Semi-Boustrophedon Coverage with a Dubins Vehicle

Jeremy S. Lewis, William Edwards, Kelly Benson, Ioannis Rekleitis, and Jason M. O’Kane

Abstract— This paper addresses the problem of generating
coverage paths—that is, paths that pass within some sensor
footprint of every point in an environment—for vehicles with
Dubins motion constraints. We extend previous work that solves
this coverage problem as a traveling salesman problem (TSP) by
introducing a practical heuristic algorithm to reduce runtime
while maintaining near-optimal path length. Furthermore, we
show that generating an optimal coverage path is NP-hard
by reducing from the Exact Cover problem, which provides
justification for our algorithm’s conversion of Dubins coverage
instances to TSP instances. Extensive experiments demonstrate
that the algorithm does indeed produce length paths compara-
ble to optimal in significantly less time.

I. INTRODUCTION

Coverage path planning is often described as selecting a
path that passes within a given range of every obstacle-free
point in an environment [2], [3], [7]. The range is given in
terms of a sensor radius or the robot’s physical dimensions.
Generating this path is fundamental in many problems robots
are currently solving or are ideally suited to solve. Tasks such
as lawn maintenance, floor cleaning, agriculture, environ-
mental monitoring, humanitarian demining, and numerous
naval applications such as mine sweeping and search and
rescue can be stated as coverage path planning problems.

The complexity of these problems depends on factors such
as the environment complexity and the motion constraints of
the covering vehicle. Open, obstacle-free environments are
easier to plan for than tightly bounded environments with
obstacles. A holonomic vehicle can follow any path in its en-
vironment without limitation, while one with non-holonomic
constraints is not only restricted in their movement, but may
not even be capable of covering a given space. A common
movement constraint is a restriction on the minimum turning
radius of a vehicle, as angular acceleration is limited in many
of the vehicles of practical interest.

This paper considers the coverage problem for the Dubins
vehicle [4], which has just this sort of constraint. Without
limiting ourselves to one particular robot model, a fixed-
wing aircraft performing aerial coverage with a camera or
a surface water vehicle performing coverage of bodies of
water with sonar are representative vehicles for our plans.
In the case of a water vehicle, we assume the environment
and a portion of its surroundings are sufficiently deep to
avoid collisions. In other words, obstacles are areas where
no coverage is necessary but passing through is feasible.
Practical implementations often utilize vehicles with Dubins

The authors are with the Department of Computer Science and Engi-
neering, University of South Carolina, 301 Main St., Columbia, SC 29208,
USA. [lewisjsd4, yiannisr, jokane]@cse.sc.edu

Fig. 1.

A path by our planner covering a lake in a search-and-rescue simulation.

kinematics, such as boats [5] or fixed wing UAVs [19], with-
out addressing the turning radius constraint while solving the
coverage problem, leaving the low-level controller to handle
the trajectory generation.

The method we use for path planning is an extension of
the approach first described by Yu, Roppel, and Hung [25],
in which they addressed the problem of visiting every row in
a farm field. Their method reduced the constrained coverage
problem to solving a variant of the traveling salesman prob-
lem (TSP) called set TSP or generalized TSP. The authors
mapped each direction in which each row might be covered
to a node in the graph and noted that two directions covering
the same row would result in two nodes in the same set.
They then determined the shortest circuit covering one node
in each set and use this to determine the order and direction
each row should be visited. Recall, however, that no efficient
algorithms are generally believed to exist for TSP, since TSP
is an NP-hard problem.

The two contributions of this paper are (1) to show that Yu,
Roppel, and Hung’s decision to map their coverage problem
to an NP-hard problem is appropriate, by proving that the
optimal Dubins coverage problem is NP-complete and (2) to
introduce an algorithm to greatly improve the runtime of this
planner by sacrificing some optimality.

We refer to our planner’s paths as semi-boustrophedon
because, while we do make use of the boustrophedon cellular
decomposition (BCD) [3], we do not limit coverage strictly
to boustrophedon paths. Instead, boustrophedon patterns
emerge in the path when they are the optimal options for
the planner.

We use the vehicle constraints to guide our planner toward
circuits that would be useful in a real-world scenario. We
assume that a robot is provided with some area for which
coverage is desired. While we do not consider the area
between regions we cover, we do not specifically avoid them.

