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Abstract 

The accurate diagnosis of Alzheimer’s disease (AD) and its early stage, e.g., mild cognitive 

impairment (MCI), is essential for timely treatment or possible intervention to slow down AD 

progression. Recent studies have demonstrated that multiple neuroimaging and biological 

measures contain complementary information for diagnosis and prognosis. Therefore, 

information fusion strategies with multi-modal neuroimaging data, such as voxel-based 

measures extracted from structural MRI (VBM-MRI) and fluorodeoxyglucose positron 

emission tomography (FDG-PET), have shown their effectiveness for AD diagnosis. However, 

most existing methods are proposed to simply integrate the multi-modal data, but do not make 

full use of structure information across the different modalities. In this paper, we propose a 

novel multi-modal neuroimaging feature selection method with consistent metric constraint 

(MFCC) for AD analysis. First, the similarity is calculated for each modality (i.e. VBM-MRI 

or FDG-PET) individually by random forest strategy, which can extract pairwise similarity 

measures for multiple modalities. Then the group sparsity regularization term and the sample 

similarity constraint regularization term are used to constrain the objective function to conduct 

feature selection from multiple modalities. Finally, the multi-kernel support vector machine 

(MK-SVM) is used to fuse the features selected from different models for final classification. 

The experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) show that 

the proposed method has better classification performance than the start-of-the-art 

multimodality-based methods. Specifically, we achieved higher accuracy and area under the 

curve (AUC) for AD versus normal controls (NC), MCI versus NC, and MCI converters (MCI-
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C) versus MCI non-converters (MCI-NC) on ADNI datasets. Therefore, the proposed model 

not only outperforms the traditional method in terms of AD/MCI classification, but also 

discovers the characteristics associated with the disease, demonstrating its promise for 

improving disease-related mechanistic understanding. 

 
Keywords: Similarity measures, Multi-modal neuroimaging, Feature selection, Alzheimer’s 
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Introduction 
In recent years, the incidence of brain diseases worldwide has been rising. Alzheimer's 

disease (AD) is one of the most common brain diseases, and its clinical manifestations are 

mainly memory impairment and loss of reasoning cognitive ability, accompanied by language 

and movement disorders. At present, AD has become the fifth leading cause of death in the 

elderly. In a 2018 report from the Alzheimer's Association of the United States, National Center 

for Health Statistics has shown the statistics information on the rate of change in mortality from 

multiple risky diseases in the United States. That is, between 2000 and 2015, the number of 

lethal deaths of many risk diseases has achieved negative growth, while the incidence of AD 

has increased by 123% (Association, 2018). According to another survey report (Association, 

2017), one case of Alzheimer's disease will be diagnosed every 33 seconds in 2050, with nearly 

one million new cases each year. AD has become one of the major diseases that endanger the 

health of the elderly and affect the sustainable development of society. However, the efficacy 

of drugs for the treatment of AD has been limited to date, and no treatment has been reported 

to reverse or prevent the progression of AD. 

Therefore, the measurement of sensitive markers in the early stages of the disease can help 

researchers and clinicians develop new treatments and test their effectiveness. Recently, various 

measurements such as structural atrophy, pathological amyloid deposition, and metabolic 

changes have already been shown to be sensitive to the diagnosis of AD and MCI. 

Neuroimaging techniques (Rathore et al., 2017; Sui et al., 2012; Ye et al., 2011) provide great 

help for the discovery of AD-related brain regions of interest (ROIs), which is a powerful 

instrument for the diagnosis of neurodegenerative diseases. For example, voxel-based measures 

extracted from structural MRI (VBM-MRI) and fluorodeoxyglucose positron emission 

tomography (FDG-PET), have been shown to be useful for investigating the neurophysiological 

features of AD and mild cognitive impairment (MCI) (Chetelat et al., 2003; Cohen and Klunk, 

2014; Foster et al., 2007; Zhang et al., 2015).  

In recent decades, machine learning and pattern recognition methods, including sparse 

learning, graph theory, and classification, have been widely used in neuroimaging analysis for 



AD and MCI diagnosis (Lei et al., 2017; Sanz-Arigita et al., 2010; Wang et al., 2018; Ye et al., 

2011). However, some existing studies focus on extracting features from a single modality. For 

example, the researchers extracted some features from certain ROI, such as the hippocampus 

on structural MRI (Frisoni et al., 2010) for the classification of AD (Gerardin et al., 2009; Wang 

et al., 2006). While in addition to structural MRI, PET images can also be used for classification 

of AD and MCI (Chetelat et al., 2003; Cohen and Klunk, 2014; Foster et al., 2007; Hinrichs et 

al., 2009). 

As the brain has very complex structure and function, acquiring data from single modality 

does not provide sufficient feature information for diagnosis. In recent years, with the 

development of neuroimaging technology, multi-modal data can be collected during various 

examinations of subjects, providing a source of data for the diagnosis of AD. Different modality 

data can provide brain information from different perspectives. For example, structural MRI 

provides information related to brain tissue types, while PET measures glucose brain metabolic 

rate. Numerous studies have shown that (Ahmed et al., 2017; Gray et al., 2013; Lei et al., 2017; 

Liu et al., 2015b; Teipel et al., 2015; Tong et al., 2017; Zhang et al., 2011; Zhu et al., 2015) a 

variety of neuroimaging data can provide complementary information, and the information 

fusion from different modalities can enhance diagnostic performance. Therefore, the accuracy 

of using multi-modal data for AD diagnosis is better than that of single modality. For example, 

Zhang et al. (Zhang et al., 2011) and Liu et al. (Liu et al., 2015b) used two modal data (including 

MRI and PET) for AD diagnosis. Lei et al. (Lei et al., 2017) used MRI, PET and cerebrospinal 

fluid (CSF) for regression and classification of AD. Tong et al.(Tong et al., 2017) used MRI, 

PET, CSF and genes for AD/MCI classification. 

Although the current AD diagnostic methods involved with multi-modal data have good 

effects, there are still some problems that may limit the classification performance. When we 

extract features from neuroimaging, there are a lot of redundancy or unrelated features, which 

will lead to poor classification performance. Therefore, how to remove redundant or unrelated 

features is a very important step in AD diagnosis. At this stage, there are some feature selection 

methods to detect the brain features associated with AD. For example, Liu et al. (Liu et al., 

2016a; Liu et al., 2015a) used the hierarchical relationship between different template data to 

establish a structurally constrained integrated learning AD diagnostic prediction model. Peng 

et al. (Peng et al., 2018) used ݈ଵ,௣-norm to construct the sparsity-constrained objective function 

and projected it into a new space for AD diagnosis classification. Zhu et al.(Zhu et al., 2015)  

combined two subspace learning methods, namely linear discriminant analysis and the 

projection is locally maintained to select features in the brain image. Jie et al. (Jie et al., 2015) 

proposed a manifold regularization multi-task feature learning method, which uses multi-task 

learning and manifold-based Laplacian regularization to maintain the intrinsic correlation 

between multiple modal data, thereby adding more discriminative features. Zu et al. (Zu et al., 



2016) proposed a label-aligned multi-task feature learning method which adds a new label-

aligned regularization term to the objective function of standard multi-task feature selection to 

ensure that all multi-modal subjects with the same class labels should be close in the new 

feature-reduced space. 

