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Abstract—Brain imaging genetics studies the genetic basis of brain structures and functionalities via integrating genotypic data such
as single nucleotide polymorphisms (SNPs) and imaging quantitative traits (QTs). In this area, both multi-task learning (MTL) and
sparse canonical correlation analysis (SCCA) methods are widely used since they are superior to those independent and pairwise
univariate analysis. MTL methods generally incorporate a few of QTs and could not select features from multiple QTs; while SCCA
methods typically employ one modality of QTs to study its association with SNPs. Both MTL and SCCA are computational expensive
as the number of SNPs increases. In this paper, we propose a novel multi-task SCCA (MTSCCA) method to identify bi-multivariate
associations between SNPs and multi-modal imaging QTs. MTSCCA could make use of the complementary information carried by
different imaging modalities. MTSCCA enforces sparsity at the group level via the G2,1-norm, and jointly selects features across
multiple tasks for SNPs and QTs via the ℓ2,1-norm. A fast optimization algorithm is proposed using the grouping information of SNPs.
Compared with conventional SCCA methods, MTSCCA obtains better correlation coefficients and canonical weights patterns. In
addition, MTSCCA runs very fast and easy-to-implement, indicating its potential power in genome-wide brain-wide imaging genetics.

Index Terms—Brain Imaging Genetics, Sparse Canonical Correlation Analysis, Multi-Task Sparse Canonical Correlation Analysis
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1 INTRODUCTION

IMAGING genetics is an emerging and important topic
which integrates both the genetic factors and neuroimag-

ing phenotypic measurements in brain science. This integra-
tion research of combining diverse genetic and genomic data
is expected to uncover the genetic basis of brain structures
and functionalities, and further offers new opportunities to
interpret the causality of relationships between genetic vari-
ations and brain disorders such as the Alzheimer’s disease
(AD) [1], [2]. Modern neuroimaging techniques, such as
magnetic resonance imaging (MRI) and positron-emission
tomography (PET), image the morphometry and metabolic
processes of the brain based on different techniques, and
generate different imaging data describing the brain from
different perspectives. These multi-modal imaging data pro-
vide complementary information and have been demon-
strated to offer comprehensive understandings of the brain
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structures, functionalities, and brain disorders [3]. More-
over, in biomedical studies, we usually face a huge size of
genotyping biomarkers such as the single nucleotide poly-
morphisms (SNPs), which is a type of high-resolution mark-
ers in genome-wide association studies (GWAS). Therefore,
developing the fast and efficient GWAS-oriented imaging
genetics method which integrates multi-modal imaging data
simultaneously is of great importance and meaning.

The multivariate learning methods are very popular in
brain imaging genetics since both imaging data and genetic
data are multivariate. The multi-task learning (MTL) tech-
niques are of this kind and widely used in brain imaging
genetics [4], [5]. Generally, these methods choose a few
important imaging QTs relevant to their aim as dependent
variables and SNPs as independent variables. Then joint
effect of multi-locus genotype on few phenotypes is studied.
This paradigm can select SNPs that are simultaneously
relevant to the candidate brain phenotypes. However, the
brain is demonstrated to be comprised of multiple regions.
Then using only a small proportion of them could be lack
of power since they may lose important information carried
by cerebral components which are not included.

Although a brain-wide MTL model can be used, they are
still insufficient since they cannot select relevant brain phe-
notypes from multiple brain cerebral components. There-
fore, bi-multivariate methods become more and more popu-
lar in brain imaging genetics recently. Sparse canonical cor-
relation analysis (SCCA) is such a technique which usually
identifies the relationship between two views of data with s-
parse output induced by different regularization techniques
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. These two-
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view SCCA methods have limited power since they only
utilize one modal imaging QTs. Given multi-modal imaging
data, incorporating them together could make use of the
information carried by different modalities and would be
beneficial to uncover interesting findings that using one
modality cannot. Therefore, jointly analyzing the relation-
ship between all the imaging phenotypes from different
modalities and genetic factors via one single integrative
SCCA model is desirable and of great interest. And this
integrative model would be helpful to elucidate the shared
mechanism of genetic factors on the brain.

One possible solution is the multi-view SCCA modelling
which considers the pairwise relationship between all omics
data involved. This multi-view SCCA is a naive extension to
existing two-view SCCA models, and a three-view one has
been introduced in [13]. It learns only one single canonical
weight for genetic loci which is overstrict thus cannot make
full use of the complementary information embedded in
different modalities of imaging phenotypes.

Using brain-wide imaging QTs from multiple modali-
ties, in this paper, we propose a Multi-Task learning based
SCCA (MTSCCA) framework [16], [17] which can study
bi-multivariate associations between these phenotypes and
genotypes simultaneously. MTSCCA treats each SNP and
QT as a feature, and then models the association between
each imaging modality and SNPs as a learning task. Dif-
ferent from those conventional SCCA, including both two-
view and three-view methods, MTSCCA learns one canon-
ical weight matrix for SNPs, in which each column vector
corresponds to one canonical weight of one SCCA task.
In contrast, only one canonical weight vector is associated
with each imaging modality. To make the model practical,
we take into consideration the group structure such as the
linkage disequilibrium (LD) [18] in human genome via the
group ℓ2,1-norm (G2,1-norm) [5] regularization. The join-
t individual feature selection for genetic and phenotypic
markers is also taken into consideration via an ℓ2,1-norm
constraint. In addition, we propose a fast and efficient
optimization algorithm which is guaranteed to converge to
a local optimum. We apply MTSCCA to a very large real
neuroimaging genetic data set from the Alzheimer’s disease
neuroimaging initiative (ADNI) [19] cohort with all SNPs
in the 19th chromosome and three different modalities of
imaging QTs included. We intend to reveal the associations
between these genetic markers and imaging phenotypes.
Experimental results show that, compared with both two-
view and multi-view SCCA methods, MTSCCA yields bet-
ter canonical correlation coefficients and canonical weights.
It also reports a compact set of SNPs and imaging QTs
known to be associated with AD. Moreover, MTSCCA runs
very fast and could be a powerful tool to genome-wide
brain-wide bi-multivariate association analysis.

2 METHODOLOGY

We denote scalars as italic letters, column vectors as boldface
lowercase letters, and matrices as boldface capitals. ForX =
(xij), its i-th row is denoted as xi and j-th column is xj ,
and Xi denotes the i-th matrix. ∥x∥2 denotes the Euclidean
norm, ∥X∥F =

√∑
i

∑
j x

2
ij denotes the Frobenius norm.