II. RELATED WORK

Similar to Xu, Viriyasuthee, and Rekleitis [22], we address
the problem of coverage path planning for a known environ-
ment. Our objective is to produce shortest distance paths,
extending the work of [22]. Xu, et al. use a boustrophedon
decomposition to form a Reeb Graph of their environments.
The cells become the edges of a graph with the critical points
as the nodes. They solve the Chinese postman problem (CPP)
for this graph and use the results to build a coverage path.
We extend their work by choosing a different graph, in which
our nodes are the individual passes necessary to cover each
cell and edges are the weights to transition from one pass to
another. Instead of solving the CPP for our graph, we solve
a generalized TSP.

The way in which we cover individual cells was first
demonstrated in the work by Yu, Roppel, and Hung [25]. In
their work, the authors map their Dubins coverage problem
to a set TSP by an implement-width discretization of their
environment. They treat each axis-aligned cell-crossing as
a node in a graph. They modify the graph to a set TSP
problem with a set containing each direction a cell-crossing
might be covered. Finally, they use the TSP circuit to cover
the cell. Though a specific environmental decomposition
was not presented in that paper, there are many known
techniques for dealing with non-convex environments [17]
and the Boustrophedon decompositions used in [24] is where
we begin our decomposition.

In work by both Huang [10] and Yao [23], the environmen-
tal decomposition is used to reduce path length by minimiz-
ing the amount of rotation and so environmental partitioning
is very important. That line of research is orthogonal to our
own; we use a simple axis-aligned decomposition of the
environment, and focus instead on allowing the minimum
turning radius of the robot to guide our search for good plans.

Gabriely and Rimon [6] also decompose their environment
into a graph, using a grid in which cells are the nodes of
a spanning tree. Their construction, however, is online and
represents what the robot has covered, while our graph is
constructed from a map and is used offline to generate the
coverage path.

In Kong, Peng, and Rekleitis [12] the environment is de-
composed into boustrophedon cells online by multiple robots
covering a “virtually bounded” space. Our algorithm could be
extended to a multi-robot solution using a similar approach.
Likewise, Acar and Choset [1] build a decomposition and
graph online to cover all available areas, but also require a
backtracking step. Our work is similar in the way we use
decompositions for path planning, however our algorithm is
offline and single-robot.

The metric traveling salesman problem with Dubins curve
constraints, called Dubins traveling salesman problem, has
been well studied [16], [21]. It is defined in the same way
as the TSP, but adds a new constraint—that the path to visit
all nodes must consist of line segments and curves of a given
minimum radius. The Dubins TSP is closely related to our
problem. We show that the path to cover a corresponding

Fig. 2. The robot executing plan 7, at position x¢, with a minimum turn
radius p, and a sensor footprint ¢.

Fig. 3. A non-convex, disconnected environment solvable by our algorithm.

coverage problem can be extracted from a plan to visit all
the nodes of a certain Dubins TSP.

The coverage problem for a Dubins vehicle considered
in Savla, Bullo, and Frazzoli [20] addresses the coverage
problem using a Dubins vehicle from a control-theoretic ap-
proach. They make no attempt to discretize their environment
or form plans to cover it. Our problem differs in that we
are very explicit in our decomposition and use it to guide a
structured plan to completely cover all area(s) of interest.

III. PROBLEM STATEMENT

This section formalizes the global path planning problem
presented in this paper. These plans provide coverage for
a given area for a Dubins vehicle—that is, for a robot
that moves forward at a constant speed, constrained by a
minimum turn radius. We call this problem optimal Dubins
coverage (DCov).

A point robot moves in the plane with position and
orientation. Its state space is R? x [0, 27). At any given time
t the robot’s pose is the tuple (z,0;), in which z; € R?
and 6; € [0,27). The robot has a sensor which allows it
to observe a disk centered on its position with radius ¢.
The robot’s translations are limited by a constraint on its
minimum turning radius p and a constraint that movement
maintains a constant forward speed. These constraints result
in a vehicle capable of following only Dubins paths [4].
Figure 2 illustrates this notation.

We consider a bounded polygonal subset of the plane,
denoted P C R2. We allow P to be possibly disconnected
and/or non-convex areas of interest as illustrated in Figure 3.
The goal is to generate a plan 7 defined as

7: [0,T] — R? x [0,27), (1)

in which T is a finite termination time for the plan, obeying
the robot’s motion constraints. We call 7 a coverage path
if, for every point p € P, there exists a time ¢t € [0, 7] for
which

joe —p| < &,)

where |x; —p| is the Euclidean norm. Our goal is to compute
an optimal coverage path, in the sense of minimizing the
length of the plan 7.