However, one drawback of existing methods is that they do not take full advantage of the 

similarity relationships between samples. This relationship is a significant prior knowledge, 

because there are certain differences and commonalities between samples, and it is important 

to make rational use of this information. In many practical problems, it is critical to represent 

structural information between samples consistently. As the data types of different modalities 

are different, if the complex relationship between samples is expressed by Euclidean distance 

or other simple metrics, the structure or topology information will be lost. In simple terms, a 

reasonable representation of the complex relationship between samples facilitates the selection 

of more distinguishing features and further improves subsequent classification performance. In 

many applications, researchers have used a similarity matrix generated by random forests 

(Breiman, 2001) to represent complex relationships between samples. For example, Tong et al. 

(Tong et al., 2017) constructed a graph using a similarity matrix and then merged the multi-

modal data using a graph fusion method. Gray et al. (Gray et al., 2013) used the similarity 

between samples to construct a manifold learning model and then used random forests for 

classification. Here, we use the random forest approach to provide similarity measures for 

multi-modal data. 

In this paper, we propose a novel multi-modal neuroimaging feature selection method with 

consistent metric constraint (MFCC). The unique loss function is designed to include a 

regularization term based on the similarity of multi-modal samples, which clearly shows that 

the samples have a similarity relationship in each modality. Specifically, our proposed method 

consists of three steps: 1) calculating the similarity between samples, 2) multi-modal feature 

learning based on sample consistency metrics, and 3) multi-modal fusion and classification. We 

first construct a similarity matrix for each modality through a random forest, reflecting the 

similarity relationship between the samples. Then we treat feature learning in each modality as 

a single learning task and transform multi-modal classification tasks into multi-task learning 

(MTL) problems. MTL uses the correlation between tasks to learn multiple tasks and integrate 

information for each task, thus enhancing single-task learning performance. Specifically, we 

introduce a ݈ଶ,ଵ-norm for joint selection features, which can ensure that different morphological 

features of the same brain region will be selected in different modalities. We then add 

regularization terms based on sample similarity to the standard multi-task objective function. 

Finally, we use a multi-kernel support vector machine (MK-SVM) to fuse the selected features 

for final classification. In order to verify the proposed method, we conduct experimental 

verification on ADNI-1 and ADNI-2 datasets. The results show that our proposed method is 



more accurate than the start-of-the-art methods. 

Materials and workflow 
Datasets 

In this study, we performed experimental validation using the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) datasets. ADNI was launched in 2003 by the National Institute 

on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug 

Administration, private pharmaceutical companies and non-profit organizations, with a $60 

million five-year public-private partnership. 202 subjects with VBM-MRI and FDG-PET brain 

imaging in ADNI-1 were used herein, including 51 AD subjects, 52 NC and 99 MCI subjects. 

99 MCI patients can be further divided into two types, including 43 MCI converters and 56 

MCI non-converters. In particular, MCI converters (MCI-C) will develop into AD patients 

within 18 months, while MCI non-converters (MCI-NC) will remain in its original state. Table 

1 lists the demographic characteristics of subjects in the ADNI-1 dataset.  

 

Table 1. Demographic characteristics of the subjects in ADNI-1 dataset 
Subjects AD NC MCI-C MCI-NC 
Number 51 52 43 56 
Gender(M/F) 33/18 34/18 28/15 39/17 
Age 75.2±7.4 75.3±5.2 75.8±6.8 74.7±7.7 
Education 14.7±3.6 15.8±3.2 16.1±2.6 16.1±3.0 
MMSE 23.8±2.0 29.0±1.2 26.6±1.7 27.5±1.5 
CDR 0.7±0.3 0.0±0.0 0.5±0.0 0.5±0.0 

The values are denoted as mean ± standard deviation. MMSE=Mini-Mental State Examination, 
CDR=clinical dementia score, AD=Alzheimer’s disease, NC=Normal Control, MCI-C=Mild 
Cognitive Impairment conversion, MCI-NC=Mild Cognitive Impairment non-transformation.  
 

At the same time, we also analyzed the updated dataset ADNI-2. The ADNI-2 assessed 

participants from the ADNI-1 phases in addition to new participant groups (including elderly 

controls, significant memory concern (SMC), early mild cognitive impairment (EMCI) subjects, 

late mild cognitive impairment (LMCI) subjects, and AD patients) in 2011 

(http://adni.loni.usc.edu/about/). Compared to the ADNI-1 dataset, the ADNI-2 dataset divides MCI 

into three subtypes, including SMC, EMCI, and LMCI.  

The diagnostic criteria for ADNI-1 and ADNI-2 are consistent. Diagnosis was made using the 

standard criteria described in the ADNI-2 procedures manual (http://www.adni-info.org). Briefly, 

NC participants had no subjective or informant-based complaint of memory decline and normal 

cognitive performance. SMC participants had subjective memory concerns as assessed using the 

Cognitive Change Index (CCI; total score from first 12 items >16), no informant-based complaint 

of memory impairment or decline, and normal cognitive performance on the Wechsler Logical 

Memory Delayed Recall (LM-delayed) and the Mini-Mental State Examination (MMSE) (Risacher 



et al., 2015); EMCI participants had a memory concern reported by the subject, informant, clinician, 

abnormal memory function approximately 1 standard deviation below normative performance 

adjusted for education level on the LM-delayed, an MMSE total score greater than 24;Besides a 

subjective memory concern as reported by subject, study partner or clinician, Clinical Dementia 

Rating (CDR) on LMCI subjects was 0.5 and Memory Box (MB) score must beat least 0.5; MMSE 

score on AD should be between 20 and 26 and CDR should be 0.5 or 1.0.  

The ADNI-2 dataset includes VBM-MRI and FDG-PET scans from 913 subjects, including 

160 AD, 82 SMC, 460 MCI and 211 NC participants. 460 MCI patients have two phases: EMCI 

and LMCI. Table 2 lists the demographic characteristics of subjects in the ADNI-2 dataset. 

 

Table 2. Demographic characteristics of the subjects in ADNI-2 dataset 

The values are denoted as mean ± standard deviation. NC= Normal Control, SMC=Significant 
Memory Concern, EMCI=Early Mild Cognitive Impairment, LMCI=Late Mild Cognitive 
Impairment, AD=Alzheimer’s disease.  
 

In our work, we perform image preprocessing on VBM-MRI and FDG-PET in the ADNI-

1 dataset. First, the anterior commissure (AC)-posterior commissure (PC) correlation is 

implemented on all images, and then the N3 algorithm (Sled et al., 1998) is used to correct the 

intensity inhomogeneity. Next, we combine brain surface extractor (BSE) (Shattuck et al., 2001) 

and brain extraction tool (BET) (Smith, 2002) to perform skull stripping on structural MR 

images. The skull stripping results are further manually performed to ensure the skull clean. 

