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Abstract—Brain imaging genetics aims to reveal genetic effects
on brain phenotypes, where most studies examine phenotypes
defined on anatomical or functional regions of interest (ROIs)
given their biologically meaningful annotation and modest di-
mensionality compared with voxel-wise approaches. Typical ROI-
level measures used in these studies are summary statistics from
voxel-wise measures in the region, without making full use of
individual voxel signals. In this paper, we propose a flexible
and powerful framework for mining regional imaging genetic
associations via voxel-wise enrichment analysis, which embraces
the collective effect of weak voxel-level signals within an ROI.
We demonstrate our method on an imaging genetic analysis using
data from the Alzheimers Disease Neuroimaging Initiative, where
we assess the collective regional genetic effects of voxel-wise FDG-
PET measures between 116 ROIs and 19 AD candidate SNPs.
Compared with traditional ROI-wise and voxel-wise approaches,
our method identified 102 additional significant associations,
some of which were further supported by evidences in brain
tissue-specific expression analysis. This demonstrates the promise
of the proposed method as a flexible and powerful framework
for exploring imaging genetic effects on the brain.

Index Terms—imaging genetics, enrichment analysis, genetic
association analysis, voxel-wise analysis

I. INTRODUCTION

Imaging genetics is an emerging research field investigating
the influence of genetic variants such as single-nucleotide
polymorphisms (SNPs) on imaging phenotypes. Brain imaging
genetics aims to reveal associations between genetic variations
and quantitative traits (QTs) extracted from brain imaging data.
These imaging QTs (iQTs) are measures extracted from either
a single voxel [1] or a region of interest (ROI) [2]–[4] in the
brain. An ROI is a pre-defined brain area containing a cluster
of voxels with the same anatomical or functional annotation.
Of note, the number of ROIs is much smaller than the number
of voxels in the brain. Thus, most studies examine ROI-level
phenotypes due to (1) modest dimensionality compared with
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voxel-wise approaches for increased statistical power, and (2)
biologically meaningful annotation for easy interpretation.

Most existing ROI-level imaging genetic studies evaluate
the associations between individual SNPs and ROI-level iQTs
which are often defined as summary statistics (e.g., mean) of
all the voxel-wise measures in the ROI. For example, genome-
wide association studies (GWAS) have been performed for
these iQTs and have discovered genes susceptible to various
brain ROIs [5]–[7]. Targeted genetic studies have also been
performed on brain ROIs to relate candidate SNPs to brain
regions. However, most ROI-based approaches simply collapse
voxel-level measures into a single value, and might lead to
false-negative results when only weak signals exist in part of
an ROI. Although voxel-wise strategies have been proposed
to explore fine-grained variances of brain (e.g., [1], [8]), their
effectiveness suffers from major multiple comparison issue
due to ultra-high dimension of imaging and genetics data [8].
Cluster-wise approaches have been proposed to overcome the
above limitation by identifying local voxel clusters to reach a
pre-defined significant threshold [9]. The approach, however,
ignores ROI-based anatomical or functional annotation.

Pathway enrichment analysis is a widely used method
in genetics, where gene sets corresponding to biological
pathways are examined for association with a phenotype
to help increase statistical power and improve biological
interpretation. Numerous studies on complex diseases have
demonstrated that genes functioning in the same pathway
can influence iQTs collectively even when constituent SNPs
do not show significant association individually [3]. With
these observations, in this work, we introduce enrichment
analysis into imaging domain and propose an enrichment-
based ROI-level imaging genetic association study (eIGAS)
framework that estimates the collective genetic association
with all the voxels in an ROI. To show the effectiveness of the
eIGAS framework, we compare it with traditional ROI-based
and voxel-based approaches via an imaging genetic study in
Alzheimer’s disease (AD). Because the computational cost of
voxel-wise GWAS is extremely expensive, we test our method



TABLE I: Participant characteristics

Subjects HC SMC EMCI LMCI AD
Number 236 91 289 200 182
Gender(M/F) 122/114 38/53 163/126 117/83 109/73
Age(mean±sd) 76.2±6.7 72.5±5.6 71.7±7.2 74.3±8.3 75.4±7.7
Edu(mean±sd) 16.4±2.7 16.9±2.6 16.1±2.6 16.3±2.8 15.9±2.7
APOE ε4 26.81% 32.97% 43.06% 50.50% 64.84%

HC=Healthy Control; SMC=Significant Memory Concern; EMCI=Early Mild Cog-
nitive Complaint; LMCI=Late Mild Cognitive Complaint; AD=Alzheimer’s Disease.

in a targeted analysis between 19 AD candidate SNPs and
brain-wide imaging phenotypes in 116 ROIs. We demonstrate
that the proposed method outperforms the other two strategies
with improved statistical power and biological interpretability.