Optimal Dubins Coverage Problem (DCov)

Input: A polygon P, sensor footprint ¢, and
minimum turning radius p.

Output: A plan 7 of minimum length, which
when followed by a robot with sensor footprint
¢ and minimum turning radius p results in
coverage of the polygon P.

We later refer to the length of the optimal path for a given
P, ¢, and p as DCov(P, ¢, p).

IV. HARDNESS OF OPTIMAL DUBINS COVERAGE

In this section, we establish that DCov, when cast as a
decision problem, is NP-Complete. Specifically, we consider
the following problem.

Dubins Coverage (Decision Version)

Input: A polygon P, sensor footprint ¢,
minimum turning radius p, and maximum path
length d € RT.

Output: YES if there exists a 7, which when
followed by a robot with sensor footprint ¢
and minimum turning radius p which results
in coverage of the polygon P with length such
that |7| < d, NO otherwise.

The proof, which proceeds by reduction from Exact
Cover [8], [9]—a known NP-complete problem—draws
heavily from existing hardness proofs for the Euclidean
Traveling Salesman (ETSP) [9], [18] and Dubins Traveling
Salesman (DTSP) [16] problems.

In what follows, we write ETSP(Q) to refer to the length
of the shortest path that visits each of the points in a given
finite set of points (). Likewise, we write DTSP(Q, p) for
the length of the shortest Dubins curve with turning radius
p that visits every point in Q.

The Exact Cover problem from which we reduce is defined
thusly.

Exact Cover (EC)

Input: A finite set U and a finite family I’ of
subsets of U.

Output: YES if there exists a subfamily of F',
F’ consisting of disjoint sets, such that F’
covers U, NO otherwise.

Papadimitriou [18] describes a construction that maps an
instance of EC to a set of points @ = {q1,...,¢m} in
the plane with size O(n?). The construction also produces
numbers L > 0 and 6 > 0, and provides two guarantees. If
the EC instance has a solution, then

ETSP(Q) < L. 3)
If the EC instance has no solution, then
ETSP(Q) > L +4. 4)

Our reduction from EC to DCov utilizes this construction
directly. Given an instance of EC, we form an instance of
DCov as follows.

1) Execute Papadimitriou’s construction to obtain @, L,

and 4.
2) Choose, for the minimum turn radius p, any positive
value
PG S
MKT

in which k ~ 2.6575 is the constant that appears in
Ny, Feron, and Frazzoli [16].
3) Choose, for the sensor footprint ¢, any positive value

¢ <6/(2m) — Kp. (6)

Note that Equation 5 guarantees the existence of a
positive ¢ satisfying this constraint.

4) Select P = J,coS(¢;¢), in which S(z,7) refers to
an axis-aligned square centered at x, with diagonal
length r.

5) Set

d =L+ k[n/2]mp, 7

where n is the number of points in Q).

This construction clearly takes polynomial time. To show
that it is indeed a reduction from EC to DCov, we will use
three lemmas, two from the literature and one original.

Lemma 1: (Savla, Frazzoli, and Bullo [21], Theorem 4.2)
There exists a constant x < 2.658 such that, for any finite
set of points () and any turning radius p, we have

ETSP(Q) < DTSP(P.p) < ETSP(P)+x | Z| 7p. ®)
Lemma 2: (Savla, Frazzoli, and Bullo [21], Theorem 3.1)
For two planar poses whose positions are separated by
distance d, the shortest Dubins curve connecting those poses
has length at most d + kmp.
Lemma 3: For any set () of m points in the plane, any
sensor footprint ¢ and any minimum turning radius p, let

P =,c05(¢;¢). Then we have
DCov (P, p, @) < DTSP(Q, p) ©)

and

DTSP(Q, p) < DCov (P, p, ¢) + 2m(d + kmwp). (10)

Proof: For Equation 9, observe that, when the robot is

at any point ¢ € @, its sensor footprint covers all of S(g,).

Therefore, any path which visits each point in @ also covers
all of P.

