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Abstract

The accurate diagnosis of Alzheimer’s disease (AD) and its early stage, e.g., mild cognitive
impairment (MCI), is essential for timely treatment or possible intervention to slow down AD
progression. Recent studies have demonstrated that multiple neuroimaging and biological
measures contain complementary information for diagnosis and prognosis. Therefore,
information fusion strategies with multi-modal neuroimaging data, such as voxel-based
measures extracted from structural MRI (VBM-MRI) and fluorodeoxyglucose positron
emission tomography (FDG-PET), have shown their effectiveness for AD diagnosis. However,
most existing methods are proposed to simply integrate the multi-modal data, but do not make
full use of structure information across the different modalities. In this paper, we propose a
novel multi-modal neuroimaging feature selection method with consistent metric constraint
(MFCC) for AD analysis. First, the similarity is calculated for each modality (i.e. VBM-MRI
or FDG-PET) individually by random forest strategy, which can extract pairwise similarity
measures for multiple modalities. Then the group sparsity regularization term and the sample
similarity constraint regularization term are used to constrain the objective function to conduct
feature selection from multiple modalities. Finally, the multi-kernel support vector machine
(MK-SVM) is used to fuse the features selected from different models for final classification.
The experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) show that
the proposed method has better classification performance than the start-of-the-art
multimodality-based methods. Specifically, we achieved higher accuracy and area under the

curve (AUC) for AD versus normal controls (NC), MCI versus NC, and MCI converters (MCI-
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C) versus MCI non-converters (MCI-NC) on ADNI datasets. Therefore, the proposed model
not only outperforms the traditional method in terms of AD/MCI classification, but also
discovers the characteristics associated with the disease, demonstrating its promise for

improving disease-related mechanistic understanding.
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Introduction

In recent years, the incidence of brain diseases worldwide has been rising. Alzheimer's
disease (AD) is one of the most common brain diseases, and its clinical manifestations are
mainly memory impairment and loss of reasoning cognitive ability, accompanied by language
and movement disorders. At present, AD has become the fifth leading cause of death in the
elderly. In a 2018 report from the Alzheimer's Association of the United States, National Center
for Health Statistics has shown the statistics information on the rate of change in mortality from
multiple risky diseases in the United States. That is, between 2000 and 2015, the number of
lethal deaths of many risk diseases has achieved negative growth, while the incidence of AD
has increased by 123% (Association, 2018). According to another survey report (Association,
2017), one case of Alzheimer's disease will be diagnosed every 33 seconds in 2050, with nearly
one million new cases each year. AD has become one of the major diseases that endanger the
health of the elderly and affect the sustainable development of society. However, the efficacy
of drugs for the treatment of AD has been limited to date, and no treatment has been reported
to reverse or prevent the progression of AD.

Therefore, the measurement of sensitive markers in the early stages of the disease can help
researchers and clinicians develop new treatments and test their effectiveness. Recently, various
measurements such as structural atrophy, pathological amyloid deposition, and metabolic
changes have already been shown to be sensitive to the diagnosis of AD and MCIL
Neuroimaging techniques (Rathore et al., 2017; Sui et al., 2012; Ye et al., 2011) provide great
help for the discovery of AD-related brain regions of interest (ROIs), which is a powerful
instrument for the diagnosis of neurodegenerative diseases. For example, voxel-based measures
extracted from structural MRI (VBM-MRI) and fluorodeoxyglucose positron emission
tomography (FDG-PET), have been shown to be useful for investigating the neurophysiological
features of AD and mild cognitive impairment (MCI) (Chetelat et al., 2003; Cohen and Klunk,
2014; Foster et al., 2007; Zhang et al., 2015).

In recent decades, machine learning and pattern recognition methods, including sparse

learning, graph theory, and classification, have been widely used in neuroimaging analysis for



AD and MCI diagnosis (Lei et al., 2017; Sanz-Arigita et al., 2010; Wang et al., 2018; Ye et al.,
2011). However, some existing studies focus on extracting features from a single modality. For
example, the researchers extracted some features from certain ROI, such as the hippocampus
on structural MRI (Frisoni et al., 2010) for the classification of AD (Gerardin et al., 2009; Wang
et al., 2006). While in addition to structural MRI, PET images can also be used for classification
of AD and MCI (Chetelat et al., 2003; Cohen and Klunk, 2014; Foster et al., 2007; Hinrichs et
al., 2009).

As the brain has very complex structure and function, acquiring data from single modality
does not provide sufficient feature information for diagnosis. In recent years, with the
development of neuroimaging technology, multi-modal data can be collected during various
examinations of subjects, providing a source of data for the diagnosis of AD. Different modality
data can provide brain information from different perspectives. For example, structural MRI
provides information related to brain tissue types, while PET measures glucose brain metabolic
rate. Numerous studies have shown that (Ahmed et al., 2017; Gray et al., 2013; Lei et al., 2017;
Liu et al., 2015b; Teipel et al., 2015; Tong et al., 2017; Zhang et al., 2011; Zhu et al., 2015) a
variety of neuroimaging data can provide complementary information, and the information
fusion from different modalities can enhance diagnostic performance. Therefore, the accuracy
of using multi-modal data for AD diagnosis is better than that of single modality. For example,
Zhang et al. (Zhang et al., 2011) and Liu et al. (Liu et al., 2015b) used two modal data (including
MRI and PET) for AD diagnosis. Lei et al. (Lei et al., 2017) used MRI, PET and cerebrospinal
fluid (CSF) for regression and classification of AD. Tong et al.(Tong et al., 2017) used MRI,
PET, CSF and genes for AD/MCI classification.

Although the current AD diagnostic methods involved with multi-modal data have good
effects, there are still some problems that may limit the classification performance. When we
extract features from neuroimaging, there are a lot of redundancy or unrelated features, which
will lead to poor classification performance. Therefore, how to remove redundant or unrelated
features is a very important step in AD diagnosis. At this stage, there are some feature selection
methods to detect the brain features associated with AD. For example, Liu et al. (Liu et al.,
2016a; Liu et al., 2015a) used the hierarchical relationship between different template data to
establish a structurally constrained integrated learning AD diagnostic prediction model. Peng
etal. (Pengetal., 2018) used [; ,-norm to construct the sparsity-constrained objective function
and projected it into a new space for AD diagnosis classification. Zhu et al.(Zhu et al., 2015)
combined two subspace learning methods, namely linear discriminant analysis and the
projection is locally maintained to select features in the brain image. Jie et al. (Jie et al., 2015)
proposed a manifold regularization multi-task feature learning method, which uses multi-task
learning and manifold-based Laplacian regularization to maintain the intrinsic correlation

between multiple modal data, thereby adding more discriminative features. Zu et al. (Zu et al.,



2016) proposed a label-aligned multi-task feature learning method which adds a new label-
aligned regularization term to the objective function of standard multi-task feature selection to
ensure that all multi-modal subjects with the same class labels should be close in the new
feature-reduced space.