2.1 Background
Let Xi and wi, i = 1, . . . , I , represent the data matrices and
the corresponding canonical weights, respectively. Further,
we use X1 load the SNP data, and those remaining Xk’s
(k ̸= 1) load the imaging QT data of each imaging modality
separately. Then the conventional SCCA is defined as

min
w1,··· ,wK

∑
i<j

−w⊤
i X

⊤
i Xjwj (1)

s.t. ∥Xiwi∥22 = 1,Ω(wi) ≤ bi, i = 1, . . . , I,

where Ω(wi) is the penalty function to accommodate spar-
sity and thus can select those features of interest. Many
penalty functions have been studied in the literature such
as Lasso (ℓ1-norm function) [10], [13], [20], group Lasso [11]
and graphical Lasso [9], [12]. Conventionally, we call it two-
view SCCA (SCCA for short) when I = 2, and most existing
studies fall into this category. Those methods using three or
more sets of data (I ≥ 3) are called multi-view or multi-
set SCCA (mSCCA) [13]. The two-view SCCA only uses
one modality of imaging QTs to study the genetic influence
on brain functions or structures, and the mSCCA learns
only one canonical weight for genetic data which must be
correlated to all imaging QTs simultaneously.

2.2 MTSCCA
2.2.1 The MTSCCA Model
To distinguish from the notation in mSCCA, in this section,
we use X ∈ Rn×p to represent the genetic data with n
participants and p SNPs, and Yj ∈ Rn×q(j = 1, · · · , c)
to represent the phenotype data with q imaging measure-
ments, where c is the number of imaging modalities (tasks).
Let U ∈ Rp×c be the canonical weight matrix associated
with X and V ∈ Rq×c be that associated with imaging QTs
with each vj corresponding to Yj , we propose the novel
multi-task based SCCA (MTSCCA) model as follows

min
uj ,vj

∑
j

−u⊤
j X

⊤Yjvj (2)

s.t. ∥Xuj∥22 = 1, ∥Yjvj∥22 = 1,Ω(U) ≤ b1,Ω(V) ≤ b2, ∀j.

Obviously, our model is distinct from those mCCA. First,
MTSCCA employs the multi-task framework which learns
a series of related SCCA tasks together. This simultaneous
learning has been empirically [21], [22] and theoretically
[21], [23] shown to improve performance dramatically com-
pared with learning each task independently [24]. Second,
our model learns a canonical weight matrix U for SNPs, in
which each column uj corresponds to an individual SCCA
task. This is helpful since it does not require a unique canon-
ical weight of SNPs to be associated with all modalities of
imaging QTs at the same time. Third, MTSCCA learns one
canonical weight corresponding to each imaging modality
separately, indicating that we do not need to calculate mul-
tiple canonical weights for a specific imaging modality. This
helps the model focus on the identification of markers from
the genetic data, indicating it is quite suitable for imaging
genetics analysis. Finally, our mode can be well scalable in
terms of both modeling and computation. According to Eqs.



1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2947428, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. XX, XXX 2019 3

(1-2), the number of tasks of MTSCCA equals the number
of imaging modalities which implies a linear relationship;
while that of mCCA increases quadratically as the number
of imaging modalities increase since it does a CCA task
between every pair of data sets, including the pairwise
SCCA among imaging modalities.

2.2.2 Group-sparsity and Joint Individual Feature selection
for SNPs
Since numerous SNPs inherently exhibit group structure in
the genome, a realistic modeling method should take this
information into consideration. In Eq. (2), a canonical weight
matrix is associated with SNPs, and thus the conventional
group Lasso which is used to penalize a vector cannot be
employed directly. To tackle this issue, we use theG2,1-norm
function [5] which is formulated as

∥U∥G2,1
=

K∑
k=1

∥∥∥Uk
∥∥∥
F

=

K∑
k=1

√√√√∑
i∈gk

c∑
j=1

u2
ij , (3)

where the SNPs are partitioned intoK groups G = {gk}Kk=1.
This regularization penalizes the SNPs in the same group as
a whole and expects to estimate equal or similar coefficients
for them. According to [5], this penalty has two major
merits. First, it incorporates the group structural knowledge
into the model via packaging all SNPs in the same group
together. This makes the model practical because it is in
accordance with the genetic mechanism. Second, it penalizes
the canonical weight coefficients of a group of variables
across all SCCA tasks jointly. This setup can mutually pro-
mote each individual task.

Although using G2,1-norm regularization is meaningful,
there is a lack of feature selection at individual level. For
those disease related SNPs, they could hardly be located
in the same group. Generally, within a specific group, an
individual variable could be relevant to the QTs and those
remaining ones could be irrelevant. Therefore, we also mod-
el this via the ℓ2,1-norm regularization which is the Lasso
regularization adjusted for multi-task feature selection,

∥U∥2,1 =

p∑
i=1

∥∥∥ui
∥∥∥
2
=

p∑
i=1

√√√√ c∑
j=1

u2
ij . (4)

Using both G2,1-norm and ℓ2,1-norm regularization,
MTSCCA can not only select features at the group level in
accordance with the biological knowledge, but also jointly
select feature at the individual level across all SCCA tasks.

2.2.3 Joint Individual Feature Selection Across Different
Imaging Modalities
Apart from the identification of risk genetic factors, iden-
tifying the AD risk imaging biomarkers is also of great
concern. In this study, in addition to the canonical weight
matrix for SNPs, MTSCCA also learns one canonical weight
for each imaging modality. For a larger number of imag-
ing features, a non-sparse result without feature selection
makes the model complex and hard to interpret. Therefore,
sparsity-inducing regularization is necessary for those imag-
ing biomarkers too.

In the MTSCCA model, we use the ℓ2,1-norm function
on the imaging QTs, i.e.

∥V∥2,1 =

q∑
i=1

∥∥∥vi
∥∥∥
2
=

q∑
i=1

√√√√ c∑
j=1

v2
ij . (5)

At first glance this is similar to that used to jointly
select individual features for SNPs, but it is employed here
based on a different motivation. Although collected based
on different imaging technologies, all modalities of imaging
QTs are measured from the same brain geography and have
been mapped onto the same brain atlas via the segmentation
and registration. Thus it is reasonable to assume equal
or similar weights for those imaging QTs associated with
the same brain area but attributed to different modalities.
Therefore, the ℓ2-norm imposed on vi penalizes those QTs
from the same brain area but different modalities together,
and then the ℓ1-norm is utilized to select them jointly.

2.3 The Efficient Optimization Algorithm
Now we can write the MTSCCA with penalties explicitly
exhibited, i.e.

min
uj ,vj

c∑
j=1

−u
⊤
j X

⊤
Yjvj (6)

s.t. ∥Xuj∥2
2 = 1, ∥Yjvj∥2

2 = 1,

∥U∥G2,1
≤ a, ∥U∥2,1 ≤ b1, ∥V∥2,1 ≤ b2, ∀j.