For Equation 10, consider a coverage path 7 for P. We
form a new path 7’ identical to 7, except that we insert some
additional path segments to guarantee that 7/ passes through
each ¢ €). Because 7 is a coverage path for P and (Q C P,
we know that for each each g € @, there exists some ¢ at
which the robot’s position z(t) passes within distance ¢ of
g, that is, |z(t) — g| < ¢. At this point, we insert into 7/ a
Dubins curve from 7(¢) to ¢ (with arbitrary orientation) and
from this pose back to 7(¢). Lemma 2 ensures that each of
these two path segments have length no longer than ¢+ kmp.
The total length of all of these ‘repairs’ is therefore bounded
by 2m(¢ + kmp), completing the proof. [|

We can now state the main result of this section.

Theorem 1: DCov is NP-hard.

Proof: Reduction from Exact Cover, using the construc-
tion outlined above. We need to show that the EC instance
has a solution if and only if the corresponding DCov instance
(P, ¢, p,d) has a coverage path of length at most d. We write
@ to denote the finite point set generated by Papadimitriou’s
construction.

Suppose the EC instance has a solution. Then we have

DCov(P,¢,p) < DTSP(Q,p)
< ETSP(Q,p)JrﬁgW T
< L—I—m[%-‘ T
= d.

Here we have used, in order, Lemma 3, Lemma 1, Equa-
tion 3, and Equation 7.

For the other direction, suppose the EC instance has no
solution. In that case, we know

DCov(P,¢,p) > DTSP(Q,p)—2m(¢+ xmp)
> ETSP(Q,p) — 2m(¢ + rmp)
> L+06—2m(¢+ kmp)
> L
> d

These inequalities derive from Lemma 3, Lemma 1, Equa-
tion 4, Equations 6 and 5, and Equation 7 respectively. B
Corollary 1: DCov is NP-Complete.

Proof: Tt remains only to show that DCov is in NP.
We can use the coverage path 7 as the certificate, and
compute the region covered by 7, a finite union of circles
and rectangles. Then verify (1) that this region is a superset
of P using a standard clipping algorithm, (2) that the length

Algorithm 1 DUBINSCOVERAGE(P, ¢, p)

D + BOUSTROPHEDONCELLDECOMPOSITION(P)
P < REFINEINTOPASSES(D, ¢)

VP {t 1)

E—VxV

w < COMPUTEWEIGHTS(E, p)

(V',E') + REDUCEGRAPH(V, E, w)

(v1,...,0,) < SOLVEGTSP(V' | E', w)

T <= CONSTRUCTPLAN(v1, . .., Up)

]

Fig. 4. Decomposing the environment into passes. [left] The original
environment P. [middle] A decomposition of P into 4 cells, each y-
monotone, via Boustrophedon Cell Decomposition. [right] A refinement the
above decomposition into 14 passes of width at most 2¢.

of 7 is at most d, and (3) that 7 is indeed a Dubins curve
for turning radius p. |

V. GRAPH REDUCTION FOR EFFICIENT COVERAGE

In the previous section we showed that unless P =
NP, DCov cannot be solved optimally by any polynomial
time algorithm. Indeed, the best known algorithm, due to
Yu, Roppel, and Hung [25], scales quite poorly as the
number of passes increases. In addition, the algorithm as
originally presented omits a number of geometric details
that are essential for a complete implementation. In this
section, we introduce an improvement to that algorithm that
generates high-quality coverage paths much more efficiently.
Algorithm 1 summarizes our approach.

To begin, we require a decomposition of P into simple
pieces. To accomplish this, the planner partitions P into
monotone regions using the boustrophedon cell decompo-
sition (BCD) algorithm [3] (Alg. 1, line 1).

Next, we further refine the decomposition, cell-by-cell,
into a set P of “passes” P; € P such that each pass is
a connected region that can be covered in a single sweep
from end-to-end (Alg. 1, line 2). Without loss of generality,
we construct these passes with vertical orientations, utilizing
divisions parallel to the y-axis; see Figure 4. In a practical
deployment the choice for the direction of coverage would be
affected by a variety of factors, such as, wind- or sea-current
direction, desired sensor placement, location of obstacles,
etc [22].

The result is a set of passes, each no more than 2¢ wide,
such that the robot can cover a pass in a single sweep of
its sensor. To cover a given pass P;, a robot must follow a
segment of the pass’s vertical bisector. We call this segment
the covering path segment for the pass. The covering path
segment, specified by its top point ¢ (F;) and its bottom point
b (P;), is defined as the smallest segment along the vertical

4

\
\

1
b (P!