After removal of the cerebellum, FMRIB’s Automated Segmentation Tool (FAST) in the 

FMRIB’s Segmentation Library (FSL) package (Zhang et al., 2001) is used to segment the 

structural MR images into three different tissues: gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF). Later, we use 4D (hierarchical attribute matching mechanism for 

elastic registration) HAMMER (Shen et al., 2003), a fully automated 4D map warping method 

that obtain images of subject markers based on a template with 93 manually labeled ROIs 

(Kabani et al., 1998). All images based on the 93 labeled ROIs in the template can then be 

tagged. For each of the 93 ROIs in the labeled MR image, we calculate the volume of the GM 

as a feature. For FDG-PET, we first align them with the corresponding MR images of the same 

object using a rigid transformation and then calculate the average intensity of each ROI region 

in the FDG-PET image as a feature. Finally, for each sample, we totally obtain 93 features from 

the VBM-MRI image, and another 93 features from the FDG-PET image. 

For the ADNI-2 dataset, we align the preprocessed multi-modal image data (VBM-MRI, 

Subjects   NC  SMC  EMCI  LMCI   AD 
Number 211 82 273 187 160 
Gender(M/F) 190/101 33/49 153/119 108/79 95/65 
Age  76.1±6.5 72.5±5.7 71.5±7.1 73.9±8.4 75.18±7.9 
Education 16.4±2.6 16.8±2.7 16.1±2.6 16.4±2.8 15.86±2.8 
MMSE 29.0±1.2 29.0±1.2 28.4±1.5 27.7±1.7 24.0±2.6 
CDR 0.0±0.1 0.0±0.0 0.5±0.1 0.5±0.1 0.7±0.3 



FDG-PET) with the same visit scan. Then, in the standard Montreal Institute of Neurology 

(MNI) space, as a 2 × 2 × 2݉݉ଷ voxel, we create normalized gray matter density maps from 

MRI data, and register the FDG-PET scans into the same space by the Statistical Parametric 

Mapping (SPM) software package (Tzourio-Mazoyer et al., 2002) . Based on the MarsBaR 

anatomical automatic labeling (AAL) map (Ashburner and Friston, 2000), the average gray 

matter density is measured at 116 ROI levels. The FDG-PET glucose utilization rate and ROIs 

volume were further extracted. After removal of the cerebellum, imaging measurements of each 

modality (VBM-MRI, FDG-PET) with 90 ROIs are used as quantitative traits in our 

experiments. 

Analysis workflow 

Figure 1 illustrates the framework of AD versus NC identification, including four steps: 

data preprocessing, feature extraction, feature selection and classification. The innovation of 

this method is to make full use of the global structure information of the data and incorporate 

the similarity-metric constraint between samples. 

 

 
Figure 1. The workflow of AD/MCI versus NC identification. The framework comprises 
four steps: data preprocessing, feature extraction, feature selection and classification. First, 
VBM-MRI and FDG-PET scans are acquired and preprocessed under the pipeline, and the 
features are extracted from brain ROIs using template. Then the features are selected by the 
proposed method in this paper, and finally we make predictions using MK-SVM classifier.  

Method 
We hypothesize that there is a similarity structure among samples in an AD study, and we 

can map this relationship into the form of a graph. In the constructed graph, the vertices are 

used to represent the samples, the distance between the samples is used to represent the edge. 

Thus, the graph is undirected, and the associated matrix of the graph is symmetrical. 

However, when solving multi-modal problems with more complex sample relationships, 

it is more significant to find appropriate inter-sample measurements. If we cannot find a 

reasonable way to measure multi-modal data, it will lead to inconsistent weights between 

modalities. In this paper, we want to utilize the random forest method to measure the 

relationship between samples, which has been widely used in various applications. 

 



Graph for similarity learning 

We calculate the distance between samples and convert it (i.e. dissimilarity) to a similarity 

measurement. Suppose we have ݊  samples, each with ݏ  modalities, and ݀  features 

extracted from each modality. When we calculate the similarity using the features from the 

௩ܩ ℎ modality, we can construct graphݐ-ݒ = (ܸ௩,  ௩) to describe the relationship betweenܧ

the ݊ samples of the ݐ-ݒℎ modality, where the set ܸ௩ of vertices correspond to ݊ samples 

of the ݐ-ݒℎ modality, the set ܧ௩ of edges capture the pairwise similarity measures among ݊ 

samples. At this time, we use the adjacency matrix ܮ௩  with weight and sizes of ݊ × ݊  to 

represent the similarity between samples, where ܮ௩(ܽ, ܾ) is used to represent the similarity 

between sample ܽ and sample ܾ from the ݐ-ݒℎ modality. The similarity matrix ܮ௩ can be 

calculated in different ways. A common method is to calculate the distance between a pair of 

samples using the Euclidean distance and normalize it to form the similarity matrix.  

Random forests can extract pairs of similarity measures for multiple forms, and random 

forests provide a consistent way of combining different types of feature data. For example, the 

similarity derived from random forests has been successfully applied to tumor clustering tasks 

(Shi and Horvath, 2006). To calculate the similarity between sample ܽ and sample ܾ using a 

random forest, the measurements of the two samples are passed under each tree in the forest. 

The similarity ܮ௩(ܽ, ܾ) is initialized to zero. If sample ܽ and sample ܾ are at the same end 

node of the tree, their similarity ,ܽ)௩ܮ ܾ)  increases by 1. The final similarity matrix is 

normalized by dividing ܮ௩ by the total number of trees in the forest. Therefore, the diagonal 

elements of the similarity matrix ܮ௩ are equal to one, and the other elements are all numbers 

greater than zero and less than one. Here we use the random forest MATLAB toolbox (Breiman, 

2006) to achieve sample similarity calculations. 

Figure 2 shows an example of a similarity matrix for different modalities. As we can see, 

charts built with different data types show very different connection patterns, which can provide 

complementary information for AD versus NC classification. 

 

 
Figure 2. Sample similarity matrix display 



 
Construct equations  

The essential of the multi-task learning (Caruana, 1997) is to solve several related tasks at 

the same time and use the related information across multiple tasks to improve the performance 

of the models. In recent years, multi-task learning has been widely used in many fields, 

including image classification (Luo et al., 2013), text classification (Liu et al., 2016b), 

bioinformatics (Xu and Yang, 2011), and so on. 

In this study, single modal neuroimaging feature selection and classification can be 

considered as a single task. Suppose we have ݏ  learning tasks (i.e., ݏ  modal). X௩ =

ଵݔ]
௩, ଶݔ

௩, … , ேݔ
௩ ]் ∈ ܴே×ௗ is represented as the training data matrix in the ݐ-ݒℎ task (i.e., the 

௜ݔ ℎ  modal), whereݐ-ݒ
௩  represents the feature column vector of the ݐ-ݒℎ  task of the 

corresponding ݅-ݐℎ sample, ݀ is the dimension of the feature, and ܰ is the sample quantity. 

Let ܻ = ,ଵݕ] ,ଶݕ … , ்[ேݕ ∈ ܴே be the corresponding label vector for ܰ samples. The value 

of ݕ௜ is 1 or -1 (i.e., patient or normal control). It is worth noting that the labels of different 

morphologies from the same sample are identical. We use a linear function to fit the class label, 

so the objective function of the multi-task feature selection model is as follows (Argyriou et al., 

2008): 

min
W

ଵ
ଶ

∑ ∑ ௜ݕ) − ௜ݔ
௩்ݓ௩)ଶ௦

௩ୀଵ
ே
௜ୀଵ +  W‖ଶ,ଵ                     (1)‖ߣ

We can write the variables in Eq (1) as vectors, and the formula is as follows: 

min
W

ଵ
ଶ

∑ ‖ܻ − ܺ௩ݓ௩‖ଶ
ଶ௦

௩ୀଵ +  W‖ଶ,ଵ                        (2)‖ߣ

where ݓ௩ ∈ ܴௗ is the vector of the regression coefficients associated with the ݐ-ݒℎ modality. 