In order to solve Eq. (6), we modify the loss function to

min
uj ,vj

c∑
j=1

∥Xuj − Yjvj∥2
2 (7)

s.t. ∥Xuj∥2
2 = 1, ∥Yjvj∥2

2 = 1,

∥U∥G2,1
≤ a, ∥U∥2,1 ≤ b1, ∥V∥2,1 ≤ b2, ∀j,

which is equivalent to the original one since ∀j, ∥Xuj∥2
2 = 1

and ∥Yjvj∥2
2 = 1. Then we write its Lagrangian

L(U,V) =

c∑
j=1

[
∥Xuj − Yjvj∥2

2 + γ1(∥Xuj∥2
2 − 1) + γ2(∥Yvj∥2

2 − 1)
]

+β(∥U∥G2,1
− a) + λ1(∥U∥2,1 − b1) + λ2(∥V∥2,1 − b2),

(8)

where β, λ1, λ2, γ1 and γ2 are tuning parameters, and β, λ1

and λ2 are positive values which control the model sparsity.
By dropping the constants, we further have

L(U,V) =

c∑
j=1

[
∥Xuj − Yjvj∥2

2 + γ1 ∥Xuj∥2
2 + γ2 ∥Yjvj∥2

2

]
+β ∥U∥G2,1

+ λ1 ∥U∥2,1 + λ2 ∥V∥2,1

(9)

from the point of view of optimization.
This equation is difficult to solve since it is non-convex

in the loss function and non-smooth in penalty functions.
Fortunately, it is convex in U with V fixed. Moreover, this
objective is convex in vj with those remaining vk(k ̸= j)
and U fixed. On this account, we can solve this problem
via the alternative update rule which is widely used in the
optimizing community.

2.3.1 Updating U

We first show solving U with V fixed. Since all uj ’s are
associated withX, they can be jointly calculated via a multi-
task framework. Taking the derivative of L(U,V) with
respect to U and letting it be 0, we arrive at

−X
⊤Y + βD̃U + λ1D1U + γ

′
1X

⊤
XU = 0, (10)

where Y = [Y1v1 Y2v2 · · · Ycvc], 2D̃U is the subgradient
of ∥U∥G2,1

and 2D1U is that of ∥U∥2,1; D̃ is a block diagonal
matrix with entries being 1

2∥Uk∥F

Ik(k ∈ [1, K]), and Ik is an
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identity matrix of size equaling to the k-th group;D1 is also a
diagonal matrix with diagonal entries being 1

2∥ui∥2

(i ∈ [1, p]);
and γ′

1 = γ1 + 1.
Then we can easily have

(βD̃ + λ1D1 + γ
′
1X

⊤
X)U = X

⊤Y, (11)

and further

U = (βD̃ + λ1D1 + γ
′
1X

⊤
X)

−1
X

⊤Y. (12)

According to [5], this linear system in terms of U can be
efficiently solved via an iterative algorithm by alternatively
first updating D̃ and D1 and then U. However, if the number
of SNPs becomes larger and larger, this iterative algorithm
is still computationally expensive.
A fast implementation: The primary difficulty of the U-
update is the calculation of the covariance matrix X⊤X

when there are a large number of features of X. In this
paper, we use an approximation method to assure a fast
implementation of X⊤X via making use of the priori knowl-
edge, i.e. the inherent structure of the SNPs within the
genome. Fig. 1 is the illustration of the pairwise correlation
coefficients and LD values in r2 among a segment of SNPs
at different loci from chromosome 19. The SNPs naturally
form block structure along the diagonal, indicating a clear
pattern of intra-block high correlation and inter-block low
correlation. Since X is centered and normalized, X⊤X is
the same as the pairwise correlation coefficients as shown
in Fig. 1. This indicates that X⊤X holds block diagonal
structure too, and its off-block-diagonal elements are nearly
zero, i.e. X⊤

gk
Xgt ≈ 0 (k ̸= t). In a word, the information of

the covariance matrix are mainly carried by a series of block
matrices along the diagonal. Most importantly, the size of
these blocks are quite small compared with the original
covariance matrix attributing to the fact that the LD block is
usually much smaller than the number of SNPs (pk ≪ p) in
human genome [25].
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Fig. 1. Illustration of the pairwise correlation coefficients and LD values
(r2 ≥ 0.2) of SNPs from Chromosome 19 of an ADNI database. (1) The
three sub figures above show the correlation coefficients r among SNPs
with number of 1,000, and 5,000, and 13,000. (2) The three sub figures
below are the corresponding values of LD. All figures show that SNPs
clearly form groups and the block diagonal structure always exists as
the number of SNPs increases.

This structure has been widely used to guide the recov-
ery of group relationship among SNPs via the group Lasso
[26] or G2,1-norm [5]. However, they suffer from heavy
computational issues caused by the enormous SNPs, and
only when artificially assuming that X⊤X is an identity
matrix could alleviate this issue [6], [7], [13]. From Fig. 1,

we know that the identity assumption will inevitably lose
information carried by those blocks along the diagonal
[11]. In this study, we not only make use of this grouping
information to identify relationships among SNPs, but also
explore a fast and easy-to-implement method to handle the
computational issues.

… …

…

…

…

…

Fig. 2. Illustration of the simplified covariance matrix X⊤X, where
Xgk and Xgk+1 are two LD blocks, and X⊤

gk
Xgk is abbreviated as

(X⊤X)gk . Since the correlation between the two blocks are very low
(X⊤

gk
Xgk+1 ≈ 0 andX⊤

gk+1
Xgk ≈ 0), their covariance can be ignored.

Based on the analysis above, we propose that X⊤X can
be computationally simplified by a series of (X⊤X)gk (abbre-
viated from X⊤

gk
Xgk

) along the diagonal. We only omit those
off-block-diagonal elements which has little influence on the
performance. Fig. 2 is the illustration of the approximation
where the off-block-diagonal elements are replaced by zero.
It is clear that the primary information of X⊤X are well
preserved since we take into consideration the LD structure.
Therefore, compared with those methods using identity
assumption, our method preserves more information of the
data, and could be useful in identification of important
genetic markers [11]. Most importantly, other than those
methods calculating X⊤X via the brute force [11], we have a
very fast implementation which is supported by the follow-
ing theorem.
Theorem 1. If X⊤X is a block diagonal matrix, Eq.(11) can be

solved by

U = ⊕K
k=1U

k
=


U1

...
UK

 , (13)

U
k
= (βD̃gk

+ λ1D1gk
+ γ

′
1(X

⊤
X)gk )

−1
X

⊤
gk

[
Y1v1, · · · ,Ycvc

]
,

where D̃gk
is the k-th block of the diagonal matrix D̃;

D1gk
is the k-th block of D1; and ⊕ denotes the operation

that concatenates matrices vertically.

Proof 1. Since SNPs exhibit group structures, we denote X =

(· · · ,Xgk
, · · · ) with k being the index of the k-th group.

Then the covariance matrix X⊤X can be represented as

X⊤X =


. . .

(x⊤x)gk
. . .

 .

We have known that D1 and D̃1 are diagonal matrices,
indicating they both are diagonally separable. Then ac-
cording to Eq. (12), we have

U =

(
β


. . .

