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Abstract—We propose an innovative machine learning
paradigm enabling precision medicine for prioritizing cogni-
tive assessments according to their relevance to Alzheimer’s
disease at the individual patient level. The paradigm tailors
the cognitive biomarker discovery and cognitive assessment
selection process to the brain morphometric characteristics of
each individual patient. We implement this paradigm using a
newly developed learning-to-rank method PLTR. Our empirical
study on the ADNI data yields promising results to identify and
prioritize individual-specific cognitive biomarkers as well as
cognitive assessment tasks based on the individual’s structural
MRI data. The resulting top ranked cognitive biomarkers
and assessment tasks have the potential to aid personalized
diagnosis and disease subtyping.

1. Introduction

Identifying structural brain changes related to cognitive
impairments is an important research topic in the study of
Alzheimer’s Disease (AD). Regression models have been
widely investigated to predict cognitive outcomes using
morphometric measures extracted from structural magnetic
resonance imaging (MRI) scans (e.g., [1]). Such studies
can improve the understanding of the neuroanatomical basis
of cognitive impairments, but are not designed to directly
impact clinical practice. To bridge this gap, here we propose
a new learning paradigm which ranks cognitive assessments
according to their relevance to AD using brain MRI data.

Cognitive assessments provide the most common clinical
routine for the diagnosis of AD. Given a large number of
cognitive assessment tools and a time-limited office visit,
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determining a proper set of cognitive tests is a widely
studied topic. Most existing studies aim to create selec-
tion guidelines for a targeted population [2]. In this work,
we propose a novel learning paradigm that embraces the
concept of precision medicine and tailors the cognitive
test selection process to the individual characteristics of a
given patient. Specifically, we perform an innovative ap-
plication of a newly developed learning-to-rank method,
denoted as PLTR [3], to the structural MRI and cognitive
assessment data of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort [4]. Using structural MRI measures
as the individual characteristics, we aim to not only identify
individual-specific cognitive biomarkers but also prioritize
them and their corresponding assessment tasks according to
AD-specific abnormality.

The uniqueness of our study is twofold. First, traditional
regression-based studies for prediction of cognitive perfor-
mances from MRI data focuses on identifying relevant imag-
ing biomarkers at the population level. The proposed new
model aims to identify AD-relevant cognitive biomarkers
tailored to each individual patient. Second, the identified
cognitive biomarkers and assessments are prioritized based
on the individual’s brain characteristics, which can be used
to guide the determination of cognitive assessments in a
personalized fashion in clinical practice. It has the potential
to enable personalized diagnosis and disease subtyping.

2. Materials

The study sample from the ADNI cohort [4] consists of
819 ADNI-1 subjects, including 229 healthy control (HC),
397 mild cognitive impairment (MCI, a prodromal stage of
AD) and 193 AD participants. Combining MCI and AD
subjects as patients, we have 590 cases and 229 controls.

Baseline 1.5T MRI scans and cognitive assessment data
were downloaded from the ADNI website (adni.loni.usc.
edu). MRI scans were processed using Freesurfer version 5.1
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as in [5], where volumetric and cortical thickness measures
of 101 regions relevant to AD were extracted to characterize
brain morphometry.

In this study, our analysis focuses on 151 measures
assessed in 15 neuropsychological tests. For convenience,
below we call these measures as cognitive features and
these tests as cognitive tasks. The 15 studied tasks in-
clude Alzheimer’s Disease Assessment Scale (ADAS), Clin-
ical Dementia Rating Scale (CDR), Functional Assessment
Questionnaire (FAQ), Geriatric Depression Scale (GDS),
Mini-Mental State Exam (MMSE), Modified Hachinski
Scale (MODHACH), Neuropsychiatric Inventory Question-
naire (NPIQ), Boston Naming Test (BNT), Clock Drawing
Test (CDT), Digit Span Test (DSPAN), Digit Symbol Test
(DSYM), Category Fluency Test (FLUENCY), Weschler’s
Logical Memory Scale (LOGMEM), Rey Auditory Verbal
Learning Test (RAVLT) and Trail Making Test (TRAIL).

3. Methods

We use the joint push and learning-to-rank method as
developed in He et al. [3], denoted as PLTR, for personalized
cognitive feature prioritization. Our goal is to prioritize
cognitive features for each patient that are most relevant to
his/her disease diagnosis using patients’ brain morphometric
measures extracted from their MRI scans. In specific, the
cognitive features are in the form of scores or answers from
cognitive tasks that the patients take. The prioritization result
can potentially be used in clinical practice to recommend
the most relevant cognitive features or tasks that can most
effectively help diagnosis of an individual.