All ݏ modal vectors form a weight matrix W=[ݓଵ,ݓଶ,…, [௦ݓ ∈ ܴௗ×௦. In Eq (2), ‖W‖ଶ,ଵ is 

the ݈ଶ,ଵ-norm of the matrix W, which is defined as follows: ‖W‖ଶ,ଵ = ∑ ฮݓ௜ฮଶ
ௗ
௜ୀଵ , where the 

superscript ݅  of ݓ௜  corresponds to the ݅-ݐℎ  row of the matrix W , and its function is to 

combine multiple modalities. The constraint of ݈ଶ,ଵ -norm encourages most of the feature 

weight coefficients to be zero, and only a small number of feature weight coefficients are non-

zero. These non-zero features are the shared features of all tasks. In particular, the optimal 

solution will assign a relatively large weight to the feature providing the classification 

information, and assign zero or small weight to the feature that does not provide the 

classification information or provides less information. For feature selection, only those 

features with non-zero weights are retained. In other words, the specification combines multiple 

tasks and ensures that a small number of common features can be selected together across 

different tasks, taking into account the correlation between different tasks. The parameter ߣ 

before the ݈ଶ,ଵ-norm is the coefficient of the regularization term, which is used to control the 

relative weight of the two items. It is worth noting that when only one task (i.e., feature selection 



on single modal brain image data) is learned, the loss term ‖ܻ − ଶ‖ݓܺ
ଶ is represented as the 

single task and the ݈ଶ,ଵ-norm is degenerated into ݈ଵ-norm. Thus, Eq (2) will also degenerate to 

the least absolute shrinkage and selection operator (LASSO) model (Tibshirani, 2011). 

Based on the sample similarity matrix, we define the sample similarity regularization as 

follows: 

∆=  (3)                              ݓX்LX்ݓ

Intuitively, we want to preserve the global structural information of the data in the original 

feature space and represent it using a similarity matrix generated by random forest. We construct 

a similarity matrix in each modality to represent the structure of the near and far relation of the 

data. So we can define the multi-modal feature selection objective function based on sample 

similarity as follows: 

min
W

ଵ
ଶ

∑ ‖ܻ − X௩ݓ௩‖ଶ
ଶ௦

௩ୀଵ + W‖ଶ,ଵ‖ߣ + ∑ L௩௦்(௩ݓX௩)௩ߪ
௩ୀଵ (X௩ݓ௩)       (4) 

where W=[ݓଵ,ݓଶ], ݏ =  ℎ modality. The firstݐ-ݒ ௩ is the sample similarity matrix of theܮ .2

term in Eq (4) is the empirical error on the training set calculated by the least squares method, 

and the second term is the ݈ଶ,ଵ -norm, the regularization parameter ߣ  controls the group 

sparsity in the solution. The last term is the similarity regularization constraint, and σ୴ is the 

regularization parameter to balance the penalties from different modalities. 

In our model, using the multi-tasking or multimodal correlation, we can not only jointly 

select the shared features from different modalities, but also preserve the similarity information 

between samples in each modality by adding sample similarity regularization terms. The 

existing multi-modal feature selection algorithm only considers the pairwise relationship 

between samples or only considers the information between several points in the vicinity of the 

sample, only uses local information and ignores the global similarity relationship between the 

sample sets as a whole. 

 

Optimization 

As the objective function is not-differentiable and not smooth, there is no way to calculate 

the gradient of some points of the objective function, so the equation cannot be solved by the 

gradient descent method. At this stage, there are many ways to solve the objective function 

formula (4), such as Alternating Direction Method of Multipliers (ADMM) and Accelerated 

Proximal Gradient (APG) (Chen et al., 2009). In this paper, we use the APG algorithm to solve 

our problem. 

First, we divide the Eq (4) into smooth terms ଵ݂(W) and non-smooth terms ଶ݂(W): 

ଵ݂(W) = ଵ
ଶ

∑ ‖ܻ − X௩ݓ௩‖ଶ
ଶ௦

௩ୀଵ + ∑ L௩௦்(௩ݓX௩)௩ߪ
௩ୀଵ (X௩ݓ௩)        (5) 

ଶ݂(W) =  W‖ଶ,ଵ                          (6)‖ߣ



Then we use formula (7) to approximate ଵ݂(W) + ଶ݂(W) : 

ܳఈ೟൫W,W(௧)൯ = ଵ݂൫W(௧)൯ + ൻW − W(௧), ∇ ଵ݂൫W(௧)൯ൿ + ௟
ଶ

ฮW − W(௧)ฮ
ி

ଶ
+ ଶ݂(W)  (7) 

where ⟨Xଵ, Xଶ⟩  represents the trace of the matrix Xଵ
்Xଶ , ‖∙‖ி  is the Frobenius norm, 

∇ ଵ݂൫W(௧)൯ is the gradient of ଵ݂(W) at point W(௧) of the ݐ-th iteration, and ߙ௧ is the step 

factor of the ݐ-th iteration, the value of which is obtained by linear search. The update step for 

the APG algorithm is as follows: 

W(௧ାଵ) = arg min
୛

൭ଵ
ଶ

ቛW − ൬W(௧) − ଵ
ఈ೟ ∇ ଵ݂൫W(௧)൯൰ቛ

ி

ଶ
+ ଵ

ఈ೟ ଶ݂(W)൱     (8) 

And the update step can be solved by formula (8): 

P(௧) = W(௧) + ଵିఊ೟షభ
ఊ೟షభ

௧(W(௧)ߛ − W(௧ିଵ))                 (9) 

where ߛ௧ = ଶ
ଶା௧

 , and the convergence speed of this algorithm is ܱ( ଵ
்మ) , ܶ is the maximum 

number of iterations of the calculation. 

 

Classification 

We use the MK-SVM (Zhang et al., 2011) to classify the data after feature selection. The 

prior studies have shown that MK-SVM has a good classification performance for multi-modal 

data. Given a training set, the kernel function of the ݒ-th  modal is ݇௩(ݔ௜
௩, ௝ݔ

௩) =

߶௩(ݔ௜
௩)்߶௩൫ݔ௝

௩൯ . We use linear kernels to fuse multi-modal data with a kernel function of 

݇௩(ݔ௜ , (௝ݔ = ∑ ௜ݔ)௩݇௩ߚ
௩, ௝ݔ

௩)௦
௩ୀଵ  , where ߚ௩  is the weight coefficient of the ݒ-th  modality. 

The dual form of the MK-SVM is as follows: 

max
ఈ

෍ ௜ߙ

ே

௜ୀଵ

−
1
2

෍ ௜ݕ௝ߙ௜ߙ
௜,௝

௝ݕ ෍ ௜ݔ)௩݇௩ߚ
௩, ௝ݔ

௩)
௦

௩ୀଵ

 

s. t. ∑ ௜ߙ
ே
௜ୀଵ ௜ݕ = 0,                            (10) 

௜ߙ ≥ 0, ݅ = 1,2, … , ܰ 

where ߙ is a Lagrange multiplier. In this paper, the SVM classifier can be solved by using 

LIBSVM toolbox (Chang and Lin, 2011). We find the optimal value of ߚ௩ by cross-validation 

on the training set by grid search in the range of [0,1]. 