However, one drawback of existing methods is that they do not take full advantage of the
similarity relationships between samples. This relationship is a significant prior knowledge,
because there are certain differences and commonalities between samples, and it is important
to make rational use of this information. In many practical problems, it is critical to represent
structural information between samples consistently. As the data types of different modalities
are different, if the complex relationship between samples is expressed by Euclidean distance
or other simple metrics, the structure or topology information will be lost. In simple terms, a
reasonable representation of the complex relationship between samples facilitates the selection
of more distinguishing features and further improves subsequent classification performance. In
many applications, researchers have used a similarity matrix generated by random forests
(Breiman, 2001) to represent complex relationships between samples. For example, Tong et al.
(Tong et al., 2017) constructed a graph using a similarity matrix and then merged the multi-
modal data using a graph fusion method. Gray et al. (Gray et al., 2013) used the similarity
between samples to construct a manifold learning model and then used random forests for
classification. Here, we use the random forest approach to provide similarity measures for
multi-modal data.

In this paper, we propose a novel multi-modal neuroimaging feature selection method with
consistent metric constraint (MFCC). The unique loss function is designed to include a
regularization term based on the similarity of multi-modal samples, which clearly shows that
the samples have a similarity relationship in each modality. Specifically, our proposed method
consists of three steps: 1) calculating the similarity between samples, 2) multi-modal feature
learning based on sample consistency metrics, and 3) multi-modal fusion and classification. We
first construct a similarity matrix for each modality through a random forest, reflecting the
similarity relationship between the samples. Then we treat feature learning in each modality as
a single learning task and transform multi-modal classification tasks into multi-task learning
(MTL) problems. MTL uses the correlation between tasks to learn multiple tasks and integrate
information for each task, thus enhancing single-task learning performance. Specifically, we
introduce a [, ;-norm for joint selection features, which can ensure that different morphological
features of the same brain region will be selected in different modalities. We then add
regularization terms based on sample similarity to the standard multi-task objective function.
Finally, we use a multi-kernel support vector machine (MK-SVM) to fuse the selected features
for final classification. In order to verify the proposed method, we conduct experimental

verification on ADNI-1 and ADNI-2 datasets. The results show that our proposed method is



more accurate than the start-of-the-art methods.

Materials and workflow

Datasets

In this study, we performed experimental validation using the Alzheimer's Disease
Neuroimaging Initiative (ADNI) datasets. ADNI was launched in 2003 by the National Institute
on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and non-profit organizations, with a $60
million five-year public-private partnership. 202 subjects with VBM-MRI and FDG-PET brain
imaging in ADNI-1 were used herein, including 51 AD subjects, 52 NC and 99 MCI subjects.
99 MCI patients can be further divided into two types, including 43 MCI converters and 56
MCI non-converters. In particular, MCI converters (MCI-C) will develop into AD patients
within 18 months, while MCI non-converters (MCI-NC) will remain in its original state. Table

1 lists the demographic characteristics of subjects in the ADNI-1 dataset.

Table 1. Demographic characteristics of the subjects in ADNI-1 dataset

Subjects AD NC MCI-C ~ MCI-NC
Number 51 52 43 56
Gender(M/F) 33/18 34/18 28/15 39/17
Age 75.2+7.4 75.3+£52 75.8+6.8 74.7£7.7
Education 14.7£3.6 15.843.2 16.1£2.6 16.1£3.0
MMSE 23.842.0 29.0+£1.2 26.6+1.7 27.5%£1.5
CDR 0.7£0.3  0.0£0.0 0.5+0.0 0.5+0.0

The values are denoted as mean + standard deviation. MMSE=Mini-Mental State Examination,
CDR=clinical dementia score, AD=Alzheimer’s disease, NC=Normal Control, MCI-C=Mild
Cognitive Impairment conversion, MCI-NC=Mild Cognitive Impairment non-transformation.

At the same time, we also analyzed the updated dataset ADNI-2. The ADNI-2 assessed
participants from the ADNI-1 phases in addition to new participant groups (including elderly
controls, significant memory concern (SMC), early mild cognitive impairment (EMCI) subjects,
late mild cognitive impairment (LMCI) subjects, and AD patients) in 2011
(http://adni.loni.usc.edu/about/). Compared to the ADNI-1 dataset, the ADNI-2 dataset divides MCI
into three subtypes, including SMC, EMCI, and LMCI.

The diagnostic criteria for ADNI-1 and ADNI-2 are consistent. Diagnosis was made using the
standard criteria described in the ADNI-2 procedures manual (http://www.adni-info.org). Briefly,
NC participants had no subjective or informant-based complaint of memory decline and normal
cognitive performance. SMC participants had subjective memory concerns as assessed using the
Cognitive Change Index (CCI; total score from first 12 items >16), no informant-based complaint
of memory impairment or decline, and normal cognitive performance on the Wechsler Logical

Memory Delayed Recall (LM-delayed) and the Mini-Mental State Examination (MMSE) (Risacher



etal., 2015); EMCI participants had a memory concern reported by the subject, informant, clinician,
abnormal memory function approximately 1 standard deviation below normative performance
adjusted for education level on the LM-delayed, an MMSE total score greater than 24;Besides a
subjective memory concern as reported by subject, study partner or clinician, Clinical Dementia
Rating (CDR) on LMCI subjects was 0.5 and Memory Box (MB) score must beat least 0.5; MMSE
score on AD should be between 20 and 26 and CDR should be 0.5 or 1.0.

The ADNI-2 dataset includes VBM-MRI and FDG-PET scans from 913 subjects, including
160 AD, 82 SMC, 460 MCI and 211 NC participants. 460 MCI patients have two phases: EMCI
and LMCI. Table 2 lists the demographic characteristics of subjects in the ADNI-2 dataset.

Table 2. Demographic characteristics of the subjects in ADNI-2 dataset

Subjects NC SMC EMCI LMCI AD
Number 211 82 273 187 160
Gender(M/F) 190/101 33/49 153/119 108/79 95/65
Age 76.1+6.5 72.5+5.7 71.5+7.1 73.9+8.4 75.18+7.9
Education 16.4+2.6 16.8+2.7 16.1£2.6 16.4+2.8 15.86£2.8
MMSE 29.0+1.2 29.0+1.2 28.4+1.5 27.7+1.7 24.0+2.6
CDR 0.0+0.1 0.0+0.0 0.5+0.1 0.5+0.1 0.7+0.3

The values are denoted as mean + standard deviation. NC= Normal Control, SMC=Significant
Memory Concern, EMCI=Early Mild Cognitive Impairment, LMCI=Late Mild Cognitive
Impairment, AD=Alzheimer’s disease.