D̃gk

. . .

+ λ1


. . .

D1gk

. . .


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+γ
′
1


. . .

X⊤
gk

Xgk

. . .


)−1


...

X⊤
gk

...

Y

=


...

(βD̃gk
+ λ1D1gk

+ γ′
1(X

⊤X)gk )
−1X⊤

gk
Y

...



= ⊕K
k=1U

k
.

The advantages of this theorem are threefold. (1) The
time complexity of Eq. (13) is O(np2kK) compared with that
of Eq. (12) being O(np2), where pk is the size of the k-th
group, and p =

∑K
k=1 pk. This is a significant improvement

because that the LD block size is usually quite small, i.e.
pk ≪ p. (2) Benefiting from the computation effort reduc-
tion, the memory requirement is also saved a lot because
storingX⊤X is very memory expensive than storing several
(x⊤x)gk . (3) According to the proof, Eq. (13) is quite easy
to implement, demonstrating it is very promising in big
imaging genetic analysis. This is one of the contributions of
this study and might provide a powerful tool for genome-
wide and brain-wide bi-multivariate analysis.

2.3.2 Updating vj

Note that each vj is associated with eachYj separately. This
means that these vj ’s are not closely coupled such as uj ’s
and should be tackled with separately. Next we will show
how to solve vj with vk(k ̸= j) and U being fixed. Based
on Eq. (9), we take the derivative with respect to vj and set
it to zero

−Y
⊤
j Xuj + λ2D2vj + γ

′
2Y

⊤
j Yjvj = 0, (14)

which can be rewritten as

(λ2D2 + γ
′
2Y

⊤
j Yj)vj = Y

⊤
j Xuj , (15)

i.e.
vj = (λ2D2 + γ

′
2Y

⊤
j Yj)

−1
Y

⊤
j Xuj , (16)

where D2 is a diagonal matrix with its i-th entry being
1

2∥vi∥2
(i ∈ [1, q]) on the diagonal; and γ′

2 = γ2+1. Therefore,
each vj can also be solved alternatively through an iterative
algorithm.

Now that the building blocks regarding updating U and
each individual vj are created, we present the pseudocode
in Algorithm 1.

2.4 Convergence Analysis

We have the following theorem for Algorithm 1.

Theorem 2. Algorithm 1 decreases the objective value of Eq.
(9) in each iteration.

Proof 2. In order to prove this theorem, we need two
essential conclusions: (1) Eq. (12) decreases the objective
Eq. (9) in each iteration; and (2) Eq. (16) decreases the
objective Eq. (9) in each iteration.

Algorithm 1 Algorithm to solve Eq. (9)
Require:

X ∈ Rn×p, Yj ∈ Rn×q , j = 1, . . . , c, β, λ1, λ2, γ1, γ2
Ensure:

Canonical weights U and V.
1: Initialize U ∈ Rp×c, V ∈ Rq×c;
2: while not convergence do
3: Update D̃gk and D1gk

;
4: Solve U according to Eq. (13), and normalize uj to

∥Xuj∥22 = 1;
5: Update D2;
6: Solve vj(j = 1, · · · , c) according to Eq. (16), and

normalize vj to ∥Yjvj∥22 = 1;
7: end while

We first prove the conclusion (1). According to Eq. (12),
we have

c∑
j=1

∥∥∥Xu
(t+1)
j − Yjv

(t)
j

∥∥∥2
2
+ γ

′
1Tr(U

(t+1)⊤
X

⊤
XU

(t+1)
)

+ βTr(U
(t+1)⊤

D̃U
(t+1)

) + λ1Tr(U
(t+1)⊤

D1U
(t+1)

)

≤
c∑

j=1

∥∥∥Xu
(t)
j − Yjv

(t)
j

∥∥∥2
2
+ γ

′
1Tr(U

(t)⊤
X

⊤
XU

(t)
)

+ βTr(U
(t)⊤

D̃U
(t)

) + λ1Tr(U
(t)⊤

D1U
(t)

)

⇒
c∑

j=1

[∥∥∥Xu
(t+1)
j − Yjv

(t)
j

∥∥∥2
2
+ γ

′
1

∥∥∥Xu
(t+1)
j

∥∥∥2
2

]

+ β

K∑
k=1

∥∥∥Uk(t+1)
∥∥∥2
F

2
∥∥∥Uk(t)

∥∥∥
F

+ λ1

p∑
i=1

∥∥∥ui(t+1)
∥∥∥2
2

2
∥∥∥ui(t)

∥∥∥
2

≤
c∑

j=1

[∥∥∥Xu
(t)
j − Yjv

(t)
j

∥∥∥2
2
+ γ

′
1

∥∥∥Xu
(t)
j

∥∥∥2
2

]

+ β

K∑
k=1

∥∥∥Uk(t)
∥∥∥2
F

2
∥∥∥Uk(t)

∥∥∥
F

+ λ1

p∑
i=1

∥∥∥ui(t)
∥∥∥2
2

2
∥∥∥ui(t)

∥∥∥
2

.

(17)

According to Lemma 1 in [5],
∥∥∥Uk(t+1)

∥∥∥
F

−

∥∥∥∥Uk(t+1)
∥∥∥∥2
F

2

∥∥∥∥Uk(t)
∥∥∥∥
F

≤

∥∥∥Uk(t)
∥∥∥
F
−

∥∥∥∥Uk(t)
∥∥∥∥2
F

2

∥∥∥∥Uk(t)
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F

, and
∥∥∥ui(t+1)

∥∥∥
2
−

∥∥∥∥ui(t+1)
∥∥∥∥2
2

2
∥∥∥ui(t)

∥∥∥
2

≤
∥∥∥ui(t)

∥∥∥
2
−

∥∥∥∥ui(t)
∥∥∥∥2
2

2
∥∥∥ui(t)

∥∥∥
2

. Then applying two inequations to Eq. (17) with

respect to each group and individual feature, we have
c∑

j=1

[∥∥∥Xu
(t+1)
j − Yjv

(t)
j

∥∥∥2
2
+ γ

′
1

∥∥∥Xu
(t+1)
j

∥∥∥2
2

]

+ β
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F
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≤
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(t)
j − Yjv

(t)
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2
+ γ

′
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(t)
j
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2

]

+ β

K∑
k=1

∥∥∥Uk(t)
∥∥∥
F
+ λ1
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∥∥∥ui(t)
∥∥∥
2
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(18)

which can be rewritten in matrix form as
c∑

j=1

[∥∥∥Xu
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j − Yjv

(t)
j

∥∥∥2
2
+ γ1
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∥∥∥2
2

]
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(19)
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γ′
1 is replaced by γ1 since

∥∥∥Xuj
(t+1)

∥∥∥2
2

and
∥∥∥Xuj

(t)
∥∥∥2
2

have been normalized to 1. Thus the objective value is
decreased in each iteration regarding updating U.
Similarly, we have the following inequality.

c∑
j=1

[∥∥∥Xu
(t+1)
j − Yjv

(t+1)
j

∥∥∥2
2
+ γ2

∥∥∥Yjvj
(t+1)

∥∥∥2
2

]
+ λ2

∥∥∥V(t+1)
∥∥∥
2,1

≤
c∑

j=1

[∥∥∥Xu
(t+1)
j − Yjv

(t)
j

∥∥∥2
2
+ γ2

∥∥∥Yjvj
(t)
∥∥∥2
2

]
+ λ2

∥∥∥V(t)
∥∥∥
2,1

.