 

Performance evaluation 

Cross-validation is a commonly used method in machine learning to build models and validate 

model parameters. As the number of subjects is limited, cross-validation is to reuse data to evaluate 

the quality of model prediction. In this study, we used 10-fold cross-validation that could reduce the 



bias by averaging the results of different group testing. Specifically, we divided the dataset into 

10 parts. In each cross-validation experiments, we took nine of them as a training set and one 

as a test set, so that we performed 10 experiments independently, eliminating errors caused by 

random division. We used MRI and PET brain image data from ADNI-1 to verify the model in 

three sets of comparison experiments, including AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-

NC. Three sets of comparative experiments, including AD vs. NC, LMCI vs. NC, and EMCI 

vs. LMCI were also performed on the same model using ADNI-2 dataset. We used accuracy 

(ACC), sensitivity (SEN), specificity (SPE), the area under the curve (AUC), p-value and ROC 

curve as evaluation indicators. 

Our proposed multi-modal neuroimaging feature selection with consistent metric 

constraint (denoted as MFCC) method is compared with several existing popular methods, 

including directly concatenating the features of MRI and PET into a vector and using the SVM 

classification, involving 1) methods without feature selection (denote as Baseline-SVM), 2) 

LASSO method (Tibshirani, 2011) (denote as LASSO-SVM), and 3) t-test method, the p-value 

significance threshold of the t-test is chosen to be 0.05. We also comprise the following multi-

kernel methods (Zhang et al., 2011) (denote as t-test-SVM), 1) the multi-kernel method without 

feature selection (denoted as Baseline-MK-SVM), 2) LASSO-based (Tibshirani, 2011) multi-

kernel method (denoted as LASSO-MK-SVM), and 3) multi-kernel method based on t-test 

(denoted as t-test-MK-SVM). It is classified using an SVM with a linear kernel. We also 

compare the feature selection method with the ݈ଶ,ଵ-norm (denoted as Group Lasso-MK-SVM), 

the similarity matrix by the Euclidean distance calculation (denoted as Euclid-MK-SVM) and 

the hypergraph strategy (denoted as Hypergraph-MK-SVM). For model selection, the 

regularization parameters of all methods are selected from the range of 

{10ିଽ, 10ି଼, … , 10,10ଶ}. 

Results 
The detailed classification results on ADNI-1 dataset are summarized in Table 3. Figure 3 

plots the ROC curves of all the methods. Specifically, the accuracy values of our proposed 

methods for AD versus NC, MCI versus NC, and MCI-C versus MCI-NC are 97.60%, 84.47% 

and 77.76%, respectively on the ADNI-1 dataset. Correspondingly, the AUC values of our 

proposed method are 0.98, 0.86 and 0.71 respectively.  

 

 

 

 

 



Table 3. Classification performance of different methods on ADNI-1 
(a) AD versus NC 

Method ACC SEN SPE AUC P-value 
Baseline-SVM 89.358.83 90.39 88.27 0.94 <0.001 
LASSO-SVM 87.579.12 89.02 86.15 0.95 <0.001 
t-test-SVM 86.7510.33 83.92 89.42 0.93 <0.001 
Baseline-MK-SVM 94.536.55 94.90 94.04 0.96 <0.001 
LASSO-MK-SVM 93.747.81 95.00 91.60 0.97 <0.001 
t-test-MK-SVM 93.457.35 94.90 91.92 0.96 <0.001 
Group Lasso-MK-SVM 94.536.80 94.90 94.04 0.96 <0.001 
Euclid-MK-SVM 95.086.77 97.25 92.88 0.97 0.004 
Hypergraph-MK-SVM 94.776.39 97.25 92.31 0.97 <0.001 
MFCC-MK-SVM 97.605.03 98.43 96.73 0.98 -- 

(b) MCI versus NC 
Method ACC SEN SPE AUC P-value 
Baseline-SVM 70.7510.04 79.80 53.46 0.76 <0.001 
LASSO-SVM 72.4611.05 83.03 52.31 0.78 <0.001 
t-test-SVM 72.799.53 85.96 47.69 0.77 <0.001 
Baseline-MK-SVM 80.098.24 87.47 65.96 0.79 <0.001 
LASSO-MK-SVM 81.898.89 90.24 62.27 0.79 0.022 
t-test-MK-SVM 81.719.43 91.82 62.31 0.79 0.019 
Group Lasso-MK-SVM 79.766.91 95.76 49.23 0.77 <0.001 
Euclid-MK-SVM 81.488.48 89.49 66.15 0.80 0.007 
Hypergraph-MK-SVM 81.206.55 94.14 56.54 0.75 <0.001 
MFCC-MK-SVM 84.476.83 94.04 66.15 0.81 -- 

 
(c) MCI-C versus MCI-NC 

Method ACC SEN SPE AUC P-value 
Baseline-SVM 53.9515.12 44.65 61.07 0.59 <0.001 
LASSO-SVM 54.5714.87 45.12 61.79 0.60 <0.001 
t-test-SVM 50.7613.74 34.42 63.39 0.57 <0.001 
Baseline-MK-SVM 69.1712.77 57.44 78.04 0.66 <0.001 
LASSO-MK-SVM 71.8813.36 61.97 76.00 0.66 <0.001 
t-test-MK-SVM 63.0512.60 50.70 72.32 0.59 <0.001 
Group Lasso-MK-SVM 70.8611.37 62.33 77.14 0.65 <0.001 
Euclid-MK-SVM 72.0012.97 69.77 73.57 0.70 <0.001 
Hypergraph-MK-SVM 73.6411.19 66.28 79.11 0.74 0.008 
MFCC-MK-SVM 77.7610.59 67.44 85.54 0.76 -- 

 
Table 4. Classification performance of different methods on ADNI-2 

(a) AD versus NC 
Method ACC SEN SPE AUC P-value 
Baseline-SVM 91.135.04 92.37 89.50 0.95 <0.001 
LASSO-SVM 85.905.51 89.34 81.38 0.92 <0.001 
t-test-SVM 79.606.93 84.31 73.38 0.86 <0.001 
Baseline-MK-SVM 91.724.15 93.36 89.56 0.94 0.006 
LASSO-MK-SVM 86.824.57 89.57 82.66 0.90 <0.001 
t-test-MK-SVM 90.064.35 92.75 86.50 0.93 <0.001 
Group Lasso-MK-SVM 89.924.42 93.65 85.00 0.93 <0.001 
Euclid-MK-SVM 91.724.15 93.36 89.56 0.94 0.006 
Hypergraph-MK-SVM 91.194.12 94.17 87.25 0.94 <0.001 
MFCC-MK-SVM 93.723.38 95.17 91.81 0.95 -- 



