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Abstract 

The vascular hypothesis of Alzheimer’s disease (VHAD) has proposed the involvement of brain 

hypoperfusion in AD pathogenesis, where cognitive decline and dysfunction result from 

dwindling cerebral blood flow (CBF). Based on the VHAD, we focused on exploring how genetic 

factors influence AD pathogenesis via the cerebrovascular system. To investigate the role of 

CBF endophenotypes in AD pathogenesis, we performed a targeted genetic analysis of 258 

subjects from the ADNI cohort to examine associations between 4,033 SNPs of 24 AD genes 

and CBF measures in four brain regions. A novel association with CBF measure in the left 

angular gyrus (L-AG) was identified in an INPP5D SNP (i.e., rs61068452; P = 1.48E-7; 

corrected P = 2.39E-3). The gene-based analysis discovered both INPP5D and CD2AP 

associated with the L-AG CBF. Further analyses on non-overlapping samples revealed that 

rs61068452-G was associated with lower CSF t-tau/Aβ1-42 ratio. Our findings suggest a 

protective role of rs61068452-G in an AD-relevant cerebrovascular endophenotype, which has 

the potential to provide novel insights for better mechanistic understanding of AD.  
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1. Introduction 

Alzheimer’s disease (AD) is a complex degenerative disease of the brain, characterized by 

neurodegeneration, memory impairment and cognitive problems (Jack et al., 2010). As the 

leading cause of dementia, AD is influenced by environmental and genetic factors. It is critical to 

improve the understanding of molecular mechanisms of AD because of its high prevalence, 

burdens, and currently no cure. Genome-wide association studies (GWAS) of quantitative 

endophenotypes have successfully identified a number of loci susceptible for AD (Saykin et al., 

2015), however, the underlying molecular mechanisms of how these genetic factors modulate 

AD or its biomarkers are not well characterized.  

The vascular hypothesis of Alzheimer’s disease (VHAD) (de la Torre, 2018) has 

proposed the involvement of brain hypoperfusion in AD pathogenesis, where cognitive decline 

and dysfunction result from dwindling neuronal energy supply and oxidative stress. In support of 

the vascular hypothesis, evidence suggests measurement of cerebral blood flow (CBF) may be 

a promising indicator of brain hypoperfusion useful for early detection of AD and assessing 

disease progression (Zhang et al., 2017). Consistent with the vascular hypothesis of AD, recent 

results have also demonstrated the potential of CBF as biomarker for preclinical detection of 

AD, as CBF changes present long before amyloid β (Aβ) load or brain atrophy (Hays et al., 

2016). Other studies have discovered the association of CBF with AD stages as well as various 

brain structural and functional imaging quantitative traits (Chen et al., 2011; Musiek et al., 2012; 

Wang et al., 2013; Mattsson et al., 2014; Michels et al., 2016; Bangen et al., 2017). However, 

the molecular mechanisms of CBF changes underlying AD have not been fully understood.  

Given that large variations of CBF have been seen across AD studies, high scientific 

interests have aroused to examine whether they have a genetic basis. Reciprocally, assessing 

the genetic association with CBF might provide a better understanding of molecular 

mechanisms underlying changes of CBF as well as gaining additional insight into complex 

neurodegenerative diseases. To the best of our knowledge, the genetic contributions to CBF is 

an under-explored topic in AD research, except that a few studies examined the APOE effects 

on CBF (Kim et al., 2013b; Hays et al., 2016). Accordingly, in this study, we propose to 

investigate the genetic factors that affect AD through regulating the function of cerebrovascular 

system.  

GWAS have successfully identified a number of loci susceptible for complex neurological 

traits and diseases (Saykin et al., 2015). Recently, a large scale meta-analysis of GWAS 

identified a set of susceptibility loci for late-onset AD (LOAD), including 9 known and 12 new 



single nucleotide polymorphisms (SNPs) (Lambert et al., 2013). In addition to APOE, 23 genes 

underlying these 21 significant variants are discovered, most of which are associated with 

inflammation and immune system. For example, there are several genes encoding proteins 

relevant to microglial function and inflammation, including TREM2, CD33, CR1, ABCA7 and 

INPP5D (Malik et al., 2015). Mechanisms of how these genetic factors modulate AD or its 

biomarkers remain to be discovered.  

Based on the VHAD, we hypothesized that some genetic factors impact AD 

pathogenesis via influencing brain hypoperfusion. Thus, this study is designed to improve the 

understanding of mechanisms by which genetic factors impact AD pathogenesis, in this case by 

investigating the role of cerebrovascular functions as an AD endophenotypes. Therefore, in this 

study, we perform a targeted genetic analysis for exploring the genetic effect on CBF measures 

in four brain regions using 24 AD candidate genes (APOE and the other 23 reported AD genes 

mentioned above), to help provide novel insights for better revealing molecular interpretation of 

AD. To evaluate the CBF genetic findings, we further examine non-overlapping samples from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort regarding their associations with 

the CSF t-tau/Aβ1-42 ratio and FDG-PET glucose metabolism, given that both are established AD 

biomarkers and their abnormalities have been suggested as downstream pathological events 

from initiation of brain hypoperfusion under VHAD (de la Torre, 2018). In addition, to examine 

whether our most significant CBF genetic finding has a direct effect on AD, we further evaluated 

its association with the AD status using the summary statistics from the most recent genome-

wide meta-analysis of AD (Jansen et al., 2019).   