(20)

Now based on Eqs. (19-20), we have L(U(t+1),V(t+1)) ≤
L(U(t+1),V(t)) ≤ L(U(t),V(t)), which completes the proof.

According to Eq. (9), the objective is lower bounded by
0, and thus iteratively decreasing the objective value will
converge to a local optimum. The proposed algorithm runs
very fast owning to (1) its closed-form solution for each
update; and (2) the divide-and-conquer strategy which is
supported by Theorem 1.

3 RESULTS

3.1 Benchmarks and Experimental Setup

In order to evaluate the performance of the proposed multi-
task SCCA method, we choose the closely related mSCCA
[13] and the conventional two-view SCCA as benchmark
methods. A common problem of the two-view SCCA and
mSCCA is that they suffer from heavy computational and
memory requirement issues because they cannot handle
the large covariance matrix calculation. To make the com-
parison available, based on Theorem 1, we implement the
fast two-view SCCA and the fast mSCCA. This yields the
three benchmark methods in this study, confirming another
contribution of this study.

All the methods contain parameters that should be fine
tuned before running experiments. We apply the nested 5-
fold cross-validation in this work. Specifically, those tun-
ing parameters were determined in the inner loop where
a group of them generating the highest mean correlation
coefficients, i.e. CV(λ, β, γ) = 1

5

∑5
j=1 Corr(X−juj ,Y−jvj),

will be chosen as the optimal parameters, where X−j and
Y−j are the j-th subset of the inner testing set, and uj

and vj are the canonical weights estimated from the inner
training set. Once determined, these parameters are used
in the external loop to generate the final results. Before
tuning parameters, we use some heuristic strategy to reduce
the computation burden since blindly tuning them by grid
search is computational intensive. For all methods, γ1 and
γ2 are used to address the scaling issue when calculating the
correlation coefficient. On this account, fixing the denomina-
tor to be 1 or other integers will just affect the magnitude of
U and V, and the relative relationship among each element
remains the same. For example, suppose u1,1 = 5, u1,2 = 1
and ∥Xu1∥22 = 20 (∥u1∥22 = 20 for two-view SCCA and
mSCCA), tuning ∥Xu1∥22 = 1 will lead to u1,2 = 0.25

and u1,2 = 0.05; while tuning ∥Xu1∥22 = 10 will lead
to u1,1 = 2.5 and u1,2 = 0.5. This will not affect the
feature selection as u1,1 will always be selected with higher
priority than u1,2. Therefore, we set γ1 = γ2 = 1 in this
paper. Generally, too large parameters yield over-penalized
results while too small ones yield less-penalized results. To

avoid this issue, we tune the remaining parameters λ1, λ2,
β from a moderate range 10i (i = −5,−4, · · · , 0, · · · , 4, 5)
via the grid search strategy. Finally, in order to make the
results stable, we repeat each experiment 100 times and
show the average results. In the experiments, all methods
are stopped when both maxi

∣∣∣u(t+1)
i − u

(t)
i

∣∣∣ ≤ ϵ (∀ ui)

and maxj

∣∣∣v(t+1)
j − v

(t)
j

∣∣∣ ≤ ϵ (∀ vj) are satisfied, where ϵ

is the tolerable error. We empirically set ϵ = 10−5 from
experiments in this paper.

3.2 Simulation Study
This section present the comparison results on the synthetic
data. We generate four data sets with different number of
samples and features, sparsity levels and noise levels to
assure a thorough comparison. The first three data sets are
generated using the same ground truth but with different
noise strengthes. The X, Yj (j = 2) and z of them are all
with n = 80, p = 120, q1 = 100 and q2 = 100. This could
help show the performance when treating with different
noises. The fourth data set is created to access the per-
formance under high-dimensional situation, and n = 500,
p = 2, 000, q1 = 1, 000, q2 = 1, 000 respectively. The details
of each data set are described as follows.
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Fig. 3. Canonical weights u (mean value) estimated on synthetic data.
The first row is the ground truth, and each remaining row corresponds to
an SCCA method: (1) Two-view SCCA, (2) mSCCA (Multi-view SCCA),
(3) MTSCCA (Multi-task SCCA). In each subfigure, the horizontal axis
represents the indices of each u, and the vertical axis represents the
estimated weight value.

• Data 1: We first set u = (0, ..., 0︸ ︷︷ ︸
60

, 1, ..., 1︸ ︷︷ ︸
20

, 0, ..., 0︸ ︷︷ ︸
40

)⊤,

v1 = (0, ..., 0︸ ︷︷ ︸
25

, 2, ..., 2︸ ︷︷ ︸
25

, 0, ..., 0︸ ︷︷ ︸
50

)⊤ and v2 =

(0, ..., 0︸ ︷︷ ︸
25

, 3, ..., 3︸ ︷︷ ︸
25

, 0, ..., 0︸ ︷︷ ︸
50

)⊤. Then we generate a ran-

dom latent vector µ of length n and normalize it
to unit length. The data matrix X is created by
xℓ,i ∼ N(µℓui, σx), where σx = 5 denotes the
noise strength. Similarly, Yj is created by (yℓ,i)j ∼
N(µℓvi,j , σyj ) with σy1 = 5 and σy2 = 5.

• Data 2 - Data 3: These two data sets are created with
the same ground truth as the first one with different
noises, i.e. σx = σy1 = σy2 = 1 for Data 2 and σx =
σy1 = σy2 = 0.1 for Data 3. Therefore, the correlation
coefficients of these three data sets are different, and
that of the first data set is the smallest and that of the
third one is the highest.
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TABLE 1
Performance comparison on synthetic data. Training and testing canonical correlation coefficients (mean±std) of 5-fold cross-validation are shown

for SCCA, mSCCA and MTSCCA. The best values are shown in boldface.

Training Results Testing Results
SCCA mSCCA MTSCCA SCCA mSCCA MTSCCA

Data 1 0.28±0.06 0.40±0.10 0.99±0.00 0.25±0.14 0.16±0.10 0.23±0.16
Data 2 0.59±0.06 0.49±0.06 0.63±0.06 0.31±0.15 0.25±0.19 0.41±0.18
Data 3 0.95±0.01 0.95±0.01 0.96±0.01 0.91±0.04 0.91±0.05 0.95±0.03
Data 4 0.89±0.02 0.89±0.02 0.99±0.00 0.85±0.05 0.85±0.06 0.97±0.01
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Fig. 4. Canonical weights V (mean value) estimated on synthetic data. The first row is the ground truth, and each remaining row corresponds to
an SCCA method: (1) Two-view SCCA, (2) mSCCA (Multi-view SCCA), (3) MTSCCA (Multi-task SCCA). In each subfigure, the horizontal axis
represents the indices of vj (j = 1, 2), and the vertical axis represents the estimated weight value.