 
(b) LMCI versus NC 

Method ACC SEN SPE AUC P-value 
Baseline-SVM 69.237.25 74.46 63.37 0.74 <0.001 
LASSO-SVM 66.616.60 71.66 60.96 0.71 <0.001 
t-test-SVM 62.816.12 70.38 54.28 0.65 <0.001 
Baseline-MK-SVM 74.355.99 81.42 66.42 0.77 <0.001 
LASSO-MK-SVM 71.466.00 76.86 62.72 0.71 <0.001 
t-test-MK-SVM 73.005.76 81.52 63.42 0.75 <0.001 
Group Lasso-MK-SVM 74.356.15 81.42 66.42 0.77 <0.001 
Euclid-MK-SVM 74.355.99 81.42 66.42 0.77 <0.001 
Hypergraph-MK-SVM 75.325.79 85.07 64.39 0.75 <0.001 
MFCC-MK-SVM 78.475.61 85.88 70.16 0.78 -- 

 
(c) EMCI versus LMCI 

Method ACC SEN SPE AUC P-value 
Baseline-SVM 64.086.79 76.48 45.99 0.66 <0.001 
LASSO-SVM 63.557.13 78.32 42.03 0.66 <0.001 
t-test-SVM 63.325.35 87.33 28.29 0.64 <0.001 
Baseline-MK-SVM 70.015.52 85.20 47.86 0.68 <0.001 
LASSO-MK-SVM 68.434.83 88.92 37.31 0.66 <0.001 
t-test-MK-SVM 69.105.25 85.05 45.83 0.66 <0.001 
Group Lasso-MK-SVM 70.224.40 90.62 40.43 0.68 <0.001 
Euclid-MK-SVM 70.015.52 85.20 47.86 0.68 <0.001 
Hypergraph-MK-SVM 71.454.43 90.95 42.99 0.68 0.001 
MFCC-MK-SVM 73.874.77 90.55 49.52 0.70 -- 

 

We have treated the ADNI-2 as a larger independent dataset and validated our proposed method 

on it. The classification results on the ADNI-2 dataset are summarized in Table 4. Figure 4 plots 

the ROC curves of all the methods. Specifically, the accuracy values of our proposed methods 

for AD versus NC, MCI versus NC, and MCI-C versus MCI-NC are 93.72%, 78.47% and 

73.87%, respectively on the ADNI-2 dataset. Correspondingly, the AUC values of our proposed 

method are 0.95, 0.78 and 0.7, respectively. In addition, we have made a competing test that our 

proposed approach can also achieve better performances no matter what processing framework and 

template parcellation have been applied to dataset. 

Besides MFCC-MK-SVM, we also adopt other different classifiers: random forest (RF) 

and K nearest neighbor (KNN) algorithm. The experimental results for the different classifiers 

in the ADNI-1 data set are presented in Table 5. The experimental results for the different 

classifiers in the ADNI-2 dataset are presented in Table 6. We use random forest as the classifier, 

and the number of trees in the random forest is set to 1000, and the number of features selected 

in the RF is√݀. In the KNN algorithm, we set the parameter K to 5. The experimental results 

show that the classifier MK-SVM can achieve better performances. 

 

 



Table 5. Comparison of different classifiers experimental results on ADNI-1 

Method AD versus NC MCI versus NC MCI-C versus MCI-NC 
 ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 
RF 93.82 86.47 72.12 0.90 79.16 90.91 26.15 0.71 70.72 56.05 54.29 0.59 
KNN 95.54 82.35 73.85 0.81 82.40 85.96 29.62 0.53 75.04 54.42 49.11 0.60 
MK-SVM 97.60 98.43 96.73 0.98 84.47 94.04 66.15 0.81 77.76 67.44 85.54 0.76 

 

Table 6. Comparison of different classifiers experimental results on ADNI-2 

 

In summary, the accuracy of our proposed method is always superior to that of other 

methods in the above cases, indicating that our method has better diagnostic performances. In 

addition, in most cases, the proposed method achieves higher sensitivity than other methods. It 

is worth noting that in our experiment, there is a significant difference between sensitivity and 

specificity. For example, each method has relatively high sensitivity but low specificity. In 

medical diagnosis, it is different to misjudge a patient as normal or to misjudge a normal sample 

as a patient. Obviously, the former is costly and may delay the treatment. Therefore, high 

sensitivity is very important for disease diagnosis and beneficial for medical diagnosis. 

 

 
Figure 3. The ROC curves of all comparison methods on ADNI-1: (a) the classification of AD 
vs. NC, (b) the classification of NC vs. MCI, (c) the classification of MCI-C vs. MCI-NC. The 
horizontal axis represents the false positive rate; the vertical axis represents the true positive 
rate. The area under the curve (AUC) indicates the diagnosis power. 
 

 
Figure 4. The ROC curves of all comparison methods on ADNI-2: (a) the classification of AD 

Method AD versus NC LMCI versus NC EMCI versus LMCI 
 ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 
RF 87.03 84.60 67.06 0.82 71.44 72.94 45.72 0.60 69.11 81.87 29.36 0.58 
KNN 84.37 82.23 65.31 0.77 69.81 64.69 47.65 0.55 69.14 69.49 39.48 0.55 
MK-SVM 93.72 95.17 91.81 0.95 78.47 85.88 70.16 0.78 73.87 90.55 49.52 0.70 



vs. NC, (b) the classification of LMCI vs. NC, (c) the classification of EMCI vs. LMCI. The 
horizontal axis represents the false positive rate; the vertical axis represents the true positive 
rate. The area under the curve (AUC) indicates the diagnosis power. 

Discussion 
The aim of this paper is to develop a novel method for addressing two issues, including 1) 

selecting brain ROIs related to AD and 2) classification and diagnosis of AD. All experiments 

have been carried out on the ADNI-1 and ADNI-2 datasets to demonstrate the effectiveness of 

the proposed method MFCC. The results show that this method can not only classify AD using 

complementary information from multimodal imaging data, but also help discover disease-

related biomarkers and understand the pathological mechanism of AD. In the following sections, 

we will first discuss issues related to construction of random forest, similarity and consistency 

measurement, multi-modal neuroimaging analysis, parameter settings, and clinical implications. 

After that, we will discuss strengths of the proposed method in comparison with competing 

methods as well as possible limitations warranting further investigation. 

 

Construction of random forest 

In this paper, the similarity matrix of each modality is constructed by random forest method. 

Specifically, this experiment sets the parameters of the random forest as the default values (the 

number of trees is 1000, and the number of features is √݀). Now we discuss the influence of 

the number of features in random forests in the experimental results. The results are shown in 

Figure 5, where the number of features varies in the range of ቄ1, √ௗ
ଶ

, √ௗ
ଵ.ହ

, √݀, √݀ ∗ 2, √݀ ∗

3, √݀ ∗ 4, ݀ቅ. As can be seen from Figure 5, when the number of features is set to be √݀, the 

experimental results are optimal. However, when the number of features is set to be √݀ ∗ 2, 

the accuracy will rapidly decline. The fundamental reason may be that when there are too many 

features, redundant features will affect the steady of the similarity, that is, the similarity matrix 

calculated by random forest may not be able to describe the global relationship between samples. 

 



 
Figure 5. The classification results on the different number of features in the random forest. 
The horizontal axis represents the number of features; the vertical axis represents the 
classification accuracy for AD diagnosis. 
 
 
Similarity metrics learning 

Other methods are compared to sample similarity measured by random forests. 