2. Materials and Methods 

2.1. Alzheimer’s Disease Neuroimaging Initiative 
Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial MRI, PET, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) 

and early AD. For up-to-date information, see www.adni-info.org.  

 

2.2. Genome-wide meta-analysis of AD 
A large genome-wide meta-analysis of clinically diagnosed AD and AD-by-proxy was recently 

conducted (Jansen et al., 2019). The study included three phases: (1) Phase 1 was a meta-



analysis of the AD status (N = 79,145) using three independent cohorts collected by Alzheimer’s 

disease working group of the Psychiatric Genomics Consortium (PGC-ALZ), the International 

Genomics of Alzheimer’s Project (IGAP), and the Alzheimer’s Disease Sequencing Project 

(ADSP). (2) Phase 2 was a GWAS of the AD-by-proxy status (N = 376,113), using individuals of 

European ancestry from the UK Biobank with parental AD status weighted by age. (3) Phase 3 

was a meta-analysis of the Phase 1 and Phase 2 findings, with totally 455,258 samples (71,880 

cases and 383,378 controls). In this work, we downloaded the summary statistics of the Phase 

3 analysis (available at https://ctg.cncr.nl/software/summary_statistics) to examine whether our 

CBF finding is associated with AD. 

 

2.3. Study participants 
Participants for the current CBF study were limited to those with baseline scans from ADNI in 

the ASL MRI sub study as of May 2012. Full inclusion and exclusion criteria for ADNI are 

described at www.adni-info.org. Detailed quality control (QC) steps for phenotypic and 

genotypic data had been previously reported (Kim et al., 2013a; Wang et al., 2013) and were 

briefly described below. Participants were restricted to non-Hispanic Caucasian to reduce the 

likelihood of population stratification effects in the genetic analysis. A total of 258 non-Hispanic 

Caucasian subjects whose CBF data met all QC criteria were analyzed, including 72 healthy 

control (HC), 16 significant memory concern (SMC), 71 early mild cognitive impairment (EMCI), 

57 late mild cognitive impairment (LMCI) and 42 AD participants. Detailed characteristic 

information and the number of subjects in each sub-group are shown in Table 1. Besides 

participants included in the CBF analysis, non-overlapping samples with various AD 

endophenotypes were studied further for evaluating their associations with the CBF findings. 

See Fig. 1 for detailed information of participant pool selection and study design of this work. 

This study was approved by institutional review boards of all participating institutions and 

written informed consent was obtained from all participants or authorized representatives. 

 
2.4. MRI data acquisition and processing 
Both high-resolution structural MRI data and resting ASL data were downloaded from the ADNI 

website (adni.loni.usc.edu). Image processing used a SPM12 (http://www.fil.ion.ucl.ac.uk/spm) 

based toolbox, ASLtbx (Wang et al., 2008), as described previously (Wang et al., 2013). ASL 

images were processed with the following steps: motion correction (MoCo) (Wang, 2012), 

temporal denoising, spatial smoothing, CBF quantification, outlier cleaning, partial volume 



correction (PVC) (Hu et al., 2010), spatial registration to the Montreal Neurology Institute (MNI) 

standard brain space, and CBF extraction in ROI.  

Mean CBF for four ROIs were studied, including left angular, right angular, left temporal and 

right temporal gyri. The ROIs were selected on the basis FDG-PET literature (Chen et al., 2011; 

Landau et al., 2011; Wang et al., 2013). In particular, meta-region-of-interest (meta-ROI) was 

previously found to be sensitive to AD-related CBF changes (Chen et al., 2011) and originally 

developed for FDG-PET data (Landau et al., 2011), where FDG-PET and ASL showed similar 

patterns of reduction in brain regions covered by these ROIs. A follow-up study also explored 

these ROIs using the same parcellation template and demonstrated the sensitivity of CBF on 

these ROIs for early AD. See Supplementary Methods for detailed MRI data acquisition, 

processing and analysis. 

 A total of 299 subjects were included in the ASL-MRI processing. To restrict the present 

analysis to non-Hispanic Caucasians, 258 subjects were identified based on population 

stratification information from genotyping data processing. Considering the relatively small 

number of samples for the genetic analysis, we performed further quality control to reduce the 

potential influence of extreme outliers. Mean and standard deviation of CBF measures for each 

ROI were calculated, blind to diagnostic information. Subjects who had at least one value 

greater or smaller than six standard deviations from the mean value of each of four CBF 

variables were detected as outliers. No subjects were identified as outliers and removed from 

this criterion. Finally, 258 subjects with four lists of quality controlled CBF measures were 

included (Fig. 1). 