In the context of MCI/AD cognitive feature prioritiza-
tion, PLTR learns and uses latent vectors of patients and
their imaging features to score each cognitive feature for
each patient, and ranks the cognitive features based on their
scores; patients with similar imaging feature profiles will
have similar latent vectors. During the learning process,
PLTR explicitly pushes the most relevant cognitive features
on top of the less relevant ones for each patient, and
therefrom optimizes the latent patient and cognitive feature
vectors so they will reproduce the pushed ranking structures.
In PLTR, such latent vectors are learned by solving the
following optimization problem:
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U,V
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where U = [u1,u2, · · · ,um] and V = [v1,v2, · · · ,vn] are
the latent vector matrices for patients and features, respec-
tively; Ls is the overall loss function; and P ↑s measures the
average number of relevant cognitive features that are ranked
below an irrelevant cognitive feature, defined as follows,
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where m is the number of patients, f+

j and f−i are the
relevant and irrelevant features of patient Pp, n+

p and n−p are
their respective numbers, and I(x) is the indicator function
(I(x) = 1 if x is true, otherwise 0). In Problem (2), sp(f i)
is a scoring function defined as follows,

sp(f i) = uT
pvi, (3)

that is, it calculates the score of feature f i on patient Pp us-
ing their respective latent vectors up and vi. In Problem (1),
O+
s measures the ratio of mis-ordered feature pairs over the

relevant features among all the patients, defined as follows,
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where f i �R f j represents that f i is ranked higher than f j
under the relation R. In Problem (1), Ruv is a regularizer on
U and V to prevent overfitting, defined as Ruv = 1

m‖U‖
2
F+

1
n‖V ‖

2
F , where ‖X‖F is the Frobenius norm of matrix X .

Rcsim is a regularizer on patients to constrain patient latent
vectors, defined as Rcsim = 1

m2

∑m
p=1

∑m
q=1 wpq‖up−uq‖22,

where wpq is the similarity between Pp and Pq that is
calculated using the imaging features of the patients.

4. Data Processing

4.1. Data Normalization

We selected all the MCI/AD patients from the dataset
and did the following data normalization for the patients.
We first conducted a t-test on each of the cognitive fea-
tures between patients and controls, and selected cognitive
features if there is a significant difference between patients
and controls on these features. Then we converted each of
the selected features into [0, 1] by shifting and scaling the
feature values. We also converted all the normalized feature
values based on the Cohen’s d of the features between
patients and controls, so that smaller values always indicate
more AD possibility. After that, we filtered out features
whose values are 0, 1 or 0.5 for more than 95% patients, in
order to remove features that are either extremely dominated
by patients or controls, or not discriminative. We conducted
the same process as above on the imaging features.

4.2. Patient Similarities from Imaging Features

After the above normalization and filtering steps, we
have 86 normalized imaging features remaining in the study.
We represent each patient as a vector of these features, de-
noted as rp = [rp1, rp2, · · · , rp86], where rpi (i = 1, · · · , 86)
is an imaging feature for patient p. We calculate the patient
similarity from imaging features using the radial basis func-
tion (RBF) kernel, that is, wpq = exp(−‖rp−rq‖

2

2σ2 ), where
wpq is the patient similarity used in Rcsim.

5. Experimental Protocol

5.1. Training-Testing Data Splits

We test our methods in two settings: cross validation
and leave-out validation. In the cross validation (CV), we
split the cognitive tasks for each patient into 5 folds. That
is, all the features in a cognitive task will be either split
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Figure 1: Data split for cross validation (left) and leave-out
validation (right)
into training or testing set. We use 4 folds for training and
the rest fold for testing, and do such experiments 5 times,
each with one of the 5 folds as the testing set. The overall
performance of the methods is averaged out over the 5
testing sets. This setting corresponds to the goal to prioritize
additional cognitive tasks that a patient should complete. In
the leave-out validation (LOV), we split patients into training
and testing sets, such that a certain patient and all his/her
cognitive features will be either in the training set or in the
testing set. This corresponds to the use scenario to identify
the most relevant cognitive tasks that a new patient needs to
take, based on existing imaging information of the patient,
when the patient has not completed any cognitive tasks.
Figure 1 demonstrates the CV and LOV data split process.

5.2. Evaluation Metrics

5.2.1. Metrics on Cognitive Feature Level. We define
average feature hit at k (QH@k) to evaluate the ranking
performance as follows,

QH@k(τ q, τ̃ q) =
∑k

i=1
I(τ̃ qi ∈ τ

q(1 : k)), (5)
where τ q is the ground-truth ranking list of all the features
in all the tasks, τ q(1 : k) is the top k features in the list,
τ̃ q is the predicted ranking list of all the features, and τ̃ qi is
the i-th ranked features in τ̃ q . That is, QH@k calculates the
number of features among top k in the predicted feature lists
that are also in the ground truth (i.e., hits). Higher QH@k
values indicate better prioritization performance.