In our work, we perform image preprocessing on VBM-MRI and FDG-PET in the ADNI-
1 dataset. First, the anterior commissure (AC)-posterior commissure (PC) correlation is
implemented on all images, and then the N3 algorithm (Sled et al., 1998) is used to correct the
intensity inhomogeneity. Next, we combine brain surface extractor (BSE) (Shattuck et al., 2001)
and brain extraction tool (BET) (Smith, 2002) to perform skull stripping on structural MR
images. The skull stripping results are further manually performed to ensure the skull clean.
After removal of the cerebellum, FMRIB’s Automated Segmentation Tool (FAST) in the
FMRIB’s Segmentation Library (FSL) package (Zhang et al., 2001) is used to segment the
structural MR images into three different tissues: gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF). Later, we use 4D (hierarchical attribute matching mechanism for
elastic registration) HAMMER (Shen et al., 2003), a fully automated 4D map warping method
that obtain images of subject markers based on a template with 93 manually labeled ROIs
(Kabani et al., 1998). All images based on the 93 labeled ROIs in the template can then be
tagged. For each of the 93 ROIs in the labeled MR image, we calculate the volume of the GM
as a feature. For FDG-PET, we first align them with the corresponding MR images of the same
object using a rigid transformation and then calculate the average intensity of each ROI region
in the FDG-PET image as a feature. Finally, for each sample, we totally obtain 93 features from
the VBM-MRI image, and another 93 features from the FDG-PET image.

For the ADNI-2 dataset, we align the preprocessed multi-modal image data (VBM-MRI,



FDG-PET) with the same visit scan. Then, in the standard Montreal Institute of Neurology
(MNI) space, asa 2 X 2 X 2mm3 voxel, we create normalized gray matter density maps from
MRI data, and register the FDG-PET scans into the same space by the Statistical Parametric
Mapping (SPM) software package (Tzourio-Mazoyer et al., 2002) . Based on the MarsBaR
anatomical automatic labeling (AAL) map (Ashburner and Friston, 2000), the average gray
matter density is measured at 116 ROI levels. The FDG-PET glucose utilization rate and ROIs
volume were further extracted. After removal of the cerebellum, imaging measurements of each
modality (VBM-MRI, FDG-PET) with 90 ROIs are used as quantitative traits in our
experiments.

Analysis workflow

Figure 1 illustrates the framework of AD versus NC identification, including four steps:
data preprocessing, feature extraction, feature selection and classification. The innovation of
this method is to make full use of the global structure information of the data and incorporate

the similarity-metric constraint between samples.
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Figure 1. The workflow of AD/MCI versus NC identification. The framework comprises
four steps: data preprocessing, feature extraction, feature selection and classification. First,
VBM-MRI and FDG-PET scans are acquired and preprocessed under the pipeline, and the
features are extracted from brain ROIs using template. Then the features are selected by the
proposed method in this paper, and finally we make predictions using MK-SVM classifier.

Method

We hypothesize that there is a similarity structure among samples in an AD study, and we
can map this relationship into the form of a graph. In the constructed graph, the vertices are
used to represent the samples, the distance between the samples is used to represent the edge.
Thus, the graph is undirected, and the associated matrix of the graph is symmetrical.

However, when solving multi-modal problems with more complex sample relationships,
it is more significant to find appropriate inter-sample measurements. If we cannot find a
reasonable way to measure multi-modal data, it will lead to inconsistent weights between
modalities. In this paper, we want to utilize the random forest method to measure the

relationship between samples, which has been widely used in various applications.



Graph for similarity learning

We calculate the distance between samples and convert it (i.e. dissimilarity) to a similarity
measurement. Suppose we have n samples, each with s modalities, and d features
extracted from each modality. When we calculate the similarity using the features from the
v-th modality, we can construct graph GV = (V?,E?) to describe the relationship between
the n samples of the v-th modality, where the set V'V of vertices correspond to n samples
of the v-th modality, the set EV of edges capture the pairwise similarity measures among n
samples. At this time, we use the adjacency matrix LY with weight and sizes of n X n to
represent the similarity between samples, where LY(a,b) is used to represent the similarity
between sample a and sample b from the v-th modality. The similarity matrix LY can be
calculated in different ways. A common method is to calculate the distance between a pair of
samples using the Euclidean distance and normalize it to form the similarity matrix.

Random forests can extract pairs of similarity measures for multiple forms, and random
forests provide a consistent way of combining different types of feature data. For example, the
similarity derived from random forests has been successfully applied to tumor clustering tasks
(Shi and Horvath, 2006). To calculate the similarity between sample a and sample b using a
random forest, the measurements of the two samples are passed under each tree in the forest.
The similarity LY(a, b) is initialized to zero. If sample a and sample b are at the same end
node of the tree, their similarity LV(a, b) increases by 1. The final similarity matrix is
normalized by dividing LV by the total number of trees in the forest. Therefore, the diagonal
elements of the similarity matrix LV are equal to one, and the other elements are all numbers
greater than zero and less than one. Here we use the random forest MATLAB toolbox (Breiman,
2006) to achieve sample similarity calculations.

Figure 2 shows an example of a similarity matrix for different modalities. As we can see,
charts built with different data types show very different connection patterns, which can provide

complementary information for AD versus NC classification.
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Figure 2. Sample similarity matrix display



Construct equations

The essential of the multi-task learning (Caruana, 1997) is to solve several related tasks at
the same time and use the related information across multiple tasks to improve the performance
of the models. In recent years, multi-task learning has been widely used in many fields,
including image classification (Luo et al., 2013), text classification (Liu et al., 2016b),
bioinformatics (Xu and Yang, 2011), and so on.