 

2.5. CSF Biomarkers 

The total tau (t-tau) and amyloid-β 1-42 peptide (Aβ1-42) measured in the baseline CSF samples 

were obtained from the ADNI database (adni.loni.usc.edu). Sample acquisition and quality 

control of CSF were performed as described previously (Shaw et al., 2009). The t-tau/Aβ1-42 

ratio was calculated for 919 subjects who were non-Hispanic Caucasians as well as not 

included in the CBF analysis. Further quality control was performed to reduce the potential 

influence of extreme outliers on statistical results. Mean and standard deviation of t-tau/Aβ1-42 

ratio were calculated, while subjects with greater or smaller than six standard deviation from the 

mean value were regarded as outliers. 13 subjects were removed, where 12 subjects had 

missing t-tau/Aβ1-42 measures, and 1 subject had extremely high t-tau/Aβ1-42 ratio. Finally, 906 

subjects with quality-controlled CSF t-tau/Aβ1-42 ratio were analyzed (Fig. 1). 

 



2. 6.  F D G- P E T d at a a c q ui siti o n a n d p r o c e s si n g 

Gi v e n t h e c ert ai n a gr e e m e nt of C B F c h a n g e s a n d c er e br al m et a b oli c r at e of gl u c o s e o n s o m e 

br ai n r e gi o n s ( C h e n et al. , 2 0 1 1; M u si e k et al. , 2 0 1 2), c o n si d er a bl e v ari a bilit y o n s o m e ot h er 

r e gi o n s w a s al s o o b s er v e d. Wit h t hi s o b s er v ati o n, w e al s o e x a mi n e d t h e r el ati o n s hi p b et w e e n 

t h e C B F g e n eti c fi n di n g s a n d gl u c o s e m et a b oli s m m e a s ur e m e nt s. Pr e pr o c e s s e d F D G- P E T 

s c a n s w er e d o w nl o a d e d fr o m t h e A D NI w e b sit e ( a d ni.l o ni. u s c. e d u) a n d pr o c e s s e d a s pr e vi o u sl y 

d e s cri b e d i n ( Ri s a c h er et al. , 2 0 1 5). F D G- P E T s c a n s w er e t h e n ali g n e d t o t h e c orr e s p o n di n g 

M RI s c a n s a n d n or m ali z e d t o t h e M NI s p a c e a s 2 ×  2 ×  2 m m3  v o x el s. R OI-l e v el gl u c o s e 

m e t a b oli s m m e a s ur e m e nt s w er e f urt h er e xtr a ct e d b a s e d o n t h e M ar s B a R A A L atl a s f or 7 3 5 

s u bj e ct s w h o w er e n ot i n cl u d e d i n t h e C B F g e n eti c a n al y si s. H er e w e f o c u s e d o nl y o n t h e l eft 

a n g ul ar r e gi o n ( L- A G) o n w hi c h t h e C B F g e n eti c a s s o ci ati o n w a s i d e ntifi e d. S u bj e ct s w er e 

tr e at e d a s o utli er s a n d e x cl u d e d if t h eir l eft a n g ul ar F D G- P E T m e a s ur e s w er e gr e at er or s m all er 

t h a n si x st a n d ar d d e vi ati o n s fr o m t h e m e a n v al u e. N o s u bj e ct s w er e r e m o v e d u n d er t hi s 

crit eri o n, a n d fi n all y 7 3 5 s u bj e ct s wit h q u alit y- c o ntr oll e d l eft a n g ul ar F D G- P E T m e a s ur e d 

gl u c o s e m et a b oli s m w er e a n al y z e d ( Fi g. 1). 

 

2. 7.  G e n ot y pi n g d at a 

G e n ot y pi n g d at a w er e o bt ai n e d fr o m t h e A D NI d at a b a s e ( a d ni.l o ni. u s c. e d u). T h e y w er e q u alit y-

c o ntr oll e d, i m p ut e d a n d c o m bi n e d a s d e s cri b e d i n ( Ki m et al. , 2 0 1 3 a). Bri efl y, g e n ot y pi n g w a s 

p erf or m e d o n all A D NI p arti ci p a nt s f oll o wi n g m a n uf a ct ur er’ s pr ot o c ol u si n g bl o o d g e n o mi c D N A 

s a m pl e s a n d Ill u mi n a G W A S arr a y s ( 6 1 0- Q u a d, O m ni E x pr e s s, or H u m a n O m ni 2. 5- 4 v 1) ( S a y ki n 

et al. , 2 0 1 0). Q u alit y c o ntr ol w a s p erf or m e d i n P LI N K v 1. 9 0 ( P ur c ell et al. , 2 0 0 7) u si n g t h e 

f oll o wi n g crit eri a: 1) c all r at e p er m ar k er ≥  9 5 %, 2) mi n or all el e fr e q u e n c y ( M A F) ≥  5 %, 3) H ar d y 