We define a second evaluation metric weighted average
feature hit at k (WQH@k) as follows:

WQH@k(τ q, τ̃ q) =
∑k

j=1
QH@j(τ q, τ̃ q)/k, (6)

that is, WQH@k is a weighted version of QH@k that
calculates the average of QH@j (j = 1, · · · , k) over top
k. Higher WQH@k indicates more feature hits and those
hits are ranked on top in the ranking list.

5.2.2. Metrics on Cognitive Task Level. We use the mean
of the top-g normalized ground-truth scores/predicted scores
on the features of each cognitive task for a patient as the
score of that task for that patient. For each patient, we rank
the tasks using their ground-truth scores and use the ranking
as the ground-truth ranking of these tasks. Thus, these scores
measure how much relevant to AD the task indicates for
the patients. We use the predicted scores to rank cognitive
tasks into the predicted ranking of the tasks. We define a
third evaluation metric task hit at k (NHg@k) as follows to
evaluate the ranking performance in terms of tasks,

NHg@k(τ
n
g , τ̃

n
g ) =

∑k

i=1
I(τ̃ngi ∈ τng (1 : k)), (7)

where τng /τ̃ng is the ground-truth/predicted ranking list of all
the tasks using top-g question scores.

6. Experimental Results

6.1. Overall Performance

TABLE 1: Overall Performance of PLTR in CV

d QH@5 WQH@5 NH1@1 NH2@1 NH3@1 NH5@1 NHall@1

10 2.665 3.136 0.605 0.701 0.713 0.725 0.683
10 2.647 3.191 0.599 0.677 0.707 0.725 0.677
10 2.569 2.957 0.635 0.707 0.689 0.719 0.653
10 2.623 3.073 0.623 0.713 0.707 0.719 0.671
50 2.467 2.992 0.605 0.695 0.725 0.725 0.653
30 2.491 3.080 0.563 0.689 0.713 0.749 0.689
The column “d” corresponds to the latent dimension. The best performance under each
evaluation metric is in fold.

Table 1 presents the performance of PLTR in the CV
setting. In terms of cognitive features from all tasks, PLTR
is able to identify on average 2.665 out of the top-5 most
relevant ground-truth cognitive features among its top-5
predictions. Corresponding to the real scenario to prioritize
cognitive tasks that each patient should take, PLTR is able
to identify the top-1 most relevant task for 74.9% of all the
patients (i.e., NH5@1). This indicates the strong power of
PLTR in prioritizing cognitive features and in recommending
relevant cognition tasks for real clinical applications. Note
that in CV, each patient has only a few cognitive tasks in the
testing set. Therefore, we only consider the evaluation at the
top task in the predicted task rankings (i.e., only NHg@1 in
Table 1). In addition, as g in NHg@1 increases in Table 1
(i.e., more top feature scores are used to score tasks), the
performance of PLTR in terms of NHg@1 first improves and
then declines. This may indicate that different questions in
a task may test different aspects related to AD, and PLTR is
able to identify the most relevant features from each task.

Table 2 presents the performance of PLTR in the LOV
setting. We first hold out 26 and 52 AD patients as testing
patients, respectively. We determine these AD patients as
the ones that have more than 10 similar AD patients in the
training set with corresponding patient similarities higher
than 0.67 and 0.62, respectively. When 26 patients are hold
out for testing, PLTR is able to identify the top most relevant
questionnaire for 84.6% of the testing patients (i.e., 22
patients) under NH1@1. When 52 patients are hold out for
testing, PLTR is able to identify for 80.8% of the testing pa-
tients (i.e., 42 patients) under NH1@1. Note that the hold-out
testing patients in LOV do not have any cognitive features.
Therefore, the performance of PLTR as above demonstrates
the strong capability of PLTR in identifying most AD related
cognitive features based on imaging features only. Also note
in Table 2, as the number of feature scores used to score cog-
nitive tasks (i.e., g in NHg@k) increases, the performance
of PLTR in NHg@1 first declines and then increases, and
in NHg@5 first increases. This indicates that PLTR can still
prioritize the most relevant cognitive features among top in
the predicted rankings.