In this study, single modal neuroimaging feature selection and classification can be
considered as a single task. Suppose we have s learning tasks (i.e., s modal). X' =
[xV,xY, ..., x5]T € RN*? is represented as the training data matrix in the v-th task (i.e., the
v-th modal), where x; represents the feature column vector of the v-th task of the
corresponding i-th sample, d is the dimension of the feature, and N is the sample quantity.
Let Y = [y1, V2, ...,¥n]T € RN be the corresponding label vector for N samples. The value
of y; is 1 or -1 (i.e., patient or normal control). It is worth noting that the labels of different
morphologies from the same sample are identical. We use a linear function to fit the class label,
so the objective function of the multi-task feature selection model is as follows (Argyriou et al.,
2008):

min Sy D5o1 O = w2 + AUWllaa (1)
We can write the variables in Eq (1) as vectors, and the formula is as follows:

1
m\)\l/n;Zf;ﬂ”Y_Xva”% + AWl 2)

where w?” € R? is the vector of the regression coefficients associated with the v-th modality.
All s modal vectors form a weight matrix W=[w!,w?,...,w®] € R¥*S. In Eq (2), [|Wll, is

the [, ;-norm of the matrix W, which is defined as follows: ||[W]|;; = ?=1||Wi||2, where the

superscript i of w' corresponds to the i-th row of the matrix W, and its function is to
combine multiple modalities. The constraint of [, ;-norm encourages most of the feature
weight coefficients to be zero, and only a small number of feature weight coefficients are non-
zero. These non-zero features are the shared features of all tasks. In particular, the optimal
solution will assign a relatively large weight to the feature providing the classification
information, and assign zero or small weight to the feature that does not provide the
classification information or provides less information. For feature selection, only those
features with non-zero weights are retained. In other words, the specification combines multiple
tasks and ensures that a small number of common features can be selected together across
different tasks, taking into account the correlation between different tasks. The parameter A
before the [, ;-norm is the coefficient of the regularization term, which is used to control the

relative weight of the two items. It is worth noting that when only one task (i.e., feature selection



on single modal brain image data) is learned, the loss term ||Y — Xw||3 is represented as the
single task and the [, ;-norm is degenerated into [;-norm. Thus, Eq (2) will also degenerate to
the least absolute shrinkage and selection operator (LASSO) model (Tibshirani, 2011).
Based on the sample similarity matrix, we define the sample similarity regularization as
follows:
A= wTX"LXw (3)
Intuitively, we want to preserve the global structural information of the data in the original
feature space and represent it using a similarity matrix generated by random forest. We construct
a similarity matrix in each modality to represent the structure of the near and far relation of the
data. So we can define the multi-modal feature selection objective function based on sample

similarity as follows:
o1
min > Y5 llY = XwVlI3 + AWl + X5 0" (Xw?)TL (X*w?) 4)

where W=[wl,w?], s = 2. LV is the sample similarity matrix of the v-th modality. The first
term in Eq (4) is the empirical error on the training set calculated by the least squares method,
and the second term is the [,;-norm, the regularization parameter A controls the group
sparsity in the solution. The last term is the similarity regularization constraint, and ¢V is the
regularization parameter to balance the penalties from different modalities.

In our model, using the multi-tasking or multimodal correlation, we can not only jointly
select the shared features from different modalities, but also preserve the similarity information
between samples in each modality by adding sample similarity regularization terms. The
existing multi-modal feature selection algorithm only considers the pairwise relationship
between samples or only considers the information between several points in the vicinity of the
sample, only uses local information and ignores the global similarity relationship between the

sample sets as a whole.

Optimization

As the objective function is not-differentiable and not smooth, there is no way to calculate
the gradient of some points of the objective function, so the equation cannot be solved by the
gradient descent method. At this stage, there are many ways to solve the objective function
formula (4), such as Alternating Direction Method of Multipliers (ADMM) and Accelerated
Proximal Gradient (APG) (Chen et al., 2009). In this paper, we use the APG algorithm to solve
our problem.

First, we divide the Eq (4) into smooth terms f;(W) and non-smooth terms f,(W):
fLOW) =S E5allY = XPWPlI3 + 5y 0¥ (XPw?)TLY (X*w?) ()

fz(W) = /1||W||2,1 (6)



Then we use formula (7) to approximate f; (W) + f2(W)
! 2
Que(WWO) = (WD) + (W = WO V(WD) + 2 [W=wWO|| "+ £W) (D)
where (X;,X,) represents the trace of the matrix X;"X,, |||z is the Frobenius norm,
Vfl(W(t)) is the gradient of f; (W) at point W® of the t-th iteration, and at is the step

factor of the t-th iteration, the value of which is obtained by linear search. The update step for

the APG algorithm is as follows:

2
. [1 1 1
WED = argmin (5 ”W— (W(t) —JVfl(W(t)D” +;fz(W)) (8)
w F
And the update step can be solved by formula (8):

p® — w® 4 %n(w“) — WD) 9)

where y, = zi , and the convergence speed of this algorithm is O(T—12) , T 1is the maximum

+t

number of iterations of the calculation.

Classification

We use the MK-SVM (Zhang et al., 2011) to classify the data after feature selection. The
prior studies have shown that MK-SVM has a good classification performance for multi-modal
data. Given a training set, the kernel function of the wv-th modal is k”(x}, x}’) =
oV (x} )TdJ"(x}’). We use linear kernels to fuse multi-modal data with a kernel function of
k¥ (xi, %) = Xp=1 Bk (x{,x}), where B7 is the weight coefficient of the v-th modality.
The dual form of the MK-SVM is as follows:

N
1 y VIV vV L,V
max ) ai—>5 /) %iqGyilyj BUkY(xi, x})
i,j v=1

i=1
s.t.YN a;y;, =0, (10)
a;=>0,i=12,..,N

where a is a Lagrange multiplier. In this paper, the SVM classifier can be solved by using

LIBSVM toolbox (Chang and Lin, 2011). We find the optimal value of B by cross-validation

on the training set by grid search in the range of [0,1].

Performance evaluation

Cross-validation is a commonly used method in machine learning to build models and validate
model parameters. As the number of subjects is limited, cross-validation is to reuse data to evaluate

the quality of model prediction. In this study, we used 10-fold cross-validation that could reduce the



bias by averaging the results of different group testing. Specifically, we divided the dataset into
10 parts. In each cross-validation experiments, we took nine of them as a training set and one
as a test set, so that we performed 10 experiments independently, eliminating errors caused by
random division. We used MRI and PET brain image data from ADNI-1 to verify the model in
three sets of comparison experiments, including AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-
NC. Three sets of comparative experiments, including AD vs. NC, LMCI vs. NC, and EMCI
vs. LMCI were also performed on the same model using ADNI-2 dataset. We used accuracy
(ACCQ), sensitivity (SEN), specificity (SPE), the area under the curve (AUC), p-value and ROC
curve as evaluation indicators.