II. MATERIALS AND METHODS

To demonstrate the power of the proposed eIGAS frame-
work, we apply it to an FDG-PET imaging genetic analysis in
AD. FDG-PET has been used to measure cerebral metabolic
rates of glucose (CMRglc), and its change occurs early in AD.

A. Imaging and genotyping data

The imaging and genotyping data used in this article were
obtained from the ADNI database (adni.loni.usc.edu). Pre-
processed FDG-PET scans were downloaded from the ADNI
website, then aligned to each participant’s same visit scan and
normalized to the Montreal Neurological Institute (MNI) space
as 2×2×2 mm voxels. FDG measurements of 185,405 voxels
were extracted, and 116 ROIs were further computed using the
mean of voxels within each ROI based on the MarsBaR AAL
atlas as described in [7]. The number of voxels within 116
ROIs ranges from 54 to 5,104. 998 non-Hispanic Caucasian
participants (Table I) with complete baseline voxel-level and
ROI-level FDG measurements were studied. Genotype data
of both ADNI-1 and ADNI-GO/2 phases were downloaded,
quality controlled, imputed and combined as described in [10].
5,574,300 SNPs were obtained for all 998 subjects studied
here. A list of 23 AD risk SNPs were analyzed, containing 21
SNPs from the large scale meta-analysis of AD [11] plus two
well-known APOE SNPs (rs429358 and rs7412). Four SNPs
were excluded as no imputed genotyping data available. In
total, 19 AD risk SNPs were included in our imaging genetic
analysis. Detailed information of the 19 studied SNPs are
shown in Table II.

B. Targeted genetic association study of FDG-PET imaging

We performed targeted genetic analysis of FDG-PET imag-
ing measures on each voxel and each ROI, using linear
regression under an additive genetic model in PLINK [12],
with age, gender and education as covariates. Post-hoc analysis
used Bonferroni correction for adjusting both the number of
SNPs and the number of iQTs (i.e., voxel number for voxel-
level analysis and ROI number for ROI-level analysis).

For comparison purpose, we constructed a novel ROI-level
P-value using a summarized statistic from the voxel-level P-
values, borrowing the idea from gene set analysis which maps

TABLE II: Details of 19 AD risk SNPs.

SNP Chr Position Closest gene Major/minor
rs6656401 1 207692049 CR1 G/A
rs6733839 2 127892810 BIN1 C/T
rs35349669 2 234068476 INPP5D C/T
rs190982 5 88223420 MEF2C A/G
rs10948363 6 47487762 CD2AP A/G
rs2718058 7 37841534 NME8 A/G
rs1476679 7 100004446 ZCWPW1 T/C
rs11771145 7 143110762 EPHA1 G/A
rs28834970 8 27195121 PTK2B T/C
rs9331896 8 27467686 CLU T/C
rs10838725 11 47557871 CELF1 T/C
rs983392 11 59923508 MS4A6A A/G
rs10792832 11 85867875 PICALM G/A
rs17125944 14 53400629 FERMT2 T/C
rs10498633 14 92926952 SLC24A4-RIN3 G/T
rs4147929 19 1063443 ABCA7 G/A
rs429358 19 45411941 APOE T/C
rs3865444 19 51727962 CD33 C/A
rs7274581 20 55018260 CASS4 T/C

SNP-level P to gene-level P [13]. Here we chose the second-
best voxel-level P-value in each ROI to represent the ROI-level
P, to avoid spurious associations from the best P.

C. Enrichment-based IGAS (eIGAS) framework

Pathway enrichment analysis has been widely used in
genomic domain to examine gene sets corresponding to bi-
ological pathways for association with phenotypes. In this
paper, we consider brain ROIs as pathways, each of which
contains a set of voxels; and aim to identify ROIs significantly
enriched by voxel-level genetic findings to form ROI-level
genetic associations. Below, we describe the proposed method.