< P
\
,
N
A
1h(P;
A ',,"

Fig. 5. [left] A pass P; and its covering path segment. The shaded
region area is covered by the robot’s sensor as it traverses the covering
path segment. [middle] The graph vertex (P, 1) has entry pose (b(F;), 5

and exit pose (¢ (F;), 5). [right] The graph vertex (P,]) has entry pose

(t(B), 37") and exit pose (b (P;), 37”)

bisector of P; for which

P C U

qE€L(P;)b(P;)

B(q,2¢)

as illustrated in Figure 5. When every pass P, € P is
covered, then P is covered.

We must next map our passes into the vertices of a graph
and create the necessary edges. Once we have a graph and
the solution to a TSP on the graph, we need only map the
circuit to a path. These steps are described below.

o The vertex set V' consists of 2|P| vertices defined as
V = P x {1,)}. The interpretation is that visiting a
vertex indicates that the robot should cover the given
pass by traversing that pass’s covering path segment
in the given direction. For each up vertex (P;,T) we
define the entry pose as (b(P;), %) and the exit pose as
(t(P;),%). For down vertices (P;,), we define entry
and exit poses similarly mutatis mutandis. Figure 5
illustrates the construction.

o The edge set E contains 4|P|? elements, connecting all
pairs of vertices. For a given edge e;; € F, its weight
wy; is defined as the length of a Dubins curve from the
exit pose of the source vertex v;, to the entry pose of
the target vertex v; (Alg 1, line 5).

« Given a circuit that visits, for each pass P;, either (P;, 1)
or (P;,]), we can directly construct a coverage path
T by alternating covering path segments with Dubins
curves between the successive passes in the circuit.

To generate the required circuit mentioned above, we solve
an instance of the generalized traveling salesman problem
(GTSP) [15].

Generalized TSP

Input: A weighted graph G = (V| E) and a
partition of V' into nodesets Sy, ..., Sp,-

Output: The shortest cycle in G that visits each
nodeset exactly once.

This problem is readily shown to be NP-hard by reduction
from the standard traveling salesman problem and GTSP
instances can be converted to instances of asymmetric TSP

(aTSP) by a straightforward linear time construction [13].

As in Yu et al., we form a GTSP instance, by partitioning
the nodes of our graph into |P| nodesets

{(PlaT)) (leL)}a) {(ID\P\vT)7 (P|77|7\L)}7

each containing the two complementary vertices for a single
pass. This forces a GTSP solution to visit each pass exactly
once, either its 1 or its | vertex. While the authors found
no solvers for the GTSP, there exist heuristic optimizers for
the aTSP are available [14] that are fast in practice (Alg 1,
line 7).

The result of SOLVEGTSP is a circuit providing the
order in which each nodeset should be visited. Due to our
construction of aTSP from GTSP, the circuit contains each
pass in the environment twice, once for the up pass and once
for the down pass in either order. To build 7, note that the
first occurrence of a pass is the correct direction in which
the pass should be covered. For each of these, we link the
coverage path segment with a Dubins curve to the first pass
in the next node set given in the circuit.

Even with fast heuristic optimizers, GTSP is a difficult
problem. Performance is directly related to the complexity
of the graph, in that the larger the number of vertices and
edges, the larger the search space. Intuitively, the more nodes
to visit and more connections to consider, the more possible
paths to visit all nodes, and therefore the longer the run time.

To combat this complexity, we considered several heuris-
tics which use subgraphs of GG, omitting some vertices and/or
edges. The objective is to eliminate nodes or edges which
are unlikely to be part of the optimal solution. In the end we
determined, experimentally, that the ability to cover a pass in
either direction did not significantly improve the path length
of coverage, though it did drastically affect the run time. This
strategy, which we call specified directions decomposition
(SDD), is to impose an ordering of passes within each cell of
the BCD. We randomly select one of the two directed nodes
for the first pass and then alternate that selection of nodes
for each pass (Alg 1, line 6). The opposite node for each
pass, along with all of its incident edges, is deleted from the
graph.

In addition to the specified directions strategy, we also
investigated three other graph reduction heuristics whose
performance did not prove as effective.

1) Alternating directions — Delete all edges that con-
nect vertices with the same direction. That is, we
remove any edge from an 1 vertex to an 1 vertex, or
from a | vertex to a | vertex. The effect is to force
the robot to alternate between upward and downward
sweeps, without pre-specifying the coverage direction
for each pass.

