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Abstract. We propose an innovative machine learning paradigm en-
abling precision medicine for AD biomarker discovery. The paradigm tai-
lors the imaging biomarker discovery process to individual characteristics
of a given patient. We implement this paradigm using a newly developed
learning-to-rank method PLTR. The PLTR model seamlessly integrates two
objectives for joint optimization: pushing up relevant biomarkers and
ranking among relevant biomarkers. The empirical study of PLTR con-
ducted on the ADNI data yields promising results to identify and priori-
tize individual-specific amyloid imaging biomarkers based on the individ-
ual’s structural MRI data. The resulting top ranked imaging biomarker
has the potential to aid personalized diagnosis and disease subtyping.

Keywords: Amyloid PET · Structural MRI · Imaging biomarker prior-
itization · Learning to rank · Alzheimer’s disease.

1 Introduction

Alzheimer’s disease (AD) is a national priority, with 5.5 million Americans af-
fected at an annual cost of $259 billion in 2017 and no available cure [1]. Brain
characteristics related to AD progression may be captured by multimodal mag-
netic resonance imaging (MRI) and positron emission tomography (PET) scans.

? Data used in preparation of this article were obtained from the Alzheimer¡s
Disease Neuroimaging Initiative (ADNI) database (ad-ni.loni.usc.edu).
As such, the investigators within the ADNI contributed to the de-
sign and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found at: https://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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Thus, there is a large body of neuroimaging studies in AD, aiming to develop
image-based predictive machine learning models for early detection of AD as
well as identification of relevant imaging biomarkers (e.g., [8]). These models are
typically designed to accomplish learning tasks such as regression, classification
and/or survival analysis. As a result, the identified imaging biomarkers are at
the population level and not specific to an individual subject.

In this work, we propose a novel learning paradigm that embraces the con-
cept of precision medicine and tailors the imaging biomarker discovery process
to the individual characteristics of a given patient. Specifically, we perform an
innovative application of a newly developed learning-to-rank method, denoted
as PLTR [5], to the structural MRI and amyloid PET data of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort [9]. Using structural MRI as
the individual characteristics, our goal is to not only identify individual-specific
amyloid imaging biomarkers but also prioritize them according to AD-specific
abnormality. Compared with traditional biomarker studies at the population
level, the uniqueness of our study is twofold: (1) the identified biomarkers are
tailored to each individual patient; and (2) the identified biomarkers are priori-
tized based on the individual’s characteristics, which has the potential to enable
personalized diagnosis and disease subtyping.

2 Materials and Data Processing

To demonstrate the effectiveness of the learning-to-rank method for personalized
prioritization of the amyloid imaging biomarkers, we applied it to the ADNI
cohort [9]. The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI, a prodromal stage of AD) and early AD.
For up-to-date information, see www.adni-info.org.

Data used in the preparation of this article were obtained from the 2017
ADNI TADPOLE grand challenge (tadpole.grand-challenge.org/), and was down-
loaded from the ADNI website (adni.loni.usc.edu). The TADPOLE data used in
this study consists of structural MRI and AV45-PET (amyloid) imaging data as
well as diagnostic information. Both MRI and amyloid imaging data have been
pre-processed with standard ADNI pipelines as described previously in [7].

In this study, we included all the regional MRI measures with field name
containing “UCSFFSX” in the TADPOLE D1 and D2 data sets. Specifically,
these are FreeSurfer regional volume and cortical thickness measures processed
by the ADNI UCSF team. We also included all the regional amyloid measures
with field name containing “UCBERKELEYAV45” in the TADPOLE D1 and
D2 data sets. These are cortical and subcortical amyloid deposition measures
processed by the ADNI UC Berkeley team.

Originally, there are totally 12,741 participant visit records with 103 amyloid
features, 125 FreeSurfer features and diagnostic information corresponding to
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each visit. To convert this longitudinal data set into a cross-sectional one as well
as handle the missing data issue, we use the following procedure to generate a
clean set of cross-sectional data: (1) remove visit records that have more than 50
percent of null values across 103 amyloid features, with 10,623 records removed;
(2) extract the earliest AV45-PET visit for each participant, with 1,091 records
kept; (3) remove visit records that have more than 50 percent of null values across
125 FreeSurfer features, with 58 records removed; (4) remove features that have
more than 50 percent of null values across records, with 16 FreeSurfer features
removed; (5) remove 3 participants with no diagnostic information. Finally, 1,030
participants with 103 amyloid and 109 FreeSurfer measures are studied, including
351 health control (HC), 501 MCI and 178 AD participants. We treat both MCI
and AD subjects as patients, and so have a total of 679 cases and 351 controls.