We propose the enrichment-based imaging genetic associ-
ation study (eIGAS) framework using the over-representation
analysis (ORA). We obtain the voxel-wise genetic association
results from Subsection II-B, including P -values between
S = 19 AD SNPs and N = 185, 405 voxels. Given a SNP
Si, the imaging genetic findings are a list Li of significant
SNP-voxel associations with P values passing a pre-defined
threshold. Given an ROI Rk that contains total rk voxels
Vk={vk,1, . . . , vk,rk}, eIGAS aims to determine whether the
set of voxels within targeted ROI Vk is enriched in Li.

Now we present our ORA-based eIGAS method. Given a
SNP Si, we have N Si-voxel associations from voxel-wise
imaging genetic association analysis, out of which ni = |Li|
(the set Li) are significant ones with P -value passing a pre-
defined threshold. Out of these, we have rk= |Vk| associations
from ROI Rk, of which li significant ones are from Li.
Applying Fisher’s exact test for independence, the enrichment
P -value for the ROI Rk associated with SNP Si is as follows:

Pi,k = Pr(|Vk ∩ Li| ≥ li) =
∑

j≥li

(
rk
j

)
×
(
N−rk
ni−j

)(
N
ni

) . (1)

Here, Pr(·) is the probability function.



D. Evaluation of eIGAS

We evaluated the statistical power of eIGAS on discov-
ering imaging genetic associations by comparing it with
both ROI-based and second-best voxel-based approaches. We
also validated the novel SNP-ROI findings in brain tissue-
specific expression quantitative trait loci (eQTL) analysis.
Specifically, we used eQTL dataset available in BRAINEAC
(http://www.braineac.org/), a web server for data from the
UK Brain Expression Consortium (UKBEC) [14]. This dataset
contains ten brain tissues from 134 neuropathologically normal
subjects. We assessed the altered gene expression of identified
SNPs from eIGAS in the corresponding brain tissues.

III. RESULTS

A. Targeted genetic associations of FDG-PET iQTs

Targeted genetic analyses were performed on both ROI-level
(i.e., mean of all voxels in the ROI) and voxel-level FDG
measures, to examine imaging genetic associations between
19 AD SNPs and FDG measures from 116 ROIs and 185,405
voxels, respectively. To facilitate comparison among these
methods, for the 185,405 voxel-level P results, we employed
the second-best P -value strategy to map those to 116 ROI-
level P summary statistics. Using Bonferroni corrected P <
0.05/(116×19) = 2.27e-5 as threshold, we identified 41 SNP-
ROI hits from ROI-based approach covering 1 SNP (APOE
rs429358) and 41 brain ROIs, and 91 SNP-ROI associations
from the second-best strategy covering 6 SNPs and 78 brain
ROIs. Detailed findings of these two strategies were shown in
the top two panels of Fig. 1.

B. Imaging genetic associations from enrichment-based IGEA

For each AD SNP, we obtained a list of 185, 405 SNP-
voxel associations across all voxels in brain. Given a SNP Si,
for each ROI, we assessed the collective effect of Si on all
voxels within the ROI by calculating the enrichment score, to
relate Si to ROI. We employed a relatively generous threshold
0.05/19 = 2.63e-3 to determine the list of significant SNP-
voxel associations for eIGEA, to avoid missing individually
moderate while collectively significant signals. We obtained
enrichment P -values between 19 AD SNPs and 116 ROIs,
among which 158 SNP-ROI pairs were significant after cor-
recting for both the number of SNPs and the number of ROIs
(i.e., P < 0.05/(116×19) = 2.27e-5). These eIGAS findings
covered all 19 AD SNPs and 86 unique ROIs. Out of 158
findings, 102 SNP-ROI pairs were novel and 56 SNP-ROI
pairs overlapped with findings from the prior two strategies.

Fig. 1 shows the results from eIGEA (bottom panel) and
other two methods. As we expected, eIGAS not only con-
served high concordance with findings from ROI-based and
voxel-based second-best strategies, but also reported novel
SNP-ROI associations. This indicates that the integration of
fine-grained association statistics with brain ROI information
would promote the identification of high-level imaging genetic
associations and facilitate biological interpretation.

To better illustrate the findings from eIGAS as well as com-
pare it with the other two strategies, we summarized eIGAS

Fig. 1: Comparison of brain ROI genetic analysis strategies.
Shown from top to bottom are the results of traditional ROI-
level analysis, traditional voxel-level analysis with the 2nd-best
voxel representing the ROI, and the proposed eIGAS analysis.

findings by ranking AD SNPs according to the number of their
significantly related ROIs. Top five SNPs were extracted from
eIGAS results, including rs429358, rs6733839, rs9331896,
rs983392, rs3865444; and they were significantly associated
with 39, 18, 17, 13, and 11 ROIs, respectively. Given these
five SNPs, significantly associated ROIs from both ROI-based
and voxel-based second-best approaches were also extracted.