2) Restricted weights — Compute the mean u and
standard deviation o of the edge weights. Select a
parameter z € R and delete all edges whose weight
exceeds p+ zo. The observation we make is that when
all passes are connected to all other passes, there are
a very large number of long edges, connecting passes

Fig. 6. [left] An environment wrapping around an area which does not
requirecoverage. [right] An environment with two areas which do not need
coverage.

which would not be directly connected in an optimal
plan.

3) Proximate passes — Perform deletions based on
distance in the z-axis between cells. This approach
most closely realizes our goal of allowing paths which
cover cells partially-depending on how many times the
cell is crossed—without giving up the ability to jump
areas of disinterest or obstacles.

VI. EXPERIMENTS

We used C++ to implement our algorithms in simulation.
To solve GTSP instances, our implementation uses Local-
Solver, “a hybrid mathematical programming solver,” [14] as
our TSP solver. LocalSolver does not solve the TSP exactly,
rather optimizes toward a solution. Because LocalSolver does
not compute an optimal solution, it requires a termination
condition specified either in time or in iterations. Iterations
are linked to the complexity of the problem, so we use
this as our termination metric—LocalSolver can complete
more iterations per second for simpler problems. Due to the
construction of an aTSP graph from a GTSP graph and the
use of an optimizer, there are times when the path returned
is invalid. This is discussed in Section VI-B.

A. Comparison Experiments

To compare the algorithms, we conducted experiments
on two simple environments, shown in Figure 6. The left
environment represents an area with a large hole in the
middle with no interest for coverage. The right environment
containing two smaller holes. The left environment might
represent a crop-duster spraying farmland with a farm house
in the middle. The right could represent covering a body
of water with islands which do not need to be covered. In
a set of experiments, we compare the run time to solve
the coverage problem using each algorithm on both envi-
ronments. In all of the experiments, we chose an arbitrary
5,000,000 iterations as our halting condition. This gives us a
means by which we may judge the improvement our different
algorithms may provide.

1) Figure 7: The first experiment repeatedly covers the
left environment from Figure 6 holding the sensor ¢, constant
and varying the minimum turning radius p. The restricted

weights decomposition, though having the worst runtime
growth, eventually leads to the best paths. The proximate
passes decomposition does well in runtime against the com-
plete graph, but suffers in path length. The clear winner
in this case, as the problem gets harder, is the SDD. Not
only are its paths of nearly identical length as the complete
graph, its runtime growth is markedly better as the problem’s
difficulty increases. The alternating edges decomposition did
not show up in this graph, due to the degeneracy described
above.

2) Figure 8: Our second experiment again uses the left
environment of Figure 6. However, this time we keep p
constant and vary ¢. Again, it is clear that the SDD algorithm
is an improvement over the complete graph in run time. The
gap is smaller this time, appearing to be a constant offset
of the complete decomposition. When the ¢ is very small,
implying more passes required to cover the environment
and a larger problem, the difference in runtime is obvious.
The other graph decompositions perform on par with the
complete decomposition. For graphs with few nodes, there
is not a clear winner.

3) Figure 9: The third experiment uses the right environ-
ment shown in Figure 6, holds ¢ constant while varying
p and again demonstrates the runtime improvement with
SDD. This experiment demonstrates the largest improvement
in runtime when using the SDD. As the problem becomes
more difficult, through increasing p, the growth rate of SDD
appears to be possibly sub-linear. The proximate passes
decomposition also performs well as difficulty increases. It
begins at the same starting point as restricted weights and
the complete graph, but maintains a much better search time
as the problem difficulty increases. Again, however, its path
length is sub par compared to the other decompositions.
Though it is unclear why, the restricted edges decomposition
results in similar length paths as the complete graph, but with
a much worse run time.

4) Figure 10: In the fourth experiment we held p constant
and varied ¢ repeatedly solving the coverage problem for the
right environment depicted in Figure 6. Again, the SDD has
a better run time than the complete graph with similar path
lengths. The biggest run time difference is experienced when
the number of vertices is large. The restricted weights graph
decomposition experiences points at which its run time is
worse than the complete graph, but it and the others perform
as well as the complete graph.