W ei n b er g E q uili bri u m ( H W E) t e st P  ≥  1. 0 E- 6, a n d 4) c all r at e p er p arti ci p a nt ≥  9 5 %. Si g nifi c a nt 

r el at e d n e s s p air s wit h PI _ H A T > 0. 4 5 w er e i d e ntifi e d a n d t h er e aft er o n e i n di vi d u al fr o m e a c h 

p air w a s r a n d o ml y e x cl u d e d ( si mil ar t o t h e a p pr o a c h a p pli e d i n ( R a m a n a n et al. , 2 0 1 5)). 

P arti ci p a nt s w er e t h e n c h e c k e d f or g e n d er a n d i d e ntit y- b y- d e s c e nt b ef or e i m p ut ati o n t o i d e ntif y 

g e n ot y pi n g or c o di n g err or a n d t o a v oi d t h e p ot e nti al c o nf o u n di n g eff e ct d u e t o t h e g e n d er 

a m bi g uit y or c o n s a n g ui nit y s u c h a s si bli n g p air s. T o r e stri ct t h e st u di e d p arti ci p a nt s t o n o n-

Hi s p a ni c C a u c a si a n s, w e f urt h er p erf or m e d p o p ul ati o n str atifi c ati o n u si n g 9 8 8 s u bj e ct s wit h 

k n o w n a n c e str y i nf or m ati o n fr o m H a p M a p 3 a s r ef er e n c e d at a. W e m er g e d t h e A D NI a n d 

H a p M a p 3 s a m pl e s, a n d p erf or m e d m ulti di m e n si o n al s c ali n g a n al y si s u si n g P LI N K  v 1. 9 0 wit h 

i d e ntit y- b y- st at e (I B S) p air wi s e di st a n c e m atri x o n t h e m er g e d d at a t o cl u st eri n g s a m pl e s i n t h e 

pri n ci p al c o m p o n e nt a n al y si s ( P C A) s p a c e. A D NI p arti ci p a nt s w er e i d e ntifi e d a s n o n- Hi s p a ni c 



Caucasians if: 1) they were clustered with HapMap3 CEU or TSI subjects as well as had self-

reported race/ethnicity as “non-Hispanic/white”, or 2) they were not clustered with any HapMap3 

subjects while had self-reported race/ethnicity as “non-Hispanic/white”. Haplotype patterns from 

the 1,000 Genomes Project reference panel were then applied to impute the SNPs that were not 

directly genotyped from arrays. 5,574,300 SNPs were obtained for all subjects involved in this 

work (see Supplementary Methods for more details about genotyping data imputation). To 

appropriately control for population stratification, we used PLINK v1.90 to generate the top four 

principal components to be included as covariates in our genetic association analyses. 

 A list of 24 AD candidate genes from the large scale meta-analysis (Lambert et al., 

2013) were analyzed. Given that the Genome Reference Consortium Human build 37 

(GRCh37) was used as reference genome for genotyping, gene annotation from GRCh37 was 

employed to extract SNPs located within each AD gene. Two genes (HLA-DRB1 and HLA-

DRB5) had no SNPs available in our imputed genotyping data. In total, 4,033 SNPs were 

included in the genetic association analysis. Detailed information of these genes is available in 

Supplementary Table 1.  

 

2.8. Statistical analysis 
Targeted genetic association analysis of CBF on each ROI was tested using linear regression 

under an additive genetic model in PLINK v1.90 (Purcell et al., 2007). Age, gender APOE ɛ4 

status and the top four principal components from population stratification analysis were 

included as covariates. Post-hoc analysis used Bonferroni correction for adjusting both the 

number of SNPs and the number of quantitative traits. Regional genetic association plot was 

generated using LocusZoom (Pruim et al., 2011). Gene-based association analysis was 

employed to gain comprehensive statistical evidence of genetic findings. We used GATES (Li et 

al., 2011) to calculate a gene-level summary P-value for each gene by taking into account gene 

size, linkage disequilibrium (LD) and constituent SNP level P-values.  

 Phenotypic variance explained by an identified genetic variant was evaluated using the 

linear regression after removing effects from age, gender, APOE ɛ4 status and the top four 

principal components from population stratification analysis. Both linear regression coefficient P 

value and Cohen’s d statistic were used to illustrate the significance and effect size of identified 

variant, to facilitate the comparison among different genotyping groups. 

 The additive effects of the identified genetic variants from above association analysis 

were also assessed at each voxel using SPM12 under one-way ANOVA test with age, gender, 

APOE ɛ4 status and the top four principal components from population stratification analysis as 



covariates. The statistical analysis results were assessed at P < 0.001 with no correction. The 

genetic effects were mapped onto the brain via voxel-based analysis.  