• Data 4: In this data set, u =
(0, ..., 0︸ ︷︷ ︸

500

, 1, ..., 1︸ ︷︷ ︸
100

, 0, ..., 0︸ ︷︷ ︸
400

, 2, ..., 2︸ ︷︷ ︸
100

, 0, ..., 0︸ ︷︷ ︸
900

)⊤,

v1 = (0, ..., 0︸ ︷︷ ︸
200

, 1.5, ..., 1.5︸ ︷︷ ︸
300

, 0, ..., 0︸ ︷︷ ︸
500

)⊤, v2 =

(0, ..., 0︸ ︷︷ ︸
200

, 2.5, ..., 2.5︸ ︷︷ ︸
300

, 0, ..., 0︸ ︷︷ ︸
500

)⊤, and σx = σy1 =

σy2 = 0.1. The data matrix X is created by
xℓ,i ∼ N(µℓui, σx), and Yj is generated by
(yℓ,i)j ∼ N(µℓvi,j , σyj ), with the random latent
vector µ of length n.

We first show the training and testing canonical cor-
relation coefficients (CCCs) in Table 1. On the first three
data sets, all methods obtain a good score when the true
CC is high, while perform poorly (overfitting) when the
true CC is excessively low due to the high percentage of
noise. MTSCCA identifies the highest training CCCs among
all three unsupervised methods, including both two-view
SCCA and mSCCA. This demonstrates that MTSCCA per-
forms better than the two single-task based SCCA methods.
In Data 4, we observe that MTSCCA obtains higher training
and testing CCCs than two-view SCCA and mSCCA in this
high-dimensional data set. This indicates that, owing to the
multi-task modeling strategy, the ability of identifying bi-
multivariate association can be improved.

In addition, the feature selection ability is also of great
interest and importance. In Fig. 3, we show the scatter of
the estimated u and vj ’s. For the two-view SCCA, each
uj is calculated independently from each single-task SCCA,
and u is obtained by averaging uj ’s. The u of MTSCCA
is also obtained by averaging uj ’s associating with three
SCCA tasks. There are two estimated vj ’s for all methods
and we show them separately in Fig. 4. In order to show the
performance clearly, the ground truthes are also presented

in the figure (first row). Within each subfigure, the horizon-
tal axis represents the indices and the vertical axis represents
the weight values. A feature with a larger canonical weight
(in absolute value) contributes more to the bi-multivariate
correlation. We observe that all methods cannot find out the
correct locations of signals in the first data owing to the
low signal-to-noise ratio. Combining the results of the first
three data sets together, all their performances improve from
the first data set to the third one. MTSCCA holds the best
canonical profiles being consistent with the ground truthes,
showing its better performance in feature selection than the
two-view and multiple-view SCCA. In Data 4 where the fea-
ture dimensionality is high, MTSCCA always identifies cor-
rect signal locations. To make the comparison more formal,
Table 2 and 3 show the sensitivity and specificity in terms of
canonical weights u and vj ’s. Both metrics are calculated as
follows. Features are selected based on their absolute weight
values, and the larger the |ui| (or |vi|) is, the more relevant
to the canonical correlation. Generally, given a predefined
threshold, those features with larger-than-threshold values
are selected. However, it is hard to predefine an appropriate
threshold. To overcome this issue, in this paper, the sensitiv-
ity is calculated via #true positive in the top K selected features

K
where K is the number of non-zero features of the
ground truth. Similarly, the specificity is calculated by

K
#selected features required to cover the ground truth . The results
show that all methods obtain good sensitivity and specificity
across these simulated data sets. MTSCCA performs slightly
better than those single-task based SCCA methods owing
to the multi-task modeling strategy. It is worth noting that
in the original implementations, both two-view SCCA and
multi-view SCCA fail since they cannot treat the large
matrix calculation on the same platform as MTSCCA does.
By incorporating Theorem 1, the two methods become fea-
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TABLE 2
Comparison of the sensitivity of canonical weights on synthetic data.

u v1 v2
Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4

SCCA 0.25 0.45 1.00 1.00 0.88 1.00 0.85 0.99 0.44 0.56 0.84 1.00
mSCCA 0.20 0.45 1.00 1.00 0.60 0.84 0.96 1.00 0.76 0.92 0.96 1.00
MTSCCA 0.05 0.55 1.00 1.00 0.32 0.56 1.00 1.00 0.32 0.64 1.00 1.00

TABLE 3
Comparison of the specificity of canonical weights on synthetic data.

u v1 v2
Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4 Data 1 Data 2 Data 3 Data 4

SCCA 0.85 0.89 1.00 1.00 0.77 0.83 0.96 1.00 0.81 0.85 0.95 1.00
mSCCA 0.84 0.89 1.00 1.00 0.87 0.95 0.99 1.00 0.92 0.97 0.99 1.00
MTSCCA 0.81 0.91 1.00 1.00 0.77 0.85 1.00 1.00 0.77 0.88 1.00 1.00

sible to high-dimensional data sets. The runtime of each
method is shown in Table 4, and there is no significant
difference between these methods based on Theorem 1. This
again demonstrates the effectiveness and practice of our fast
implementation strategy.

TABLE 4
Runtime comparison of synthetic data.

Runtime
SCCA mSCCA MTSCCA

Data 1 0.19±0.24 0.19±0.24 0.19±0.23
Data 2 0.15±0.16 0.16±0.18 0.18±0.22
Data 3 0.11±0.18 0.17±0.18 0.13±0.15
Data 4 1.49±5.58 2.59±5.52 2.59±5.86

In summary, this simulation study using data sets with
diverse characteristics demonstrates that MTSCCA is effec-
tive in bi-multivariate association identification with mul-
tiple data modalities. Moreover, MTSCCA identifies the
best canonical loading profiles which is consistent with the
ground truth compared to the single-task SCCA methods.
In addition, it also reveals that the group structure can not
only help prompt the identification performance, but also
help reduce the time effort in high-dimensional scenario in
multi-modal bi-multivariate association analysis.

3.3 Real Neuroimaging Genetics Study

The genotying and brain imaging data used in this article
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). One primary
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see www.adni-
info.org.

TABLE 5
Participant characteristics.