B. Search & Rescue Simulation

In contrast to the rectilinear environments, what follows is
a simulation of a search and rescue scenario. We assume that
a person is lost somewhere on a lake as shown in Figure 1.
The person is wearing a life-preserver which would offer an
average of one half meter of visible area across. By Johnson’s
criteria [11], this would require around 6 pixels of height or
width to recognize therefore a resolution of 12 pixels/meter is
required. Given a standard 1080p camera with a 60° field of
view, we determine that a UAV must fly at a height of 78m to
have a cone of 90m for the required resolution. We executed

120000

100000
80000
60000

Path Length

40000
20000

0 L L

0 20 40 60 80 100 120 140
Minimum Turn Radius
[Legend] complete graph: A4, specified directions:

Fig. 7. Coverage of the left environment

100
90
80
70
60
50
40
30

20 ‘ . . ‘ . . .

0 20 40 60 80 100 120 140
Minimum Turn Radius

Run Time

V-V, proximate passes: [[0 restricted weights: *%

Figure 6 with ¢ constant at 10.0, varying p.

500

Path Length

15 20 25 30 35 40
Sensor Width

w S
o o
o o

Run Time
N
o
o

100

20 25 30 35 40
Sensor Width

[Legend] complete graph: A4, specified directions: V-V, proximate passes: [[restricted weights: kX, alternating edges: @ @

Fig. 8.

each of our decompositions and report the results in the
following table, allowing LocalSolver 5,000,000 iterations
to optimize each TSP. It is evident that SDD is the superior

Decomposition Run Time Distance
Complete graph 4m 34s 3662km
Specified directions 2m 26s 3532km
Alternating directions 4m 25s FAIL
Restricted Weights 4m 52s 3520km
Proximate Passes 2m 7s FAIL

algorithm in this simulation. Even though the complete
decomposition contains the same path found in the SDD,
it was not found due to the volume of nodes and edges
being considered by the optimizer. Additionally, the SDD
found the path in roughly half the time. The restricted weight
decomposition, discarding edges with “too high” resulted
in the longest run time in this simulation, but the best
path length. The alternating directions and proximate passes
decompositions failed to generate a valid path. This occurs
due to the reduction from GTSP to aTSP described in [15].
Because LocalSolver is an optimizer, not an exact solver,
it gets stuck in local optima. This behavior may lead to
paths which violate the Noon and Bean’s construction. The
violation results in paths which do not always visit all node
sets of GTSP and therefore do not cover an environment.

VII. SUMMARY

This paper presented our solution for the coverage problem
using a mobile robot with kinematic constraints. We showed
that the Dubins Coverage problem is an NP-complete prob-
lem by reduction from the Exact Coverage Problem. We
presented an algorithm for generating Dubins Paths which

Coverage of the left environment in Figure 6 with ¢ varying, and p constant at 15.0.

when followed provide paths by which a robot capable of
following a Dubins Path might cover an environment. Next
we reduced the number of ways the robot might cover
an environment by considering less options, yet did not
substantially increase the length of coverage plans. Finally,
we presented the results of our simulation by showing a side-
by-side comparison of the algorithms’ performance across
two different environments varying the size of the robot’s
sensor footprint and minimum turn radius.

The analysis of those comparisons led us to the conclusion
that there are a large number of edges which only seem to
serve to make the problem larger without adding any useful
choices. Our attempts to reduce the number of edges seems
mostly successful when we chose to only connect cells within
relatively close proximity of each other. We also noted that
forcing the problem to cover passes in a specific direction
did not seem to hurt the length of the best path and resulted
in the expected solution speed up.

In the future, we will continue the exploration of this
problem by considering both a physical implementation as
well as a multiple robot formulation. Multiple robots often
make tasks easier, when good cooperative planners can be
found to split a task. A good planner to break up the
environment such that n robots might work together to cover
the environment could not only offer the linear decrease in
calculation time, but could also offer a linear decrease in
the time to execute the plan. Additionally, we are currently
developing a fleet of six ASVs based on the Mokai ES-
Kape at our university. Deploying the presented algorithm
on one of these vessels will provide field testing validation.
Furthermore, a multi-robot coverage extension of the above
described approach will be tested with SONAR mapping as
the target application.

140000 120

120000 100
£ 100000 ©
2 £ 80
S 80000 c
s S 60
& 60000 x

40000 40 M 1

20000 L L L L L L L 20 L L L L L L L

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Minimum Turn Radius Minimum Turn Radius
[Legend] complete graph: A4, specified directions: V-V, proximate passes: [[restricted weights: k%
Fig. 9. Coverage of the right environment in Figure 6 with ¢ constant at 10.0, varying p.