 Genetic findings from the CBF analysis were further investigated in non-overlapping 

samples regarding their associations with the CSF t-tau/Aβ1-42 ratio and left angular FDG-PET 

glucose metabolism. For both association tests, linear regression models were used. In 

particular, we applied additive genetic models implemented in PLINK v1.90 (Purcell et al., 

2007), with age, gender, APOE ɛ4 status and the top four principal components from population 

stratification analysis as covariates.  

3.  Results 

3.1. Participant characteristics 
A total of 258 ADNI subjects were studied in the CBF genetic association analysis (see Table 1 

for their characteristics). There were 25 subjects with missing CBF measures in one or more 

ROIs (2 subjects for left angular region, 2 subjects for right angular region, 12 subjects for left 

temporal region, and 11 subjects for right temporal region). Using one-way ANOVA or Chi-

squared test, significant differences among diagnostic groups were observed for MMSE scores 

(P = 2.20E-16) and APOE ɛ4 status (present of APOE ɛ4 or not; P = 0.0015), while not 

observed for age, gender or any CBF measure.  

 

3.2. Targeted genetic association of CBF 
To identify the genetic predictor of CBF, we performed a targeted genetic association analysis 

(N = 258) of CBF measurements in four brain ROIs using AD risk genes and controlling for age, 

gender, APOE ɛ4 status and the top four principal components from population stratification 

analysis. A total of 4,033 SNPs located in AD candidate genes were studied.  

 Genetic association analysis identified one significant association between rs61068452 

with L-AG CBF (P = 1.48E-7; corrected P = 2.39E-3) after correcting for the number of variants 

and the number of phenotypes using the Bonferroni method. The minor allele G of rs61068452 

(rs61068452-G) was associated with higher CBF in L-AG compared to its major allele A (Fig. 

2B). It explained an additional 9.57% of the phenotypic variance of L-AG CBF that exhibited the 

protective effect on AD. Significant difference of L-AG CBF existed between AA and AG groups 

(P = 1.43E-4), between AA and GG groups (P = 1.53E-5), and between groups AG and GG (P 

= 0.24). The recessive homozygote showed higher Cohen’s d statistics when compared with 

other two groups (i.e., Cohen’s d = 2.52 between AA and GG groups, Cohen’s d = 1.45 between 

AG and GG groups and Cohen’s d = 0.78 between AA and AG groups). In addition, INPP5D 



rs61068452-G was associated with increased L-AG CBF in all diagnostic groups 

(Supplementary Fig. 2A). 

 The SNP rs61068452 resides in an intron of INPP5D, a reported AD candidate gene 

involved in inflammatory responses (Fig. 2A). Rs35349669, another SNP located within 

INPP5D, has been reported as risk AD variant in several studies (Lambert et al., 2013; Ruiz et 

al., 2014; Farfel et al., 2016; Jing et al., 2016). In our CBF genetic studies, no significant 

association of rs35349669 was observed with CBF for any region (P > 0.05) based on the 

studied samples.  

 Due to the possible opposite effects of our reported variant rs61068452 and previously 

reported variant rs35349669, we assessed their relationship. Correlation between these two 

SNPs was -0.22, according to the genotyping data from the studied 258 subjects. There existed 

no linkage disequilibrium between these two SNPs, with r2 = 0.046 computed from the 

genotyping data of the studied 258 samples (see Supplementary Fig. 1).  

 We further investigated the effect of the APOE ɛ4 allele (rs429358) due to its well-known 

association with AD diagnosis. We did not observe significant association of rs429358 with CBF 

in four ROIs in the studied sample. Fig. 3 illustrated the additive effect of INPP5D rs61068452 

on CBF under voxel-wise analysis, adjusted for age, gender, APOE ɛ4 status and the top four 

principal components from the population stratification analysis. The minor allele (G) of 

rs61068452 was associated with higher CBF, with significant clusters for this effect observed 

primarily in L-AG.  

 

3.3. Gene-based association analysis of CBF 
Complementary analysis was employed to test the gene-based association with CBF measures 

in L-AG. We assessed the gene-based association with L-AG CBF using 4,033 SNP statistics in 

GATES (Li et al., 2011). Two genes displayed significant associations with L-AG CBF including 

INPP5D (P = 1.5E-3) and CD2AP (CD2 associated protein; P = 2.0E-2), after Bonferroni 

correction for the number of genes (Supplementary Table 2).  