HC MCI AD
Num 182 292 281
Gender(M/F, %) 47.16/52.84 54.52/45.48 47.37/52.63
Handedness(R/L, %) 90.91/9.09 87.35/12.65 91.50/8.50
Age (mean±std) 72.97±6.00 71.81±7.62 72.38±7.31
Education (mean±std) 16.52±2.58 15.97±2.78 16.14±2.78

The neuroimaging data were from 755 non-Hispanic
Caucasian participants, including 281 AD, 292 MCI and 182
healthy control (HC). They were 18-F florbetapir PET (AV-
45) scans, fluorodeoxyglucose positron emission tomogra-
phy (FDG) scans, and structural MRI scans which were
downloaded from the ADNI database (adni.loni.usc.edu).
Details of this data set are exhibited in Table 5. The multi-
modality imaging data were aligned to each participant’s
same visit. The structural MRI scans were processed with
voxel-based morphometry (VBM) via SPM [27]. Generally,
all scans had been aligned to a T1-weighted template image,
segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) maps, normalized to the standard
Montreal Neurological Institute (MNI) space as 2×2×2 mm3

voxels, and had been smoothed with an 8mm FWHM ker-
nel. The FDG-PET and AV45-PET scans were also registered
into the same MNI space by SPM. We then subsampled the
whole brain and generated 116 regions of interest (ROI) level
measurements based on the MarsBaR automated anatomical
labeling (AAL) atlas. They were the mean gray matter
densities for structural MRI, amyloid values for AV45 scans
and glucose utilization for FDG scans. Using the regression
weights derived from the healthy control participants, these
imaging measures were pre-adjusted to remove the effects
of the baseline age, gender, education, and handedness.

The genotyping data of the same population were down-
loaded from the LONI website. They were genotyped using
the Human 610-Quad or OmniExpress Array (Illumina, Inc.,
San Diego, CA, USA), and preprocessed using the standard
quality control (QC) and imputation steps. The QC criteria
for the SNP data include (1) call rate check per subject
and per SNP marker, (2) gender check, (3) sibling pair
identification, (4) the Hardy-Weinberg equilibrium test, (5)
marker removal by the minor allele frequency and (6) popu-
lation stratification. In second pre-processing step, following
the quality-controlled SNPs, those missing genotypes were
imputed using the MaCH software [28]. Among all human
chromosomes, the chromosome 19 sequence contains the
most number of genes, in which the gene density is more
than double the genome-wide average [29], [30]. In addition,
this chromosome also includes the well-known AD risk
genes such as APOE, TOMM40 and ABCA7. Therefore, a
bi-multivariate association study between this chromosome
and whole brain imaging markers could be of great interest,
and has potential to yield interesting AD risk factors. As
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a result, all the SNPs from chromosome 19 were included,
i.e. 152,787 SNPs were involved in this study. Among these
enormous SNPs, most of them might be irrelevant to AD,
while only a few of them could be relevant via influencing
the intermediate brain imaging measurements. The aim is
to identify this small subset of SNPs in chromosome 19
correlating to imaging markers and AD.

3.4 Improved Bi-multivariate Association

In this subsection we evaluate the proposed method in
identifying the bi-multivariate associations between one
genetic data and three sets of imaging phenotypes. Thus
there will be three pairs of associations, and we denote
them as SNPs-AV45, SNPs-FDG and SNPs-VBM for the
sake of description. For the three SCCA tasks, the proposed
MTSCCA learns them together and generate a canonical
weights matrixU for SNPs and one canonical weight vector
vj for AV45, FDG and VBM. We then calculate three canon-
ical correlation coefficients (CCCs) in terms of SNPs-AV45,
SNPs-FDG and SNPs-VBM separately. The two-view SCCA
naturally yields three CCCs for these three tasks. Though
the mSCCA only learns one canonical weight vector for
SNPs, we use it three times to generate three CCCs with
respect to the three tasks.
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Fig. 5. Performance comparison: The mean and standard deviation
(SD) of the canonical correlation coefficients (CCCs) obtained from 5-
fold cross-validation trials are plotted, where each error bar indicates
±0.5SD. The subtitle SNPs-AV45 means the CCCs are calculated be-
tween the SNPs data and the AV45-PET data.

TABLE 6
The p-values of t-tests for CCCs comparison between MTSCCA and

Two-view SCCA and mCCA. The ’-’ in parenthesis means that
MTSCCA loses on this trial.

SNPs-AV45 SNPs-FDG SNPs-VBM
Training

Two-view SCCA 5.46E-24 3.39E-25 6.00E-15 (-)
mSCCA 7.98E-27 1.51E-27 4.77E-18

Testing
Two-view SCCA 1.46E-23 8.60E-43 4.99E-24
mSCCA 3.71E-27 3.91E-31 4.80E-22

Fig. 5 shows the CCCs of the SNPs data with each
imaging QTs data, where CCCs estimated from SNPs-AV45,
SNPs-FDG and SNPs-VBM are separately shown. In this
figure, both the training CCCs and testing CCCs, as well
as their standard deviations (SD) are presented. By chang-
ing the number of selected features (10, 20, · · · , 100 in this
work) for both SNPs and imaging QTs, the CCCs can be

generated and then these curves are plotted. It is clear
that the proposed MTSCCA obtains higher CCCs on both
training and testing sets across all imaging modalities except
for training results of SNPs-VBM. After investigation, this
could be that the two-view SCCA runs into overfitting since
it holds high training CCCs and quite low CCCs simulta-
neously. We also observe that mSCCA always obtains the
lowest CCCs on both training and testing sets across three
tasks in this data. This is very interesting as it seems to
violate the truth because more data (three different imaging
QTs here) ought to provide more information. The reason
might attribute to its modelling strategy. Demanding one
set of features (SNPs) being associated with three sets of
features (imaging QTs) simultaneously could be overstrict
and thus harm the performance. This is also the reason that
two-SCCA generally holds better CCCs than mSCCA.

TABLE 7
Runtime comparison with the mean±SD being presented.

Runtime (seconds)
Two-view SCCA mSCCA MTSCCA

342±0.37 114±0.30 361±0.93

In addition, we calculate the p-values between our
method and two competing methods and show them in
Table 6, where the ’-’ in parenthesis indicates that MTSCCA
fails. The p-values are all reach the significance level which
means that our method is significantly better than both com-
peting methods. These results in terms of CCCs indicate that
the proposed joint bi-multivariate learning method indeed
has better association identification capability than those
SCCAmethods, including both two-view andmultiple-view
ones. Table 7 shows the runtime in seconds of each method,
where that of the two-view SCCA are summation of three
two-view tasks. The runtime results indicate that all three
methods run fast on this large data set. This attributes to
the grouping strategy used in the implementation according
to Theorem 1. In contrast, both competing methods are
incapacitated in their original implementations since they
cannot manipulate a big matrix with hundreds of thousands
of features included. This again assures our contribution to
accelerate both our method and conventional methods via
making use of the grouping structures.

3.5 Genetic Marker Selection

TABLE 8
Top ten SNPs selected by integrated canonical weights.