Our proposed multi-modal neuroimaging feature selection with consistent metric
constraint (denoted as MFCC) method is compared with several existing popular methods,
including directly concatenating the features of MRI and PET into a vector and using the SVM
classification, involving 1) methods without feature selection (denote as Baseline-SVM), 2)
LASSO method (Tibshirani, 2011) (denote as LASSO-SVM), and 3) t-test method, the p-value
significance threshold of the t-test is chosen to be 0.05. We also comprise the following multi-
kernel methods (Zhang et al., 2011) (denote as t-test-SVM), 1) the multi-kernel method without
feature selection (denoted as Baseline-MK-SVM), 2) LASSO-based (Tibshirani, 2011) multi-
kernel method (denoted as LASSO-MK-SVM), and 3) multi-kernel method based on t-test
(denoted as t-test-MK-SVM). It is classified using an SVM with a linear kernel. We also
compare the feature selection method with the [, ;-norm (denoted as Group Lasso-MK-SVM),
the similarity matrix by the Euclidean distance calculation (denoted as Euclid-MK-SVM) and
the hypergraph strategy (denoted as Hypergraph-MK-SVM). For model selection, the
regularization parameters of all methods are selected from the range of

{107°,1078, ...,10,102}.

Results

The detailed classification results on ADNI-1 dataset are summarized in Table 3. Figure 3
plots the ROC curves of all the methods. Specifically, the accuracy values of our proposed
methods for AD versus NC, MCI versus NC, and MCI-C versus MCI-NC are 97.60%, 84.47%
and 77.76%, respectively on the ADNI-1 dataset. Correspondingly, the AUC values of our
proposed method are 0.98, 0.86 and 0.71 respectively.



Table 3. Classification performance of different methods on ADNI-1

(a) AD versus NC
Method ACC SEN SPE AUC P-value
Baseline-SVM 89.35+8.83  90.39 88.27 094 <0.001
LASSO-SVM 87.57#9.12  89.02 86.15 0.95 <0.001
t-test-SVM 86.75£10.33 83.92 89.42 093 <0.001
Baseline-MK-SVM 94.53+6.55 9490 94.04 096 <0.001
LASSO-MK-SVM 93.74+7.81 95.00 91.60 0.97 <0.001
t-test-MK-SVM 93.45+7.35 9490 91.92 096 <0.001
Group Lasso-MK-SVM  94.53+6.80 94.90 94.04 0.96 <0.001
Euclid-MK-SVM 95.08+6.77 97.25 92.88 097 0.004
Hypergraph-MK-SVM  94.77+6.39  97.25 9231 097 <0.001
MFCC-MK-SVM 97.60+5.03 98.43 96.73 0.98 --

(b) MCI versus NC
Method ACC SEN SPE AUC P-value
Baseline-SVM 70.75+10.04 79.80 53.46 0.76 <0.001
LASSO-SVM 72.46+11.05 83.03 52.31 0.78 <0.001
t-test-SVM 72.79+9.53 8596 47.69 0.77 <0.001
Baseline-MK-SVM 80.09+8.24 87.47 6596 0.79 <0.001
LASSO-MK-SVM 81.89+8.89 90.24 62.27 0.79 0.022
t-test-MK-SVM 81.7119.43  91.82 62.31 0.79 0.019
Group Lasso-MK-SVM  79.76+6.91 95.76 49.23 0.77 <0.001
Euclid-MK-SVM 81.48+8.48 89.49 66.15 0.80 0.007
Hypergraph-MK-SVM  81.20+6.55 94.14 56.54 0.75 <0.001
MFCC-MK-SVM 84.47+6.83 94.04 66.15 0.81 --

(c) MCI-C versus MCI-NC
Method ACC SEN SPE AUC P-value
Baseline-SVM 53.95+15.12 44.65 61.07 0.59 <0.001
LASSO-SVM 54.57+14.87 45.12 61.79 0.60 <0.001
t-test-SVM 50.76+13.74 34.42 63.39 0.57 <0.001
Baseline-MK-SVM 69.17+12.77 57.44 78.04 0.66 <0.001
LASSO-MK-SVM 71.88+13.36 61.97 76.00 0.66 <0.001
t-test-MK-SVM 63.05+£12.60 50.70 7232 0.59 <0.001
Group Lasso-MK-SVM  70.86+11.37 62.33 77.14 0.65 <0.001
Euclid-MK-SVM 72.00+12.97 69.77 73.57 0.70 <0.001
Hypergraph-MK-SVM  73.64+11.19 66.28 79.11 0.74 0.008
MFCC-MK-SVM 77.76+10.59 67.44 85.54 0.76 --
Table 4. Classification performance of different methods on ADNI-2

(a) AD versus NC
Method ACC SEN SPE AUC P-value
Baseline-SVM 91.13£5.04 92.37 89.50 0.95 <0.001
LASSO-SVM 85.90+5.51 89.34 81.38 0.92 <0.001
t-test-SVM 79.60+6.93 84.31 73.38 0.86 <0.001
Baseline-MK-SVM 91.72+4.15 93.36 89.56 0.94  0.006
LASSO-MK-SVM 86.82+4.57 89.57 82.66 0.90 <0.001
t-test-MK-SVM 90.06+4.35 92.75 86.50 0.93 <0.001
Group Lasso-MK-SVM  89.92+4.42 93.65 85.00 0.93 <0.001
Euclid-MK-SVM 91.72+4.15 93.36 89.56 0.94 0.006
Hypergraph-MK-SVM  91.19+4.12 94.17 87.25 094 <0.001
MFCC-MK-SVM 93.72+3.38 95.17 91.81 0.95 --




(b) LMCI versus NC

Method ACC SEN SPE AUC P-value
Baseline-SVM 69.23£7.25 7446 6337 0.74 <0.001
LASSO-SVM 66.61£6.60 71.66 6096 0.71 <0.001
t-test-SVM 62.81£6.12 7038 5428 0.65 <0.001
Baseline-MK-SVM 74.35:5.99 81.42 6642 0.77 <0.001
LASSO-MK-SVM 71.4616.00 76.86 62.72 0.71 <0.001
t-test-MK-SVM 73.00+5.76 81.52 63.42 0.75 <0.001
Group Lasso-MK-SVM  74.35+6.15 81.42 6642 0.77 <0.001
Euclid-MK-SVM 74.35:599 8142 6642 0.77 <0.001
Hypergraph-MK-SVM 7532579 85.07 64.39 0.75 <0.001
MFCC-MK-SVM 78.47:5.61 85.88 70.16 0.78 --
(c) EMCI versus LMCI

Method ACC SEN SPE AUC P-value
Baseline-SVM 64.08£6.79 76.48 4599 0.66 <0.001
LASSO-SVM 63.55£7.13 7832 42.03 0.66 <0.001
t-test-SVM 63.32£5.35 87.33 2829 0.64 <0.001
Baseline-MK-SVM 70.01£5.52 8520 47.86 0.68 <0.001
LASSO-MK-SVM 68.43+4.83 8892 3731 0.66 <0.001
t-test-MK-SVM 69.10+5.25 85.05 45.83 0.66 <0.001
Group Lasso-MK-SVM  70.22+4.40 90.62 4043 0.68 <0.001
Euclid-MK-SVM 70.01£5.52 85.20 47.86 0.68 <0.001
Hypergraph-MK-SVM  71.45+4.43 90.95 4299 0.68 0.001
MFCC-MK-SVM 73.87:4.77 90.55 49.52 0.70 --