 

3.4. Association of INPP5D rs61068452 with CSF t-tau/Aβ1-42 ratio 
Given the effect of rs61068452 with CBF measures in brain region, we hypothesized that 

INPP5D rs61068452 would also be associated with CBF related AD biomarkers. We tested the 

hypothesis through assessing the association of rs61068452 with CSF t-tau/Aβ1-42 ratio in 906 

subjects (Supplementary Table 3) from ADNI who were not included in the CBF genetic 

analysis. The minor allele (G) of rs61068452 was significantly associated with lower CSF t-



tau/Aβ1-42 ratio (P = 0.014; Fig. 4A) under linear regression with age, gender, APOE ɛ4 status 

and the top four principal components as covariates. We also tested the relevance of the 

previously reported INPP5D SNP rs35349669, and identified its association with higher CSF t-

tau/Aβ1-42 ratio (P = 0.028). We observed that the minor allele (G) of rs61068452 was 

associated with decreased CSF t-tau/Aβ1-42 ratio across all diagnostic groups (Supplementary 

Fig. 2B). 

 

3.5. Association of INPP5D rs61068452 with FDG-PET  
Recent studies have reported different relationships between ASL MRI and FDG-PET in 

different brain regions, including the similar abnormalities in some regions (Chen et al., 2011; 

Musiek et al., 2012) and decoupling between perfusion and metabolism in other brain regions 

(Cha et al., 2013). We first explored the association of rs61068452 with glucose metabolism of 

left angular region measured by FDG-PET in 735 subjects from ADNI who were not included in 

our previous CBF analysis (Supplementary Table 4). There existed no significant association 

between rs61068452 and left angular glucose metabolic rate (P = 0.111, Fig. 4B) under linear 

regression with age, gender, APOE ɛ4 status and the top four principal components as 

covariates; while the minor allele (G) of rs61068452 showed a trend of association with 

increased glucose metabolic rate in L-AG for all diagnostic groups except healthy controls 

(Supplementary Fig. 2C). 

 

3.6. Association of INPP5D rs61068452 with AD 
To examine whether the genetic finding from our CBF analysis is directly associated with the AD 

status, we leveraged the valuable results available from the most recent large-scale genome-

wide meta-analysis of AD (Jansen et al., 2019). According to the summary statistics of the 

Phase 3 analysis in this study, rs61068452 exhibited a significant association with AD (P = 

1.54E-04; N = 456,488). The corresponding effect size is -0.0164, indicating a protective role of 

rs61068452-G in AD. This aligns well with our CSF finding. 

4. Discussion 

Targeted genetic analysis of AD candidate genes discovered a novel association between the 

SNP rs61068452 in INPP5D and a regional CBF measure in 258 ADNI subjects. To the best of 

our knowledge, this is among the first genetic association analyses of CBF measured by ASL 

perfusion MRI in AD-related studies. We identify that INPP5D rs61068452-G is associated with 

higher CBF of left angular gyrus. The protective effect of the G allele of rs61068452 is further 



validated in a large meta-analysis of AD (N = 456,488), as well as shown in non-overlapping 

samples from ADNI, where it is associated with AD CSF biomarker (N = 906) and left angular 

glucose metabolism measured by FDG-PET (N = 735).  

INPP5D is a known negative regulator of inflammation, and has been reported to be 

associated with late-onset AD in a large meta-analysis of GWAS case control study (Lambert et 

al., 2013; Yoshino et al., 2017). It has been further investigated and reviewed for its function in a 

number of pathways including microglial activation, neuroinflammation, and immune response 

(Malik et al., 2015; López González et al., 2016; Yoshino et al., 2017). INPP5D mRNA analysis 

has revealed significantly higher expression in AD than in healthy control subjects, and 

suggested its involving role in microglial function via DAP12 (DNAX-activating protein of 12kD) 

(Yoshino et al., 2017). 

 INPP5D encodes a protein called SHIP1 (phosphatidylinositol-3,4,5-trisphosphate-5-

phosphatase 1). Our reported SNP rs61068452 is an intronic variant of INPP5D, locating nearby 

the INPP5D transcription starting site, which is related to the regulation of SHIP1 by modulating 

the SH2 (Src Homology 2) domain. Therefore, one possible role which rs61068452 could play is 

to regulate the production of SHIP1. Another previously reported AD risk variant, INPP5D SNP 

rs35349669, is not associated with CBF phenotypes in the studied samples. However, it is 

significantly associated with CSF t-tau/Aβ1-42 ratio in the subsequent biomarker analysis with 

opposite effect direction compared to rs61068452. There are multiple transcription factors of 

INPP5D for modulating the production of SHIP1. The SNPs rs61068452 and rs35349669 are 

located in different introns and independent from each other according to their linkage 

disequilibrium value. In addition, rs61068452 resides in regions that are related to the SH2-

domain, while rs35349669 resides in regions regulating endonuclease. Thus, it warrants further 

investigation to examine how the molecular functions of rs61068452 and rs35349669 differ.  