Specifically, the simple graph describes the relationship between pairs of samples, and the 

hypergraph describes the high-order and multi-relationships between samples. The above two 

methods can only capture the local relationship between samples, but cannot fully utilize the 

information provided by the structural data, resulting in the loss of global information. 

Sample similarity metrics learning via random forest has been used in a variety of 

applications, such as disease classification and image segmentation (Mitra et al., 2014). In 

addition, some recent studies have incorporated the computational similarity methods into 

medical imaging analysis (Zimmer et al., 2017). Tong et al. (Tong et al., 2017) proposed a multi-

modal nonlinear graph fusion method. They used four modal data points to create four maps 

using the similarity of random forests, and then used a nonlinear approach to fuse and reclassify 

the four maps. However, they did not consider the inherent information of different data 

modalities. 

In contrast, our proposed multi-modal neuroimaging feature selection model with the 

consistent metric constraint not only utilizes the global relationship between samples, but also 

makes full use of the supplementary information provided by different modalities. The 

experimental results have achieved higher classification accuracy and AUC, which have 

demonstrated the effectiveness of our proposed method. 

 

Multi-modal neuroimaging analysis 

Recent studies on the diagnosis of AD have shown that different image modalities can 



provide complementary information to help identify AD (Sui et al., 2012; Tong et al., 2017). It 

has been reported that the fusion of multiple modalities can improve diagnostic performance. 

A number of different approaches have been proposed to fuse biomarkers of different modalities 

to produce more powerful classifiers (Gray et al., 2013; Zhang et al., 2011). The easiest way to 

combine multi-modal data is to concatenate the features obtained from the different modalities 

into the row vectors for each sample. For example, Walhovd et al. (Walhovd et al., 2010) took 

the feature vectors as simple connection processing. Gray et al. (Gray et al., 2013) used multiple 

random forest classifiers to fuse multi-modal data for classification of AD. In addition, the 

multi-modal classification method of voting with multiple classifiers is a common ensemble 

learning strategy, but may introduce bias due to the use of multimodality. An effective way to 

fuse different modalities is based on kernel methods such as multi-kernel learning (Zhang et al., 

2011). A single kernel matrix is calculated for each modality, and a final kernel matrix is 

obtained by their linear combination. Several results show that the latter can achieve better 

performance than the former.  

In order to evaluate the validity of multi-modal data classification, we performed 

experiments and compared them with multi-modal and single modal data. We use the proposed 

classification framework to compare the results of single modal and multi-modal experiments 

on the ADNI-1 and ADNI-2 datasets. The corresponding results are shown in Table 7 and Table 

8. As we have seen, the proposed method with two modalities has better performance than the 

single modality. The results further indicate that multi-modal data contain supplemental 

information and can achieve better classification performance than a single modality. 

Table 7. Comparison of single model and multi-modal experimental results on ADNI-1 

Method AD versus NC MCI versus NC MCI-C versus MCI-NC 
 ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 
VBM-MRI 92.38 81.18 90.58 0.92 81.35 80.30 56.54 0.77 72.94 40.93 68.04 0.51 
FDG-PET 92.66 87.65 84.04 0.93 79.70 82.22 46.92 0.69 72.34 33.72 68.75 0.54 

multi-modal 97.60 98.43 96.73 0.98 84.47 94.04 66.15 0.81 77.76 67.44 85.54 0.76 
 
Table 8. Comparison of single model and multi-modal experimental results on ADNI-2 

 

The pathological changes from the same ROIs might be examined through structural and 

functional radiologic imaging, simultaneously. Thus performing ROI feature selections across 

multimodalities is very helpful to suppress noises in the individual modality features(Hao et al., 

2016; Li et al., 2019; Sarter et al., 1996). 

The structural and functional features with great heterogeneity can provide essential 

complementary information for brain disease analysis and diagnosis from the aspect of feature 

Method AD versus NC LMCI versus NC EMCI versus LMCI 
 ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 
VBM-MRI 86.63  90.28  81.81  0.93 71.20  78.01  63.32  0.76 63.18  83.70  32.62  0.64 
FDG-PET 80.06  86.02  71.94  0.85 66.77  75.45  55.94  0.68 64.69  78.17  44.44  0.63 

multi-modal 93.72 95.17 91.81 0.95 78.47 85.88 70.16 0.78 73.87 90.55 49.52 0.70 



fusion in ensemble learning community. Here, the different measurements from the same ROIs just 

express the structural and functional changes, which has the characteristics of heterogeneity. The 

experiment results have showed the joint feature selection from the same ROIs can achieve higher 

performances, which has further demonstrated the effectiveness of ‘consistency’. 

 

Parameter settings 

In the objective function of our proposed model, there are three regularization parameters 

(i.e., ߣ, ,ଵߪ  ଶ) that need to be set. They balance the relative contribution of the group sparsityߪ

regularization term and the two-sample consistency metric regularization terms. In this section, 

we study the effect of regularization parameters on classification performance. Specifically, we 

first fix the value of ߣ to 0.01 and change ߪଵ and ߪଶ in the range of {10ିଽ, 10ି଼, … , 10ଶ}. 

Then we fix ߪଵ to 0.01 and change ߣ and ߪଶ in the range of {10ିଽ, 10ି଼, … , 10ଶ}. Finally, 

we fixed the value of ߪଶ  to 0.01 and changed ߣ  and ߪଵ  in the range of 

{10ିଽ, 10ି଼, … , 10ଶ} . The corresponding test results on ADNI-1 and ADNI-2 datasets are 

shown in Figure 6 and Figure 7, respectively. We can see that the proposed method slightly 

fluctuates when changing the parameter ߣ, ,ଵߪ  ଶ, indicating that our proposed method is notߪ

particularly sensitive to parameter values. 

 

 
Figure 6. Accuracy of AD vs. NC classification with respect to different parameter values in 
ADNI-1 dataset. We fix one parameter to 0.01 respectively and vary the other two in the range 
of {10ିଽ, 10ି଼, … , 10ଶ}.The X-axis and Y-axis represent the diverse value of parameters and 
the Z-axis represents the classification accuracy for AD diagnosis. 
 

 
Figure 7. Accuracy of AD vs.NC classification with respect to different parameter values in 
ADNI-2 dataset. We fix one parameter to 0.01 respectively and vary the other two in the range 
of {10ିଽ, 10ି଼, … , 10ଶ}.The X-axis and Y-axis represent the diverse value of parameters and 
the Z-axis represents the classification accuracy for AD diagnosis. 
 



Clinical implications 

It is important to detect the risk ROIs associated with brain disease. We count the top 10 

most frequently selected regions in the AD and NC classifications as the most discriminative 

markers. The top 10 regions in the ADNI-1 dataset are Middle Temporal Gyrus Right, Lateral 

Occipitotemporal Gyrus Left, Hippocampal Formation Left, Supramarginal Gyrus Right, 

Precentral Gyrus Left, Amygdala Right, Angular Gyrus Left, Angular Gyrus Right, Precuneus 

Left, Inferior Temporal Gyrus Right. The top 10 regions in the ADNI-2 dataset are Frontal Sup 

Medial Left, Precuneus Left, Amygdala Right, Cuneus Left, ParaHippocampal Left, Frontal 

Mid Orb Left, Cingulum Mid Left, Rectus Left, Cingulum Post Left, Hippocampus Left. As can 

be seen from Figures 8 and Figure 9, most selected ROIs, such as Hippocampus and Amygdala 

detected simultaneously from different template are consistent with previous studies. According 

to the reports, the fact that Medial Temporal Lobe structures, including the Hippocampus, are 

critical for declarative memory is firmly established (Tulving and Markowitsch, 1998). 