3 Methods

We use the joint push and learning-to-rank method as developed in He et al. [5],
denoted as PLTR, for personalized patient feature prioritization. Our goal is to
prioritize amyloid features for each patient that are most relevant to his/her dis-
ease diagnosis using patients’ existing information. The underlying hypothesis is
that patients with similar FreeSurfer feature profiles would have similar ranking
structures among their amyloid features. In the context of AD feature prioriti-
zation, PLTR learns and uses latent vectors of patients and amyloid features to
score each amyloid feature for each patient, and ranks the features based on their
scores; patients with similar FreeSurfer feature profiles will have similar latent
vectors. During the learning process, PLTR explicitly pushes the most relevant
amyloid features on top of the less relevant ones for each patient, and therefrom
optimizes the latent patient and amyloid feature vectors so they will reproduce
the pushed ranking structures.

3.1 Overview of PLTR

In PLTR, the ranking of features in terms of their relatedness to MCI/AD in a
patient is determined by their latent scores on the patient. For a feature f i and
a patient Pp, f i’s latent score on Pp, denoted as sp(f i), is calculated as the dot
product of f i’s latent vector vi ∈ Rl×1 and Pp’s latent vector up ∈ Rl×1, where
l is the latent dimension, as follows,

sp(f i) = uT
pvi, (1)

where the latent vectors up and vi will be learned. All the features are then
sorted based on their scores on Pp, with the most relevant features having the
highest scores and ranked higher than irrelevant features.

Overall, PLTR seeks the patient latent vectors and feature latent vectors that
will be used in feature scoring function s (Equation (1)) such that for each
patient, the relevant features will be ranked on top and in right orders using the
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latent vectors. In PLTR, such latent vectors are learned by solving the following
optimization problem:

min
U,V
Ls = (1− α)P ↑s + αO+

s +
β

2
Ruv +

γ

2
Rcsim, (2)

where Ls is the overall loss function; P ↑s measures the number of irrelevant
features that are ranked on top of relevant features; O+

s measures the ranking
among relevant features. Ruv is a regularizer on U and V to prevent overfitting,
defined as

Ruv =
1

m
‖U‖2F +

1

n
‖V ‖2F , (3)

where m and n are the number of patients and the number of features, re-
spectively; ‖X‖F is the Frobenius norm of matrix X. Rcsim is a regularizer on
patients to constrain patient latent vectors, defined as

Rcsim =
1

m2

m∑
p=1

m∑
q=1

wpq‖up − uq‖22, (4)

where wpq is the similarity between Pp and Pq that is calculated using FreeSurfer
features of the patients. Details of these terms can be found in He et al. [5].

3.2 Patient Similarities from FreeSurfer Features

We consider 109 FreeSurfer features and represent each patient as a FreeSurfer
feature vector, denoted as rp = [rp1, rp2, · · · , rpnr

], where rpi (i = 1, · · · , nr)
is a FreeSurfer feature for patient p. Thus, for all the patients, we construct a
FreeSurfer feature matrix RAD = [r+

1 ; r+
2 ; · · · ; r+

m+ ] ∈ Rm+×nr and for all the

health control subjects (HCs), a FreeSurfer feature matrix RHC = [r−1 ; r−2 ; · · · ; r−m− ] ∈
Rm−×nr , where m+ and m− are the numbers of AD/MCI patients and HCs, re-
spectively, and nr is the number of FreeSurfer features. We scale RAD values into
the unit interval by dividing each column of RAD (i.e., each FreeSurfer feature)
using its maximum value. The normalized RAD matrix is denoted as R̄AD, and
the similarities between patients are calculated over R̄AD using the radial basis
function (RBF) kernel:

wpq = exp(−‖R̄AD(p, :)− R̄AD(q, :)‖2

2σ2
), (5)

where wpq is the patient similarity used in Equation (4). This patient similarity
measurement is denoted as simU.