 Recent studies of mouse model also indicate the important role of INPP5D in AD, 

especially in microglia. In particular, a recent work has demonstrated the conservative of 

transcriptomic between human and mouse microglia, and illustrated the higher expression level 

of INPP5D in them (Gosselin et al., 2017). In another study of AD immune basis, overlap of AD 

associated variants within INPP5D with increasing enhancer has been identified in AD mouse 

model, as well as overlap with immune enhancer in human CD14+ primary cells (Gjoneska et 

al., 2015). Our reported variant, INPP5D rs61068452, overlaps with this enhancer region and is 

only ~10K bp from these variants. The transcription site nearby which rs61068452 is located 

encodes SH2 domain. Therefore, this may indicate a possible function of rs61068452 for 

modulating the transcription of SHIP1 through affecting the SH2 domain. This provides 



evidences for using mouse model to gain a better understanding of human neurodegenerative 

diseases. 

In addition to INPP5D, our gene-based association analysis also discovered CD2AP 

(CD2 associated protein) associated with left angular CBF. Recent studies have identified 

interactions between INPP5D and several other AD candidates and studied their associations 

with AD pathogenesis. In particular, SHIP1, protein encoded by INPP5D, complexes with 

CD2AP to inhibit the ubiquitination of pro-inflammatory proteins Syk (spleen tyrosine kinase) 

and FcγRIIa (CD32) (Bao et al., 2012). SHIP1 has also been investigated for inhibiting TREM2 

(triggering receptor expressed on myeloid cell 2) signaling by binding to DAP12 and preventing 

the recruitment of PI3K (phosphatidylinositol 3-kinase) to DAP12 (Peng et al., 2010; Malik et al., 

2015; Yoshino et al., 2017). Functional interactions among these genes may help supply 

meaningful information for understanding the underlying molecular mechanism. 

Pathologically, interactions between CBF and neuroinflammation and their effects on 

neurodegenerative diseases have been explored. CBF is regulated by activations of neurons 

and glial cells, including microglia which are the main resident immune cells in brain. Increased 

activation of microglia has been shown linked to neurodegenerative diseases including AD. 

Relationships between microglia and brain blood flow have also been largely studied (Attwell et 

al., 2010; Szalay et al., 2016), further suggesting their involvements in AD.  

 In this work, we discover that rs61068452-G is associated with higher CBF in L-AG. 

Given that hypoperfusion of L-AG is an established imaging biomarker of AD and early AD (Liu 

et al., 2015; Suwa et al., 2015), increased L-AG CBF in the G-carriers of rs61068452 may 

represent a protective role in AD neuropathogenesis. It is further validated in a large meta-

analysis of AD for the protective effect of G-carriers of rs61068452.  

 According to the discovery of rs61068452 from targeted genetic analysis, we test its 

association with other AD endophenotypes including CSF t-tau/Aβ1-42 ratio and glucose 

metabolism measured by FDG-PET. The minor allele (G) of rs61068452 is significantly 

associated with lower CSF t-tau/Aβ1-42 ratio and shows a trend towards higher glucose 

metabolic rate in left angular region. Both CSF and FDG-PET hold promise as early markers for 

preclinical of AD, while CSF biomarkers have been thought to be a type of “AD signature”, due 

to their predictive power for accurate and early diagnosis of AD (Blennow et al., 2015; De Deyn, 

2015; Skillbäck et al., 2015). Therefore, these findings further suggest the protective effect of 

the G allele of rs61068452 for AD. 

In conclusion, we have revealed a novel association between the minor allele (G) of 

INPP5D rs61068452 and higher left angular cerebral blood flow, and have related this genetic 



finding to AD endophenotypes including CSF t-tau/Aβ1-42 ratio. This study has focused on AD 

candidate genes, given the modest sample size in a genetic association study. Future 

investigation is warranted to conduct a replication study with larger sample(s) from independent 

cohorts. Another future direction is to perform the longitudinal CBF analysis for characterizing 

disease progression. The molecular mechanism of identified INPP5D rs61068452 warrants 

further investigation, including how it modulates SHIP1 transcription, interacts with other AD 

genes like TREM2, CD2AP, and affects the microglia activation and inflammation. Another 

future topic is to examine the biological role of INPP5D rs61068452 in vascular system, given 

the evolving of vascular system on CBF controlling and brain functions. In addition, AD animal 

models merit further investigation and may provide helpful information for filling the gap between 

neurodegenerative disease mechanisms and genetic risk and protective factors. 
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Table 1. Participant characteristics in CBF genetic association analysis 

Diagnosis HC SMC EMCI LMCI AD P value 
Number 72 16 71 57 42 - 

Gender (M/F) 35/37 7/9 45/26 27/30 21/21 0.25 
Age (mean±sd) 75.03±7.42 73.56±6.87 74.01±7.46 73.88±7.66 73.67±7.74 0.83 