We have treated the ADNI-2 as a larger independent dataset and validated our proposed method
on it. The classification results on the ADNI-2 dataset are summarized in Table 4. Figure 4 plots
the ROC curves of all the methods. Specifically, the accuracy values of our proposed methods
for AD versus NC, MCI versus NC, and MCI-C versus MCI-NC are 93.72%, 78.47% and
73.87%, respectively on the ADNI-2 dataset. Correspondingly, the AUC values of our proposed
method are 0.95, 0.78 and 0.7, respectively. In addition, we have made a competing test that our
proposed approach can also achieve better performances no matter what processing framework and
template parcellation have been applied to dataset.

Besides MFCC-MK-SVM, we also adopt other different classifiers: random forest (RF)
and K nearest neighbor (KNN) algorithm. The experimental results for the different classifiers
in the ADNI-1 data set are presented in Table 5. The experimental results for the different
classifiers in the ADNI-2 dataset are presented in Table 6. We use random forest as the classifier,

and the number of trees in the random forest is set to 1000, and the number of features selected

in the RF isvd. In the KNN algorithm, we set the parameter K to 5. The experimental results

show that the classifier MK-SVM can achieve better performances.



Table 5. Comparison of different classifiers experimental results on ADNI-1

Method AD versus NC MCI versus NC MCI-C versus MCI-NC
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

RF 93.82 8647 72.12 090 79.16 9091 26.15 0.71 70.72 56.05 5429 0.59

KNN 95.54 8235 7385 081 8240 8596 29.62 0.53 75.04 5442 49.11 0.60

MK-SVM  97.60 98.43 96.73 0.98 84.47 94.04 66.15 0.81 77.76 6744 8554 0.76

Table 6. Comparison of different classifiers experimental results on ADNI-2

Method AD versus NC LMCI versus NC EMCI versus LMCI
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

RF 87.03 84.60 67.06 082 7144 7294 4572 060 69.11 81.87 2936 0.58

KNN 84.37 82.23 6531 0.77 6981 64.69 47.65 0.55 69.14 69.49 3948 0.55

MK-SVM  93.72 95.17 91.81 0.95 78.47 8588 70.16 0.78 73.87 90.55 49.52 0.70

In summary, the accuracy of our proposed method is always superior to that of other
methods in the above cases, indicating that our method has better diagnostic performances. In
addition, in most cases, the proposed method achieves higher sensitivity than other methods. It
is worth noting that in our experiment, there is a significant difference between sensitivity and
specificity. For example, each method has relatively high sensitivity but low specificity. In
medical diagnosis, it is different to misjudge a patient as normal or to misjudge a normal sample
as a patient. Obviously, the former is costly and may delay the treatment. Therefore, high

sensitivity is very important for disease diagnosis and beneficial for medical diagnosis.
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Figure 3. The ROC curves of all comparison methods on ADNI-1: (a) the classification of AD
vs. NC, (b) the classification of NC vs. MCI, (c) the classification of MCI-C vs. MCI-NC. The
horizontal axis represents the false positive rate; the vertical axis represents the true positive
rate. The area under the curve (AUC) indicates the diagnosis power.

ROC for Classification of AD vs. NC ROC for Classification of LMCI vs. NC ROC for Classification of EMCI vs. LMCI
1 ‘ — e 1 —— 1 =
og[ il 0.9 e 09 T =
~ 08[ . 08 f o __ o8 B
2 |k 2 g 2
& o7 ‘ | g 07 & o7 .
2 osf 2 06 . 2 06
Lo
o 05F o 05 - o 05
é l -:’ t-test-SVM =
£ o) 2w Baseline-MK-SVM Z o4 7
g @ ] LASSO-MK-SVM ]
2 a 2
o 03] o 03 o 03
E = MK-SVM 2
= 02 = 02 SVM Hoozr
Hypergraph-MK-SVYM g
o MFCC-MK-SVM o1 g MFCC.MK-SVM o1 g
o " " . L o . . " : o . . . A
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
False positive rate (FPR) False positive rate (FPR) False positive rate (FPR)
(a) (b) (©)

Figure 4. The ROC curves of all comparison methods on ADNI-2: (a) the classification of AD



vs. NC, (b) the classification of LMCI vs. NC, (c) the classification of EMCI vs. LMCI. The
horizontal axis represents the false positive rate; the vertical axis represents the true positive
rate. The area under the curve (AUC) indicates the diagnosis power.

Discussion

The aim of this paper is to develop a novel method for addressing two issues, including 1)
selecting brain ROIs related to AD and 2) classification and diagnosis of AD. All experiments
have been carried out on the ADNI-1 and ADNI-2 datasets to demonstrate the effectiveness of
the proposed method MFCC. The results show that this method can not only classify AD using
complementary information from multimodal imaging data, but also help discover disease-
related biomarkers and understand the pathological mechanism of AD. In the following sections,
we will first discuss issues related to construction of random forest, similarity and consistency
measurement, multi-modal neuroimaging analysis, parameter settings, and clinical implications.
After that, we will discuss strengths of the proposed method in comparison with competing

methods as well as possible limitations warranting further investigation.

Construction of random forest

In this paper, the similarity matrix of each modality is constructed by random forest method.
Specifically, this experiment sets the parameters of the random forest as the default values (the
number of trees is 1000, and the number of features is vd). Now we discuss the influence of

the number of features in random forests in the experimental results. The results are shown in

Figure 5, where the number of features varies in the range of {1,?,1—\/5,\/3,\/3 * 2,4/d *

3,Vd * 4, d}. As can be seen from Figure 5, when the number of features is set to be Vd, the

experimental results are optimal. However, when the number of features is set to be Vd * 2,
the accuracy will rapidly decline. The fundamental reason may be that when there are too many
features, redundant features will affect the steady of the similarity, that is, the similarity matrix

calculated by random forest may not be able to describe the global relationship between samples.
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Figure 5. The classification results on the different number of features in the random forest.
The horizontal axis represents the number of features; the vertical axis represents the
classification accuracy for AD diagnosis.

Similarity metrics learning

Other methods are compared to sample similarity measured by random forests.
Specifically, the simple graph describes the relationship between pairs of samples, and the
hypergraph describes the high-order and multi-relationships between samples. The above two
methods can only capture the local relationship between samples, but cannot fully utilize the
information provided by the structural data, resulting in the loss of global information.