Fig. 2 maps all these ROIs onto the brain, where ROIs
were assigned different colors according to which approaches
they were identified from. As the best-known AD risk variant,
APOE rs429358 associated with the largest number of ROIs
from three approaches, including various frontal, temporal,
occipital, amygdala, precuneus and other regions responsible
for different functions. Regarding the ROIs associated with
other top SNPs, most of them were discovered by eIGAS
only (green ones) or by both eIGAS and ROI-based and/or
voxel-based second-best approaches (blue ones); while only
few ROIs were reported by ROI-based and/or voxel-based
second-best approaches (red ones). Given that disease risk
variants can influence pathological behaviors through interme-
diate phenotypes, our studied SNPs might implicitly mediate
FDG iQTs to contribute to AD. Thus our eIGAS framework
promoted the identification of these intermediate traits for
better understanding of the underlying disease mechanism.

C. Biological significance of eIGAS findings

We further examine the biological significance of 102
new SNP-ROI findings identified from eIGAS, through brain
tissue-specific eQTL analysis using genotyping and expression
data of ten brain tissues from UK Brain Expression Con-



Fig. 2: Brain maps of ROIs associated with top eIGAS SNPs.

sortium (UKBEC). There were totally 18 unique SNPs and
67 unique ROIs covered by 102 new hits. After mapping
ROIs to UKBEC brain tissues, there remain 53 SNP-ROI
pairs covering 16 SNPs and 34 ROIs. We assessed the effect
of these 16 SNPs on brain tissue-specific expression levels
of their nearest genes, and identified 15 significant tissue-
specific eQTLs with P -value less than 0.05 (see Table III for
details). This indicates the power of our method for identifying
biologically meaningful imaging genetic associations.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented an enrichment-based imag-
ing genetic association study (eIGAS) framework to explore
the collective effect of a genetic variant on a brain region by in-
tegrating fine-grained voxel-wise imaging genetic associations
with anatomically or functionally annotated ROI information.
We have demonstrated its effectiveness using imaging genetics
data from an AD study. In addition to associations identified by
traditional ROI-based or voxel-based approaches, our approach
has reported novel SNP-ROI findings and demonstrated their
biological significance. This indicates the increased power of
the presented method on identifying individually modest while
collectively substantial signals.

The real power of eIGAS, however, can be affected by
several factors. First, Fisher’s test requires a pre-defined
threshold to determine the list of significant SNP-voxel pairs.
Although this makes the framework more flexible in practice
for tightening or relaxing voxel-level effects, it considers only
the count of significant pairs without taking the full spectrum
of association statistics. Rank-based enrichment strategies
(e.g., [15]) can be employed in our framework to overcome
these limitations. Another issue is that eIGAS requires to
compute voxel-level associations in advance, which is both
time and space demanding, especially given millions of SNPs
in GWAS data. Therefore, another direction is to design
parallel computational framework for accelerating the voxel-
level GWAS. Another interesting future direction is to compare
the performances between our enrichment-based approach

TABLE III: eQTL analysis of eIGAS findings.

SNP Chr Gene P Tissue
rs10792832 11 PICALM 1.8e-2 Occipital cortex
rs11771145 7 EPHA1 1.4e-3 Occipital cortex
rs11771145 7 EPHA1 2.0e-3 Thalamus
rs11771145 7 EPHA1 1.8e-2 Temporal cortex
rs28834970 8 PTK2B 3.8e-2 Frontal cortex
rs28834970 8 PTK2B 1.1e-4 Temporal cortex
rs28834970 8 PTK2B 6.0e-3 Putamen
rs35349669 2 INPP5D 9.1e-3 Frontal cortex
rs3865444 19 CD33 3.3e-2 Frontal cortex
rs4147929 19 ABCA7 2.4e-2 Temporal cortex
rs6656401 1 CR1,CR1L 1.9e-2 Occipital cortex
rs6656401 1 CR1,CR1L 2.8e-3 Temporal cortex
rs6733839 2 BIN1 3.6e-2 Frontal cortex
rs9331896 8 CLU 6.1e-5 Temporal cortex
rs983392 11 MS4A6A,MS4A4E 1.1e-2 Frontal cortex

and random field theory strategies as implemented in SPM
(www.fil.ion.ucl.ac.uk/spm/).
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