APOE ɛ4 present 30.99% 37.50% 40.85% 54.39% 69.05% 1.5E-03 
MMSE  

(mean±sd) 29.04±1.16 29.40±0.99 28.43±1.55 27.23±2.02 23.85±2.96 2.2E-16 

Left angular  
CBF (mean±sd) 50.29±23.96 51.77±22.48 50.41±20.48 51.47±24.42 43.14±21.11 0.39 

Right angular  
CBF (mean±sd) 52.90±22.59 46.69±16.93 49.25±20.66 57.82±27.14 50.99±25.75 0.28 

Left temporal  
CBF (mean±sd) 44.76±19.31 46.06±15.51 44.34±24.28 43.56±21.65 37.45±21.07 0.46 

Right temporal  
CBF (mean±sd) 46.36±23.09 34.37±17.91 40.90±18.80 44.77±23.31 37.23±19.41 0.09 

CBF-cerebral blood flow, AD-Alzheimer’s disease, HC-healthy control, SMC-significant memory 
concern, EMCI-early mild cognitive impairment, LMCI-late mild cognitive impairment. P values 
were assessed due to significant differences among diagnosis groups, and were computed 
using one-way ANOVA (except for gender using chi-square test). 

 
  



Figure Legends 

Figure 1. Flowchart of participant selection and study design.  
Figure 2. Association and effect of INPP5D rs61068452 on left angular CBF. (A) All SNPs 

within INPP5D are plotted based on their genetic association statistics -log10 P values. NCBI 

build 37 genomic position and recombination rates are calculated from the 1,000 Genome 

Project reference data. The color scale of r2 values is used to label SNPs based on their degree 

of linkage disequilibrium with rs61068452. Genes in the region are labeled with arrows denoting 

5’- to -3’ orientation. (B) Mean left angular CBF measures and standard errors are plotted 

against rs61068452 genotype groups (AA, AG, and GG). P value indicates the association 

significance of rs61068452 with left angular CBF. P values are calculated from linear regression 

with age, gender, APOE ɛ4 status and the top four principal components from population 

stratification analysis as covariates. Cohen’s d indicates the effect size of minor allele G (one 

copy or two copies) of rs61068452 on left angular CBF, after being adjusted for age, gender, 

APOE ɛ4 status and the top four principal components from population stratification analysis. 

Presence of minor allele G of rs61068452 suggests an additive effect of increasing left angular 

CBF and this SNP accounts for 9.57% of the phenotypic variance.  

Figure 3. Effect of INPP5D rs61068452 on cerebral blood flow. Selected sectional slices 

(top) and surface renderings (bottom) represent the voxel-wise analysis of the additive effect of 

rs61068452-G on CBF. The color scale indicates significance (-log10 P value) of association 

between rs61068452 and CBF measure (i.e., GG > AG > AA). All comparisons are displayed at 

a voxel-wise threshold of uncorrected P < 0.001 with minimum cluster size of 800 voxels 

(approximately responding to a cluster-wise threshold of FDR-corrected P < 0.05). The most 

significant clusters are present in the left angular gyrus.  

Figure 4. Association of INPP5D rs61068452 on CSF t-tau/Aβ1-42 ratio and FDG 
metabolism. (A) Mean CSF t-tau/Aβ1-42 ratio with standard errors are plotted against the 

rs61068452 genotype groups (i.e., AA and AG, no GG participants in this sample). P value and 

Cohen’s d respectively indicates the significance and effect size of the association between 

rs60168452 and CSF t-tau/Aβ1-42 ratio, with age, gender, APOE ɛ4 status and the top four 

principal components from population stratification analysis as covariates. Presence of minor 

allele (G) of rs61068452 is associated with decreasing CSF t-tau/Aβ1-42 ratio. (B) Mean left 

angular FDG-PET glucose metabolism with standard errors are plotted against the rs61068452 

genotype groups (i.e., AA and AG, no GG participants in this sample). Presence of minor allele 



(G) of rs61068452 is associated with increasing FDG-PET measured glucose metabolism in left 

angular gyrus. 



Targeted genetic 
association analysis

Genotyping data:
4033 SNPs of 24 AD gene

CBF genetic Findings: significant SNPs

CSF t-tau/Aβ1-42 ratio:
1238 participants

332 participants excluded:
226 in CBF analysis; 93 not
non-Hispanic Caucasian; 12
had missing data; 1 failed
outlier detection.

CSF: 906 participants
(192 HC, 72 SMC, 188 EMCI, 266 

LMCI, 188 AD)

FDG PET: 
989 participants

FDG PET: 735 participants
(170 HC, 71 SMC, 210 EMCI, 136

LMCI, 148 AD)

254 participants excluded:
included in CBF analysis.

CBF: 299 participants

CBF: 258 participants
(72 HC, 16 SMC, 71 EMCI, 57 LMCI, 42 AD)

41 participants excluded: 37 
participants are not non-Hispanic 
Caucasian; 4 participants had no 
diagnosis information available for 
imaging acquisition date.
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