3.3 Patient Amyloid Features in Ground Truth

Similarly, each patient is also represented by an amyloid feature vector, denoted
as cp = [cp1, cp2, · · · , cpnc

], where cpi (i = 1, · · · , nc) is an amyloid feature for pa-
tient p. Thus, we construct an amyloid feature matrix CAD = [c+

1 ; c+
2 ; · · · , c+

m+ ]
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for AD/MCI patients, and an amyloid feature matrix CHC = [c−1 ; c−2 ; · · · , c−m− ]
for HC subjects. We normalize CAD by dividing each column of CAD (i.e., each
amyloid feature) by the mean value of the corresponding column in CHC. Thus,
the normalization results in CAD measure the extent to which an amyloid feature
in patients deviates from that in HCs. The normalized matrix, denoted as C̄AD,
is used as the ground truth of amyloid feature ranking. That is, the optimiza-
tion problem (2) tries to learn the latent vectors that reconstruct the ordering
structures in C̄AD, and prioritize amyloid features that are most relevant to
patients. The reason why we use FreeSurfer features to quantitatively measure
patients and prioritize amyloid features correspondingly is that MRI imaging is
non-invasive and relatively low-cost as compared to PET imaging.

4 Experiments

4.1 Experimental Protocol

training patients testing patients

p
a
ti

en
ts

features

P1
P2
P3
P4
P5

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fig. 1: Data split

We split patients into training set and testing set, such that a certain patient
and all his/her features will be either in the training set or in the testing set.
We train the PLTR model using training patients and test its performance on
the testing patients. This corresponds to the use scenario in which we want to
identify the most potentially useful AD biomarkers for new patients, based on
the existing information of the patients, when such biomarkers have not been
tested on the new patients. Figure 1 demonstrates the data split process.

We define average hit at k, denoted as AH@k, to evaluate the ranking per-
formance. AH@k is defined as follows:

AH@k(τ, τ̃) =

k∑
i=1

I(τ̃i ∈ τ), (6)

where τ is the ground-truth ranking list, τ̃ is the predicted ranking list, and τ̃i is
the i-th ranked item in τ̃ . That is, AH@k calculates the number of items among
top k in the predicted lists that are also in the ground truth (i.e., hits). Higher
AH@k values indicate better prioritization performance.
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We define a second evaluation metric weighted average hit at k, denoted as
WAH@k as follows:

WAH@k(τ, τ̃) =
k∑

j=1

j∑
i=1

I(τ̃i ∈ τ)/j, (7)

that is, WAH@k is a weighted version of AH@k that calculates the average hit
up to top k. Higher WAH@k indicate more hits and those hits are ranked on top
in the ranking list. By default, the ground-truth τ has k items (i.e., the top-k
items among all the sorted items) in Equation (6) and Equation (7).

4.2 Baseline Methods

We compare PLTR with another two methods: the Bayesian Multi-Task Multi-
Kernel Learning (BMTMKL) method [2] and the Kernelized Rank Learning (KRL)
method [4]. BMTMKL uses kernels over FreeSurfer features to predict amyloid fea-
ture values. KRL uses kernel regression with a ranking loss to predict amyloid
feature values. These two methods represent two strong baseline methods for
the biomarker feature prioritization problem. We use the patient similarity ma-
trix 5 as the kernels for BMTMKL and KRL. We conducted parameter grid search to
identify the best parameters for each model, and present the best performance
of the models.

5 Experimental Results

5.1 Overall Performance

We first hold out 35 and 163 patients as testing patients, respectively. These
testing patients are determined such that they have more than 10 similar patients
in the training set, and the corresponding patient similarities are higher than
0.75 and 0.65, respectively. Patient latent vectors and feature latent vectors are
learned on the training patients. The feature scores for the testing patients are
calculated as the weighted sum of the predicted feature scores from their top-10
most similar training patients, where the weights are the corresponding patient
similarities. The patient similarities are calculated using simU (Equation (5),
σ = 1). The patient amyloid features are normalized as described in Section 3.3.
Please note that we only use patients (i.e., MCI and AD subjects) for model
training and testing, and only use controls (i.e., HC subjects) to set the standard
for patient data normalization, as feature prioritization for healthy controls has
limited clinical interests.

Table 1 presents the best performance of PLTR in terms of AH@5 for each
latent dimension. When 35 patients are hold out for testing, the best AH@5 is
1.886 when latent dimension d = 20, and the corresponding WAH@5 is 1.632.
This performance is significantly better than those of the baseline methods. Note
that we use predicted feature scores to prioritize features for the testing patients.
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Table 1: Overall Performance of PLTR (simU, σ = 1)

n method
Parameters

AH@5 WAH@5 AH@10 WAH@10
α β γ d λ

35
PLTR

0.3 0.5 1.0 10 - 1.857 1.545 3.371 2.249
0.3 0.5 1.0 20 - 1.886 1.632 3.286 1.987
0.3 0.5 1.0 50 - 1.857 1.560 3.314 2.007

BMTMKL - - - - - 0.971 0.916 2.171 2.573
KRL - - - - 3.0 0.429 0.426 1.086 1.245

163
PLTR

0.5 1.0 1.0 10 - 1.343 0.930 3.080 2.497
0.5 1.0 1.0 20 - 1.429 1.067 3.074 2.402
0.5 1.0 1.0 50 - 1.429 1.012 3.110 2.437

BMTMKL - - - - - 0.282 0.288 0.957 0.929
KRL - - - - 0.1 0.356 0.389 1.025 1.054

The column “n” corresponds to the number of hold-out testing patients. Best performance under
each evaluation metric is in bold.