TABLE 2: Overall Performance of PLTR in LOV

n α β γ d QH@5 WQH@5 NH1@1 NH1@5 NH2@1 NH2@5 NH3@1 NH3@5 NH5@1 NH5@5 NHall@1 NHall@5

26

0.5 1.5 1.0 30 1.615 1.906 0.846 3.231 0.577 3.385 0.231 3.654 0.308 3.346 0.808 3.692
0.1 0.5 0.5 30 1.500 1.778 0.846 3.269 0.577 3.538 0.269 3.654 0.269 3.269 0.808 3.577
0.3 1.0 1.0 10 1.538 1.856 0.846 3.192 0.577 3.423 0.308 3.731 0.346 3.346 0.808 3.615
0.3 1.5 1.0 10 1.577 1.851 0.846 3.192 0.577 3.462 0.308 3.654 0.346 3.462 0.808 3.654
0.5 1.5 1.0 30 1.615 1.906 0.846 3.231 0.577 3.385 0.231 3.654 0.308 3.346 0.808 3.692

52

0.5 0.5 1.0 50 1.385 1.668 0.788 3.212 0.423 3.654 0.115 3.750 0.288 3.423 0.788 3.423
0.5 0.5 1.0 10 1.327 1.616 0.808 3.269 0.423 3.654 0.115 3.731 0.173 3.423 0.788 3.404
0.5 0.5 1.0 30 1.327 1.652 0.788 3.212 0.423 3.712 0.115 3.750 0.269 3.423 0.788 3.404
0.5 0.5 1.0 30 1.327 1.652 0.788 3.212 0.423 3.712 0.115 3.750 0.269 3.423 0.788 3.404
0.5 1.5 1.0 30 1.308 1.616 0.788 3.154 0.423 3.654 0.115 3.712 0.288 3.481 0.788 3.615
0.5 1.5 1.0 10 1.288 1.581 0.808 3.173 0.423 3.596 0.115 3.750 0.192 3.519 0.788 3.635
0.3 1.5 1.0 50 1.269 1.616 0.808 3.115 0.423 3.635 0.115 3.731 0.250 3.481 0.788 3.635

The column “n” corresponds to the number of hold-out testing patients. Best performance under each evaluation metric is in bold.

6.2. Case Study

When NH1@1 achieves its optimal performance 0.846
for the 26 testing patients in LOV (i.e., the first row block
in Table 2), the corresponding most common task that is
prioritized for the testing patients is Rey Auditory Verbal
Learning Test (RAVLT), including the following cognitive
features: 1) trial 1 total number of words recalled; 2) trial
2 total number of words recalled; 3) trial 3 total number of
words recalled; 4) trial 4 total number of words recalled; 5)
trial 5 total number of words recalled; 6) total Score; 7) trial
6 total number of words recalled; 8) list B total number of
words recalled; 9) 30 minute delay total; and 10) 30 minute
delay recognition score. This task is also the most relevant
task in the ground truth if tasks are scored correspondingly.
RAVLT is a well-known cognitive test that assesses learning
and memory, and has shown promising performance in early
detection of AD [6]. A number of studies have reported high
correlations between various RAVLT scores with different
brain regions [7]. For example, RAVLT recall is associated
with medial prefrontal cortex and hippocampus; RAVLT
recognition is highly correlated with thalamic and caudate
nuclei. Genetic analysis of APOE ε4 allele, the most com-
mon variant of AD, reported its association with RAVLT
score in an early-MCI (EMCI) study [5]. The fact that
RAVLT is prioritized demonstrates the strong power of PLTR
in prioritizing cognitive features to assist AD diagnosis.

Similarly, we find the top-5 most frequent cognitive
tasks corresponding to the performance at NH3@5=3.731
for the 26 hold-out testing patients. They are: Functional As-
sessment Questionnaire (FAQ), Clock Drawing Test (CDT),
Weschler’s Logical Memory Scale (LOGMEM), Rey Audi-
tory Verbal Learning Test (RAVLT), and Neuropsychiatric
Inventory Questionnaire (NPIQ). In addition to RAVLT dis-
cussed above, other top prioritized cognitive tasks have also
been reported to be associated with AD or its progression. In
an MCI to AD conversion study, FAQ, NPIQ and RAVLT
showed significant difference between MCI-converter and
MCI-stable groups [8]. These evidences further demonstrate
the diagnostic power of our method.

7. Conclusions
We have proposed an innovative machine learning

paradigm for prioritizing cognitive assessments according
to their relevance to AD at the individual patient level.
The paradigm tailors the cognitive biomarker discovery
and cognitive assessment selection process to the brain
morphometric characteristics of each individual patient. It
has been implemented using a newly developed learning-
to-rank method PLTR. Our empirical study on the ADNI
data has yielded promising results to identify and prioritize
individual-specific cognitive biomarkers as well as cognitive
assessment tasks based on the individual’s structural MRI
data. The resulting top ranked cognitive biomarkers and
assessment tasks have the potential to aid personalized diag-
nosis and disease subtyping, and to make progress towards
enabling precision medicine in AD.
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