Sample similarity metrics learning via random forest has been used in a variety of
applications, such as disease classification and image segmentation (Mitra et al., 2014). In
addition, some recent studies have incorporated the computational similarity methods into
medical imaging analysis (Zimmer et al., 2017). Tong et al. (Tong et al., 2017) proposed a multi-
modal nonlinear graph fusion method. They used four modal data points to create four maps
using the similarity of random forests, and then used a nonlinear approach to fuse and reclassify
the four maps. However, they did not consider the inherent information of different data
modalities.

In contrast, our proposed multi-modal neuroimaging feature selection model with the
consistent metric constraint not only utilizes the global relationship between samples, but also
makes full use of the supplementary information provided by different modalities. The
experimental results have achieved higher classification accuracy and AUC, which have

demonstrated the effectiveness of our proposed method.

Multi-modal neuroimaging analysis

Recent studies on the diagnosis of AD have shown that different image modalities can



provide complementary information to help identify AD (Sui et al., 2012; Tong et al., 2017). It
has been reported that the fusion of multiple modalities can improve diagnostic performance.
A number of different approaches have been proposed to fuse biomarkers of different modalities
to produce more powerful classifiers (Gray et al., 2013; Zhang et al., 2011). The easiest way to
combine multi-modal data is to concatenate the features obtained from the different modalities
into the row vectors for each sample. For example, Walhovd et al. (Walhovd et al., 2010) took
the feature vectors as simple connection processing. Gray et al. (Gray et al., 2013) used multiple
random forest classifiers to fuse multi-modal data for classification of AD. In addition, the
multi-modal classification method of voting with multiple classifiers is a common ensemble
learning strategy, but may introduce bias due to the use of multimodality. An effective way to
fuse different modalities is based on kernel methods such as multi-kernel learning (Zhang et al.,
2011). A single kernel matrix is calculated for each modality, and a final kernel matrix is
obtained by their linear combination. Several results show that the latter can achieve better
performance than the former.

In order to evaluate the validity of multi-modal data classification, we performed
experiments and compared them with multi-modal and single modal data. We use the proposed
classification framework to compare the results of single modal and multi-modal experiments
on the ADNI-1 and ADNI-2 datasets. The corresponding results are shown in Table 7 and Table
8. As we have seen, the proposed method with two modalities has better performance than the
single modality. The results further indicate that multi-modal data contain supplemental
information and can achieve better classification performance than a single modality.

Table 7. Comparison of single model and multi-modal experimental results on ADNI-1

Method AD versus NC MCI versus NC MCI-C versus MCI-NC
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC
VBM-MRI 9238 81.18 90.58 0.92 81.35 8030 56.54 0.77 7294 4093 68.04 0.51
FDG-PET 92.66 87.65 84.04 093 79.70 8222 4692 0.69 7234 3372 6875 0.54
multi-modal  97.60 98.43 96.73 098 84.47 94.04 66.15 081 77.76 67.44 8554 0.76

Table 8. Comparison of single model and multi-modal experimental results on ADNI-2

Method AD versus NC LMCI versus NC EMCI versus LMCI
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC
VBM-MRI 86.63 90.28 81.81 093 7120 7801 6332 076 63.18 83.70 32.62 0.64
FDG-PET 80.06 86.02 7194 085 66.77 7545 5594 0.68 64.69 78.17 4444 0.63
multi-modal  93.72 95.17 91.81 0.95 78.47 85.88 70.16 0.78 73.87 90.55 49.52 0.70

The pathological changes from the same ROIs might be examined through structural and
functional radiologic imaging, simultaneously. Thus performing ROI feature selections across
multimodalities is very helpful to suppress noises in the individual modality features(Hao et al.,
2016; Li et al., 2019; Sarter et al., 1996).

The structural and functional features with great heterogeneity can provide essential

complementary information for brain disease analysis and diagnosis from the aspect of feature



fusion in ensemble learning community. Here, the different measurements from the same ROIs just
express the structural and functional changes, which has the characteristics of heterogeneity. The
experiment results have showed the joint feature selection from the same ROIs can achieve higher

performances, which has further demonstrated the effectiveness of ‘consistency’.

Parameter settings

In the objective function of our proposed model, there are three regularization parameters
(.., A,01,0?) that need to be set. They balance the relative contribution of the group sparsity
regularization term and the two-sample consistency metric regularization terms. In this section,
we study the effect of regularization parameters on classification performance. Specifically, we
first fix the value of A to 0.01 and change ¢! and 62 in the range of {107°,1078,...,102}.
Then we fix o' to 0.01 and change A and o2 in the range of {107°,1078, ...,102}. Finally,
we fixed the value of o2 to 0.01 and changed A and ¢! in the range of
{1079,1078, ...,10%}. The corresponding test results on ADNI-1 and ADNI-2 datasets are
shown in Figure 6 and Figure 7, respectively. We can see that the proposed method slightly
fluctuates when changing the parameter A, g1, 2, indicating that our proposed method is not

particularly sensitive to parameter values.

100 100

Figure 6. Accuracy of AD vs. NC classification with respect to different parameter values in
ADNI-1 dataset. We fix one parameter to 0.01 respectively and vary the other two in the range
of {107%,1078, ...,10%}.The X-axis and Y-axis represent the diverse value of parameters and
the Z-axis represents the classification accuracy for AD diagnosis.
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Figure 7. Accuracy of AD vs.NC classification with respect to different parameter values in
ADNI-2 dataset. We fix one parameter to 0.01 respectively and vary the other two in the range
of {107%,1078, ...,10%}.The X-axis and Y-axis represent the diverse value of parameters and
the Z-axis represents the classification accuracy for AD diagnosis.



Clinical implications

It is important to detect the risk ROIs associated with brain disease. We count the top 10
most frequently selected regions in the AD and NC classifications as the most discriminative
markers. The top 10 regions in the ADNI-1 dataset are Middle Temporal Gyrus Right, Lateral
Occipitotemporal Gyrus Left, Hippocampal Formation Left, Supramarginal Gyrus Right,
Precentral Gyrus Left, Amygdala Right, Angular Gyrus Left, Angular Gyrus Right, Precuneus
Left, Inferior Temporal Gyrus Right. The top 10 regions in the ADNI-2 dataset are Frontal Sup
Medial Left, Precuneus Left, Amygdala Right, Cuneus Left, ParaHippocampal Left, Frontal
Mid Orb Left, Cingulum Mid Left, Rectus Left, Cingulum Post Left, Hippocampus Left. As can
be seen from Figures 8 and Figure 9, most selected ROIs, such as Hippocampus and Amygdala
detected simultaneously from different template are consistent with previous studies. According
to the reports, the fact that Medial Temporal Lobe structures, including the Hippocampus, are
critical for declarative memory is firmly established (Tulving and Markowitsch, 1998).
Emotionally significant experiences tend to be well remembered, and the Amygdala has a
pivotal role in this process (Roozendaal et al., 2009). Thus, these evidences suggest that the
Limbic System (including Hippocampus and Amygdala)(Hopper and Vogel, 1976) should be

concerned in AD research.