Table 1 also shows that PLTR significantly outperforms the baseline methods in
terms of AH@10. PLTR is slightly worse than BMTMKL on WAH@10 (2.249 vs
2.573). This indicates that among top 10 drugs in the ranking list, PLTR is able
to rank more relevant features on top than BMTMKL, although the positions of
those hits are not as high as BMTMKL. When 163 patients are hold out for testing,
the best performance of PLTR (i.e., AH@5 1.429 when d = 20) is still better than
those of the baseline methods. This indicates that PLTR is able to capture the
signals that lead to accurate feature rankings among training data, potentially
correct the noise in the data and use the signals to prioritize features for new
patients.

Table 1 also shows that the best performance for the 35 testing patients
is better than that for the 163 testing patients (e.g., AH@5 = 1.886 for 35
testing patients vs AH@5=1.429 for 163 testing patients). This indicates that
when there are more similar patients for model training, PLTR is able to achieve
better performance. However, when there are more testing patients and thus the
similarities between training and testing patients are smaller, PLTR achieves more
significant improvement compared to the baseline methods (e.g., 1.429/0.356 =
4.01 for 163 testing patients vs 1.886/0.971=1.94 for 35 patients). This indicates
that when patient similarities are smaller, PLTR is able to achieve much better
improvement over the baseline methods.

Feature Prioritization on Population Level We also investigate which fea-
tures are frequently prioritized for all the testing patients. We sort all the top-5
ranked features from all the testing patients, weighted by their aggregated rank-
ing positions among the patients, so that features that are frequently ranked high
among many patients will be sorted on top. Table 2 lists the top 10 frequently
prioritized features by PLTR among the 163 testing patients. Among these 10
features, 8 of them are among the top 10 identified from the ground truth. Sim-
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ilarly, for the 35 testing patients, 7 of the top 10 most frequently prioritized
features are among the top 10 identified from the ground truth. This indicates
the capability of PLTR to find common AD biomarkers on a population level.

Table 2: Top-10 frequent features by PLTR (simU, σ = 1)

rank features p-value GT

1 ctx-lh-frontal pole 8.67e-20 Y
2 ctx-rh-frontal pole 5.68e-20 Y
3 right-lateral ventricle 4.34e-04 Y
4 ctx-rh-medial orbitofrontal 4.79e-23 Y
5 left-lateral ventricle 1.09e-04 Y
6 ctx-lh-rostral middle frontal 5.12e-21 Y
7 right-choroid plexus 4.41e-05 N
8 ctx-rh-rostral middle frontal 3.68e-20 N
9 ctx-lh-precuneus 3.19e-19 Y
10 non-wm-hypointensities 8.75e-01 Y

The p-value measures whether the feature means are statistically different between controls and
patients. Column “GT” indicates if the feature is in ground truth (Y) or not (N). These features
are frequently prioritized by PLTR when 163 patients are hold out for testing.

Most of the above top ranked amyloid features are related to AD or its
biomarkers. For example, frontal lobe, the region where frontal pole, rostral mid-
dle frontal gyrus and medial orbitofrontal cortex are located, shows significantly
higher amyloid deposition in AD/MCI patients than in controls [3]. Furthermore,
Huang et al. [6] report that both frontal lobe and precuneus show significantly
higher amyloid deposition in both MCI and AD compared to HC. Additionally,
they report the negative correlation between Mini-Mental State Examination
(MMSE) score with amyloid deposition in frontal lobe and precuneus, which
further validates increased amyloid deposition in these regions of MCI and AD
patients.