Two-view SCCA mSCCA MTSCCA
rs429358 rs138339429 rs429358
rs10414043 rs141300647 rs56131196
rs147711004 rs58501143 rs12721051
rs146291812 rs17363184 rs4420638
rs623264 rs623264 rs111789331
rs7256200 rs11881833 rs66626994
rs186235601 rs7253576 rs146275714
rs73052335 rs1749316 rs41289512
rs66626994 rs139402102 rs147711004
rs415966 rs4605289 rs10119

Apart from the CCCs, the selected features in terms of
SNPs are a major concern. This can help reveal those SNPs
being highly related to imaging QTs and AD status at the
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same time. We show the top ten selected SNPs according to
the canonical weight values of each individual method. In
order to make the selection results stable, we average the
canonical weight matrix into a vector and then choose the
top ten SNPs based on their absolute values for MTSCCA.
The top ten markers of two-view SCCAmethod are calculat-
ed via averaging the three separate canonical weights. Those
of mSCCA are obtained by its canonical weight vector. The
results of selected SNPs are shown in Table 8. Owning to
the jointly learning paradigm, the proposedMTSCCA yields
a surprisingly meaningful result with respect to selected
features (SNPs). As expected, the notable AD risk markers
rs429358 gains the highest weight value, and all of the
remaining nine SNPs of MTSCCA, i.e. rs56131196 (APOC1),
rs12721051 (APOC1), rs4420638 (APOC1), rs111789331 (4.5
kb of APOC1), rs66626994 (5.6 kb of APOC1), rs146275714
(PVRL2), rs41289512, rs147711004 (71 kb of APOE) and
rs10119 (TOMM40), have been reported to show increasing
risk of AD in previous studies [31], [32], [33]. This indicates
the ability of MTSCCA in identifying meaningful SNPs
from massive genetic markers. The two-view SCCA also
identifies the rs429358 as its first important SNPs, and five
other AD related SNPs (rs10414043, rs147711004, rs7256200,
rs73052335 and rs66626994) have been reported previously.
But it identifies four SNPs that are not reported by now
and thus further investigation should be taken place. The
mSCCA performs unacceptably in this comparison since it
does not find out rs429358. Moreover, except for the marker
rs623264, all identified SNPs of mSCCA have not been
reported yet in the current stage. In summary, the results in
terms of selected SNPs show that MTSCCA performs better
than both competing methods. This reveals that MTSCCA
could be a suitable tool and very helpful in discovering
meaningful genetic markers in a very large scenario.
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Fig. 6. Comparison of canonical weights in terms of each imaging
modality across five trials. Each row corresponds to a SCCA method:
(1) Two-view SCCA; (2) mSCCA; (3) MTSCCA. Within each panel, there
are three rows corresponding to three type of imaging QTs, i.e. AV45,
FDG and VBM.

3.6 Brain Imaging Marker Selection
Besides the genetic markers, as a bi-multivariate method,
MTSCCA also selects features from the multiple imaging
QTs. Fig. 6 presents the canonical weights of every method
on each imaging modality (AV45, FDG and VBM) across the
five trials. We observe that all those imaging markers with
nonzero coefficients have been shown to be associated with
the progression of AD. To make it clear, we show the top
ten selected QTs of each imaging modal data of MTSCCA
in Table 9. There are five markers (the right angular gyrus,

the left posterior cingulum cortex, the left hippocampus,
the left olfactory cortex and the vermis 8) reported in all
three modalities owning to the joint feature selection via the
ℓ2,1-norm regularization. Most importantly, these markers
are have all been documented to be related to AD in
the literature independently. For example, the significant
reduction of glucose metabolism in the right angular gyrus
has been observed in aging-associated cognitive decline
(AACD) patients [34]. The declined metabolism in the left
posterior cingulum cortex is an early sign of Alzheimer’s
disease [35]. This brain tract is also connected to the hip-
pocampus which is a notable sign of AD and MCI [36], [37].
The remaining left olfactory cortex [38] and vermis 8 [39],
have been separately validated to be a reflection of AD or
MCI. These results indicate that MTSCCA could find out
meaningful imaging QTs markers that are associated with
the status of dementia. The mSCCA also identifies a few of
AD related markers such as the hippocampus. The results
of the two-view method are rambling and thus lack of
biological meanings. To summarize, the proposed MTSCCA
can not only obtain higher CCCs than conventional SCCA
methods, but also yield better canonical weights for both
SNPs and imaging QTs. The top ten selected SNPs and
imaging QTs are highly correlated with each other, as well
as AD status, which demonstrates that MTSCCA could be
very promising in brain imaging genetics.

TABLE 9
Top ten imaging QTs selected by canonical weights of each imaging

modality of MTSCCA.

AV45 FDG VBM
Frontal Med Orb Left Cingulum Post Left Postcentral Left
Angular Right Angular Right Precentral Left
Cingulum Post Left Hippocampus Left Angular Right
Hippocampus Left Vermis 8 Cingulum Post Left
Olfactory Left Angular Left Vermis 8
Frontal Mid Right Amygdala Left Thalamus Right
Cingulum Ant Left Olfactory Left Rolandic Oper Right
Rolandic Oper Right Temporal Mid Right Frontal Med Orb Left
Temporal Mid Right Precentral Left Hippocampus Left
Vermis 8 Temporal Mid Left Olfactory Left

4 CONCLUSION

High-throughput genotyping technique and neuroimaging
techniques provide us a large amount of biomedical data,
and finding out their bi-multivariate associations is impor-
tant. In this paper, we have proposed a novel multi-task
sparse canonical correlation analysis (MTSCCA) framework
and apply it to imaging genetics with multi-modal brain
imaging QTs. Different from existing SCCA, MTSCCA can
incorporate multiple sets of imaging modalities data into a
single integrative model. Furthermore, MTSCCA is a multi-
ple bi-multivariate method and thus has better modeling
capability than both SCCA and MTL regression. A fast
optimization algorithm is proposed which avoids calculat-
ing the large covariance and its inverse. The algorithm is
guaranteed to converge to a local optimum, and runs very
fast with hundreds of thousands of features involved.

We compared MTSCCA with the conventional two-view
and multi-view SCCA on an ADNI cohort. Our method ob-
tained better performance than the benchmarks with higher
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correlation coefficients and clearer canonical weight pattern-
s. MTSCCA succeeds in identifying a small set of SNPs from
enormous genetic markers from the 19th chromosome. It is
worth noting that all top ten selected SNPs of MTSCCA are
AD risk factors. In addition, the canonical weight patterns
of imaging QTs were also of great success. The identified
imaging QTs were highly correlated to AD or MCI. These
promising results demonstrated that the proposed multi-
task SCCA framework could be a powerful tool in big
brain imaging genetics. Since a GWAS based bi-multivariate
analysis is of much concern, in the future work, we will keep
looking into the merit of MTSCCA and use it to genemo-
wide brain-wide imaging analysis.
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