task-Consistent and Task-Dependent Feature Selection. Now we inves-
tigate the identified SNPs and imaging QTs based on the absolute values of
the estimated canonical weights. The upper half part of Fig. 1 shows the feature
selection for SNPs while that of imaging QTs is presented on the lower half part.
Since our model has two separate components for SNPs, i.e. the task-consistent
component S and the task-dependent W, we show both of them here. mSCCA
yields one canonical weight vector other than a weight matrix for SNPs, and
thus we repeatedly stack its canonical weight vector three times to make its heat
map available. We observe that all SNPs with nonzero values of our method
have been shown to be relevant to the progression of AD. For example, rs429358
is identified by both S and W, demonstrating its strong association with AD.
In addition, the proposed dirty MTSCCA shows a clear task-consistent pattern,
indicating that these SNPs, e.g. rs12721051, rs56131196, rs438811, rs483082,
rs56131196, rs5117 etc., could be correlated with AD no matter which imaging
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technology is employed. Our method and MTSCCA identify more AD-related
loci than mSCCA, demonstrating the multi-task modeling possesses comprehen-
sive feature selection capacity. The heat maps of imaging QTs exhibit interest-
ing task-consistent and task-dependent profiles. Our method shows that the left
hippocampus, the left olfactory sulcus, the inferior parietal lobule and the left
amygdala show clearly task-consistent patterns, indicating that these brain areas
could be revealed by all imaging technologies, i.e. the sMRI, FDG and AV45
scans. Besides, task-dependent Z shows that the right medial orbitofrontal cor-
tex and the left medial frontal gyrus are highlighted using the AV45-PET scans.
The left and right angular gyrus, and the cingulum are identified by using the
FDG-PET scans. Both left and right of the eighth cerebelum are highlighted
when using the VBM measures of sMRI scans. MTSCCA and mSCCA can also
identify several meaningful brain areas, however, they could not uncover the
diverse complex association between SNPs and imaging QTs of multiple modal-
ities. This real study demonstrates that our proposed dirty multi-task SCCA
could be very promising and meaningful in multi-modal brain imaging genetics.

4 Conclusions

Imaging data collected by different technologies, measuring the same brain dis-
tinctly, might carry complementary but different information. In this paper, we
propose a dirty multi-task SCCA method which incorporates multiple modali-
ties of imaging data into a unified model. By decomposing the SCCA’s canonical
weights into the task-consistent component and the task-dependent component,
and penalizing them distinctly, our method has the ability of identifying diverse
meaningful bi-multivariate associations between SNPs and imaging QTs. We
derive an efficient optimization algorithm to solve the dirty model. The neu-
roimaging genetics study demonstrates that the proposed method obtains better
canonical correlation coefficients and canonical weights than multi-view SCCA
and multi-task SCCA. A future direction is to extend this flexible model to be
guided by the diagnosis status since currently it is unsupervised.

References

1. Du, L., et al.: Fast multi-task SCCA learning with feature selection for multi-modal
brain imaging genetics. In: BIBM, pp. 356–361 (2018)

2. Du, L., et al.: A novel SCCA approach via truncated �1-norm and truncated group
lasso for brain imaging genetics. Bioinformatics 34(2), 278–285 (2018)

3. Du, L., et al.: Identifying progressive imaging genetic patterns via multi-task sparse
canonical correlation analysis: a longitudinal study of the adni cohort. Bioinfor-
matics 35(14), i474–483 (2019)

4. Jalali, A., Ravikumar, P., Sanghavi, S.: A dirty model for multiple sparse regres-
sion. IEEE Trans. Inf. Theory 59(12), 7947–7968 (2013)

5. Lee, S., Zhu, J., Xing, E.P.: Adaptive multi-task lasso: with application to eQTL
detection. In: NIPS, pp. 1306–1314 (2010)



Dirty Multi-task SCCA 455

6. Potkin, S.G., et al.: Genome-wide strategies for discovering genetic influences on
cognition and cognitive disorders: methodological considerations. Cogn. Neuropsy-
chiatry 14(4–5), 391–418 (2009)

7. Shen, L., Thompson, P.M., Potkin, S.G., Bertram, L., Farrer, L.A., et al.: Genetic
analysis of quantitative phenotypes in AD and MCI: imaging, cognition and
biomarkers. Brain Imaging Behav. 8(2), 183–207 (2014)

8. Wang, H., et al.: Identifying quantitative trait loci via group-sparse multitask
regression and feature selection: an imaging genetics study of the ADNI cohort.
Bioinformatics 28(2), 229–237 (2012)

9. Weiner, M.W., et al.: The Alzheimer’s disease neuroimaging initiative: progress
report and future plans. Alzheimer’s Dement. 6(3), 202–211 (2010)

10. Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis.
Biostatistics 10(3), 515–34 (2009)