Emotionally significant experiences tend to be well remembered, and the Amygdala has a 

pivotal role in this process (Roozendaal et al., 2009). Thus, these evidences suggest that the 

Limbic System (including Hippocampus and Amygdala)(Hopper and Vogel, 1976) should be 

concerned in AD research. 

 
Figure 8. Brain regions associated with AD using a 3D atlas Jacob (Kabani et al., 1998) 

(ADNI-1） 
 



 
Figure 9. Brain regions associated with AD using AAL template (Ashburner and Friston, 

2000) (ADNI-2） 
 
Comparison with previous studies 

The MFCC algorithm proposed in this paper is compared with the ten state-of-the-art 

competing AD classification algorithms using multi-modal data, including the traditional 

machine learning methods and the deep learning methods, as shown in Table 9. In order to show 

the effectiveness of our proposed method and the confidence of the results, we set the same 

experiment dataset and processing framework following the previous works (Jie et al., 2015; Li et 

al., 2015; Shi et al., 2018; Suk et al., 2016; Suk and Shen, 2013; Zhang et al., 2011) Accordingly, 

the ADNI-1 dataset and processing framework (including template parcellation) used in this paper 

are the same as those used in the literature.  

It is worth noting that the proposed method has performed better than at least one of the 

deep learning methods in this comparison. In particular, the accuracy is higher than that of the 

deep learning methods in AD versus NC classification when using only two imaging modality 

(i.e., MRI and PET). One essential reason may be that our proposed method is able to fully 

utilize the global structure information from the data. As the objective function is induced the 

similarity constraint between different samples, the selected features are more informative and 

discriminative in this optimization problem. While several existing deep learning models in 

literature haven’t incorporated the sufficient prior information yet. Furthermore, when the 

number of train samples is highly limited, the capacity of deep feature representations may be 

weaker than that of original hand-draft features from candidate pathogenic brain regions. 



Accordingly, in this study, it is more effective to design a simple but well-defined feature 

selection model with to address the issue of AD classification. 

 

Limitations 

Despite its promising performance, the proposed method still has a few. First, our proposed 

method utilizes two types of neuroimaging biomarkers (i.e., MRI and PET) from the ADNI 

dataset. Actually, in the ADNI dataset, many subjects also have other type of biomarkers, such 

as CSF, plasma, genetics data, and so on. In the future, we will examine whether adding more 

modal can further improve performance.  

Table 9. Comparison of the performance of different multi-modal classification algorithms 
Algorithms Subjects Modalities AD vs NC MCI vs NC MCI-C vs MCI-NC Algorithm Description 

MKL 
(Zhang et al., 

2011) 

51AD, 43MCI-C, 
56MCI-NC, 52NC 

MRI + PET 
+CSF 

93.20 76.40 -- The classical multi-kernel 
learning (MKL) based 
algorithm 

MTL 
(Jie et al., 2015) 

51AD, 43MCI-C, 
56MCI-NC, 52NC 

MRI + PET 
+CSF 

95.03 79.27 68.94 The multi-task learning 
(MTL) based algorithm 

M-RBM 
(Suk et al., 2014) 

93AD, 76MCI-C, 128 
MCI-NC, 101 NC 

MRI + PET 95.35 85.67 75.92 The pioneering multi-modal 
deep RBM (M-RBM) based 
feature learning algorithms 

SAE 
(Liu et al., 2015b) 

85AD, 67MCI-C, 102 
MCI-NC, 77 NC 

MRI + PET 91.35 90.42 -- The SAE-based multi-modal 
neuroimaging feature 
learning algorithm 

SAE-MKL 
(Suk, 2013) 

51AD, 43MCI-C, 
56MCI-NC, 52NC 

MRI + PET 
+CSF 

98.80 90.70 83.30 The combination of SAE-
based feature learning and 
MKL classification (SAE-
MKL) algorithm 

DW-S2MTL 
(Suk et al., 2016) 

51AD, 43MCI-C, 
56MCI-NC, 52NC 

MRI + PET 
+CSF 

95.09  78.77 73.04 The deep sparse multi-task 
learning based feature 
selection (DW-S2MTL) 
algorithm 

Dropout-DL 
(Li et al., 2015) 

51AD, 43MCI-C, 
56MCI-NC, 52NC 

MRI + PET 
+CSF 

91.40 77.40 70.10 The dropout based robust 
multi-task deep learning 
(Dropout-DL) algorithm 

SDSAE 
(Shi et al., 2017) 

94AD, 121MCI, 
123NC 

Longitudinal 
MRI 

91.95   83.72 -- The SDSAE-based feature 
learning algorithm 

NGF 
(Tong et al., 2017) 

37AD, 75MCI, 35NC MRI + PET 
+CSF 

+ Genetics 

98.10 82.40 77.90 The nonlinear graph fusion 
(NGF) based algorithm 

MM-SDPN-SVM 
(Shi et al., 2018) 

51AD, 43MCI-C, 
56MCI-NC, 52NC 

MRI + PET 97.13  87.24 78.88 The multi-modal stacked 
deep polynomial networks 
and SVM 

 

Secondly, we only studied the two-category problem and did not test the performance on 

the multi-class problem. It is valuable to accurately diagnose patients at a certain stage of the 

disease. In addition, we did not take advantage of quantitative outcomes in the ADNI dataset, 

such as MMSE and other cognitive scores. It could be interesting to integrate more complicated 

relationship learning in a multi-task learning framework rather than a single model for feature 

selection.  

Actually, it is quite different to determine which template should be selected as the best one 

from multiple diverse templates. Due to potential bias associated with the use of a single template, 

the feature representations generated from a single template may not be sufficient enough to reveal 

the underlying complex differences between groups of patients and normal controls. Recently, some 

researchers have proposed several methods that can take advantage of multiple diverse templates to 



compare group differences more efficiently (Huang et al., 2019; Koikkalainen et al., 2011; Liu et 

al., 2016a; Liu et al., 2015a). The future research direction is to further investigate how to make use 

of the multiple diverse templates and detect features from highly consistent regions for exploring 

some biologically meaningful results. 

Finally, since we currently only focus on the ROI features, it is helpful to integrate the 

non-handcrafted features using deep learning techniques as well. Another interesting future 

direction is to investigate both visual and represented features to facilitate the diagnosis and 

prognosis for the clinical applications.  

Conclusion 
In summary, this paper presents a novel feature selection method with consistent metric 

constraint for the diagnosis of AD. This method is used to combine complementary information 

provided by multi-modal neuroimaging data for feature selection and further classification. 

Specifically, we devise regularization terms that consider structure information such as feature 

association and sample similarity inherent in this analysis framework. In our extensive 

experiments on ADNI datasets, we demonstrate the effectiveness of the proposed method by 

comparing it with the state-of-the-art methods. We believe this work will further motivate the 

exploration of multi-modal models that would improve the predictions in AD. 
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