5.2 Study on Patient-Patient Similarities

Table 3 presents the best performance when a different patient similarity is
applied. In this case, the patient similarities are calculated using an RBF kernel
(σ = 5) on the FreeSurfer features of the patients, after the FreeSurfer features
are divided by the corresponding feature mean from normal patients. This feature
normalization measures how much the FreeSurfer features in patients deviate
from those in HCs. This similarity measurement is denoted as simN. 62 patients
are hold out for testing, who have at least 10 training patients each with patient
similarities higher than 0.65. The feature ranking is done in the same way as
in Section 5.1. Table 3 shows that the PLTR substantially outperforms BMTMKL

and KRL. Table 3 and Table 1 together demonstrate that regardless of similar
functions used to measure patient similarities in FreeSurfer features, PLTR is
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Table 3: Overall Performance of PLTR (simN, σ = 5)

n method
Parameters

AH@5 WAH@5 AH@10 WAH@10
α β γ d λ

62
PLTR

0.5 1.0 1.0 10 - 1.371 1.161 3.129 2.295
0.5 1.0 1.0 20 - 1.387 1.186 3.081 2.162
0.5 1.0 1.0 50 - 1.403 1.165 3.113 2.117

BMTMKL - - - - - 0.790 0.670 1.871 1.982
KRL - - - - 0.5 0.306 0.299 0.968 1.046

The column “n” corresponds to the number of hold-out testing patients. Best performance under
each evaluation metric is in bold.

robust in outperforming baseline given that the testing patients have sufficient
similar training patients.

6 Conclusions and Discussions

We have proposed an innovative machine learning paradigm enabling precision
medicine for AD imaging biomarker prioritization. The paradigm tailors the
imaging biomarker discovery process to individual characteristics of a given pa-
tient, and has been implemented based on a newly developed learning-to-rank
method PLTR. To the best of our knowledge, this learning-to-rank method has
never been applied to the AD imaging biomarker studies. It is a paradigm shift-
ing strategy to facilitate precision medicine research in brain imaging study of
AD. The PLTR model seamlessly integrates two objectives for joint optimiza-
tion: pushing up relevant biomarkers and ranking among relevant biomarkers.
The empirical study of PLTR has been performed on the ADNI data and yielded
promising results to identify and prioritize individual-specific amyloid imaging
biomarkers based on the individual’s structural MRI data.

Acknowledgements

This work was supported in part by NIH R01 EB022574, R01 LM011360, U19
AG024904, R01 AG019771, and P30 AG010133; NSF IIS 1837964 and 1855501.
The complete ADNI Acknowledgement is available at http://adni.loni.usc.

edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

References

1. Alzheimer’s Association: 2017 Alzheimer’s disease facts and figures (2017)
2. Costello, J.C., Heiser, L.M., Georgii, E., Gönen, M., Menden, M.P., Wang, N.J.,

Bansal, M., Hintsanen, P., Khan, S.A., Mpindi, J.P., et al.: A community effort
to assess and improve drug sensitivity prediction algorithms. Nature biotechnology
32(12), 1202 (2014)

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


10 Peng et al.

3. Forsberg, A., Engler, H., Almkvist, O., Blomquist, G., Hagman, G., Wall, A.,
Ringheim, A., L̊angström, B., Nordberg, A.: Pet imaging of amyloid deposition
in patients with mild cognitive impairment. Neurobiology of Aging 29(10), 1456 –
1465 (2008)

4. He, X., Folkman, L., Borgwardt, K.: Kernelized rank learning for personalized drug
recommendation. Bioinformatics 34(16), 2808–2816 (2018)

5. He, Y., Liu, J., Ning, X.: Drug selection via joint push and learning to rank.
IEEE/ACM Transactions on Computational Biology and Bioinformatics pp. 1–1
(2018)

6. Huang, K.L., Lin, K.J., Hsiao, I.T., Kuo, H.C., Hsu, W.C., Chuang, W.L., Kung,
M.P., Wey, S.P., Hsieh, C.J., Wai, Y.Y., Yen, T.C., Huang, C.C.: Regional amyloid
deposition in amnestic mild cognitive impairment and alzheimer’s disease evaluated
by [18f]av-45 positron emission tomography in chinese population. PLOS ONE 8(3),
1–8 (03 2013)

7. Marinescu, R.V., Oxtoby, N.P., et al.: TADPOLE Challenge: Prediction of Lon-
gitudinal Evolution in Alzheimer’s Disease. arXiv e-prints arXiv:1805.03909 (May
2018)

8. Ten Kate, M., Barkhof, F., Visser, P.J., Teunissen, C.E., Scheltens, P., van der
Flier, W.M., Tijms, B.M.: Amyloid-independent atrophy patterns predict time to
progression to dementia in mild cognitive impairment. Alzheimers Res Ther 9(1),
73 (2017)

9. Weiner, M.W., Veitch, D.P., et al.: The Alzheimer’s Disease Neuroimaging Initiative
3: Continued innovation for clinical trial improvement. Alzheimers Dement 13(5),
561–571 (2017)


	Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via Learning to Rank