(ADNI-1)
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Figure 9. Brain regions associated with AD using AAL template (Ashburner and Friston,
2000) (ADNI-2)

Comparison with previous studies

The MFCC algorithm proposed in this paper is compared with the ten state-of-the-art
competing AD classification algorithms using multi-modal data, including the traditional
machine learning methods and the deep learning methods, as shown in Table 9. In order to show
the effectiveness of our proposed method and the confidence of the results, we set the same
experiment dataset and processing framework following the previous works (Jie et al., 2015; Li et
al.,2015; Shietal., 2018; Suk et al., 2016; Suk and Shen, 2013; Zhang et al., 2011) Accordingly,
the ADNI-1 dataset and processing framework (including template parcellation) used in this paper
are the same as those used in the literature.

It is worth noting that the proposed method has performed better than at least one of the
deep learning methods in this comparison. In particular, the accuracy is higher than that of the
deep learning methods in AD versus NC classification when using only two imaging modality
(i.e., MRI and PET). One essential reason may be that our proposed method is able to fully
utilize the global structure information from the data. As the objective function is induced the
similarity constraint between different samples, the selected features are more informative and
discriminative in this optimization problem. While several existing deep learning models in
literature haven’t incorporated the sufficient prior information yet. Furthermore, when the
number of train samples is highly limited, the capacity of deep feature representations may be

weaker than that of original hand-draft features from candidate pathogenic brain regions.



Accordingly, in this study, it is more effective to design a simple but well-defined feature

selection model with to address the issue of AD classification.

Limitations

Despite its promising performance, the proposed method still has a few. First, our proposed
method utilizes two types of neuroimaging biomarkers (i.e., MRI and PET) from the ADNI
dataset. Actually, in the ADNI dataset, many subjects also have other type of biomarkers, such
as CSF, plasma, genetics data, and so on. In the future, we will examine whether adding more
modal can further improve performance.

Table 9. Comparison of the performance of different multi-modal classification algorithms

Algorithms Subjects Modalities AD ysNC MCIvsNC  MCI-Cvs MCINC — Alggrithm Description
MKL 51AD, 43MCI-C, MRI + PET 93.20 76.40 - The classical multi-kernel
(Zhang et al., 56MCI-NC, 52NC +CSF learning (MKL)  based
2011) algorithm
MTL 51AD, 43MCI-C, MRI + PET 95.03 79.27 68.94 The multi-task learning
(Jie et al., 2015) 56MCI-NC, 52NC +CSF (MTL) based algorithm
M-RBM 93AD, 76MCI-C, 128 MRI + PET 95.35 85.67 75.92 The pioneering multi-modal
(Suk et al., 2014) MCI-NC, 101 NC deep RBM (M-RBM) based
feature learning algorithms
SAE 85AD, 67MCI-C, 102 MRI + PET 91.35 90.42 - The SAE-based multi-modal
(Liu et al., 2015b) MCI-NC, 77 NC neuroimaging feature
learning algorithm
SAE-MKL 51AD, 43MCI-C, MRI + PET 98.80 90.70 83.30 The combination of SAE-
(Suk, 2013) 56MCI-NC, 52NC +CSF based feature learning and
MKL classification (SAE-
MKL) algorithm
DW-S2MTL 51AD, 43MCI-C, MRI + PET 95.09 78.77 73.04 The deep sparse multi-task
(Suk et al., 2016) 56MCI-NC, 52NC +CSF learning  based feature
selection (DW-S2MTL)
algorithm
Dropout-DL 51AD, 43MCI-C, MRI + PET 91.40 77.40 70.10 The dropout based robust
(Li et al., 2015) 56MCI-NC, 52NC +CSF multi-task deep learning
(Dropout-DL) algorithm
SDSAE 94AD, 121MCI, Longitudinal 91.95 83.72 - The SDSAE-based feature
(Shi et al., 2017) 123NC MRI learning algorithm
NGF 37AD, 75MCI, 35NC MRI + PET 98.10 82.40 77.90 The nonlinear graph fusion
(Tong et al., 2017) +CSF (NGF) based algorithm
+ Genetics
MM-SDPN-SVM 51AD, 43MCI-C, MRI + PET 97.13 87.24 78.88 The multi-modal stacked

(Shi et al., 2018)

56MCI-NC, 52NC

deep polynomial networks
and SVM

Secondly, we only studied the two-category problem and did not test the performance on
the multi-class problem. It is valuable to accurately diagnose patients at a certain stage of the
disease. In addition, we did not take advantage of quantitative outcomes in the ADNI dataset,
such as MMSE and other cognitive scores. It could be interesting to integrate more complicated
relationship learning in a multi-task learning framework rather than a single model for feature
selection.

Actually, it is quite different to determine which template should be selected as the best one
from multiple diverse templates. Due to potential bias associated with the use of a single template,
the feature representations generated from a single template may not be sufficient enough to reveal
the underlying complex differences between groups of patients and normal controls. Recently, some

researchers have proposed several methods that can take advantage of multiple diverse templates to



compare group differences more efficiently (Huang et al., 2019; Koikkalainen et al., 2011; Liu et
al., 2016a; Liu et al., 2015a). The future research direction is to further investigate how to make use
of the multiple diverse templates and detect features from highly consistent regions for exploring
some biologically meaningful results.

Finally, since we currently only focus on the ROI features, it is helpful to integrate the
non-handcrafted features using deep learning techniques as well. Another interesting future
direction is to investigate both visual and represented features to facilitate the diagnosis and

prognosis for the clinical applications.

Conclusion

In summary, this paper presents a novel feature selection method with consistent metric
constraint for the diagnosis of AD. This method is used to combine complementary information
provided by multi-modal neuroimaging data for feature selection and further classification.
Specifically, we devise regularization terms that consider structure information such as feature
association and sample similarity inherent in this analysis framework. In our extensive
experiments on ADNI datasets, we demonstrate the effectiveness of the proposed method by
comparing it with the state-of-the-art methods. We believe this work will further motivate the

exploration of multi-modal models that would improve the predictions in AD.
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