500000 600

400000 500 1
5 o 400 |
2 300000 £
3 = 300} E
< 200000 =]
a & 200} ,

100000 100+ 7

0 0 1 I 1
0 10 20 30 40 0 10 20 30 40
Sensor Width Sensor Width

[Legend] complete graph: A4, specified directions: V-V, proximate passes: [0 [restricted weights: kX, alternating edges: @ @

Fig. 10. Coverage of the right environment in Figure 6 with ¢ varying, and p constant at 15.0.

ACKNOWLEDGEMENT

The authors would like to thank the generous support of the Google

Faculty Research Award and the National Science Foundation grants (NSF
0953503, 1513203, 1526862, and 1637876). This work was supported in
part by the South Carolina Honors College Science Undergraduate Research

Funding Program

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]
[91

[10]

[11]

REFERENCES

E. U. Acar and H. Choset, “Sensor-based coverage of unknown
environments: Incremental construction of morse decompositions,”
The International Journal of Robotics Research, vol. 21, no. 4, pp.
345-366, April 2002.

H. Choset, “Coverage for robotics - a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113-126, 2001.
H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
decomposition,” in International Conference on Field and Service
Robotics, 1997.

L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497-516, 1957.

P. M. Forooshani and M. Jenkin, “Sensor coverage with a hetero-
geneous fleet of autonomous surface vessels,” in IEEE International
Conference on Information and Automation, 2015, pp. 571-576.

Y. Gabriely and E. Rimon, “Spiral-stc: an on-line coverage algorithm
of grid environments by a mobile robot,” in Proc. IEEE Int. Conf. on
Robotics and Automation, 2002.

E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258-1276, 2013.

M. Garey and D. Johnson, Computers and Intractability: A guide to
the theory of NP-completeness. W. H. Freeman, 1979.

R. Graham, M. Garey, and D. Johnson, “Some np-complete geometric
problems,” in Proc. ACM Symposium on Theory of Computing, 1976.
W. Huang, “Optimal line-sweep-based decompositions for coverage
algorithms,” in Proc. the IEEE Int. Conf. on Robotics and Automation,
vol. 1, 2001, pp. 27 — 32.

J. Johnson, “Analysis of image forming systems,” in Proceedings of
the Image Intensifier Symposium, 1958, pp. 244-273.

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

C. S. Kong, A. P. New, and I. Rekleitis, “Distributed coverage
with multi-robot system,” in Proc. IEEE International Conference on
Robotics and Automation, 2006.

R. Kumar and H. Li, “On asymmetric TSP: Transformation to symmet-
ric tsp and performance bound,” University of Kentucky, Department
of Electrical Engineering, Tech. Rep., Feb 2014.

“LOCALSOLVER,” 2017, http://www.localsolver.com.

C. E. Noon and J. C. Bean, “An efficient transformation of the
generalized traveling salesman problem,” INFOR: Information Systems
and Operational Research, vol. 31, no. 1, pp. 39-44, 1993.

J. L. Ny, E. Feron, and E. Frazzoli, “On the dubins traveling salesman
problem,” IEEE Trans. Automat. Contr., vol. 57, pp. 265-270, 2012.

T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines.” in Journal of Field Robotics, vol. 26,
no. 8, 2009, pp. 651-668.

C. H. Papadimitriou, “The euclidean travelling salesman problem is
np-complete,” Theoretical Computer Science, vol. 4, no. 3, pp. 237 —
244, 19717.

L. Paull, C. Thibault, A. Nagaty, M. Seto, and H. Li, “Sensor-driven
area coverage for an autonomous fixed-wing unmanned aerial vehicle,”
IEEE transactions on cybernetics, vol. 44, no. 9, pp. 1605-1618, 2014.
K. Savla, F. Bullo, and E. Frazzoli, “The coverage problem for
loitering dubins vehicles,” in Decision and Control, 2007 46th IEEE
Conference on, Dec 2007, pp. 1398-1403.

K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and
traveling salesperson problems for dubins’ vehicle.” in American
Control Conference, June 2005, pp. 786-791.

A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage
of a known arbitrary environment with applications to aerial opera-
tions,” Autonomous Robots, vol. 36, no. 4, pp. 365-381, 2014.

Z. Yao, “Finding efficient robot path for the complete coverage of
a known space,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, Beijing, China, 2006, pp. 3369-3374.

X. Yu and J. Y. Hung, “Coverage path planning based on a multiple
sweep line decomposition,” in IECON 2015 - 41st Annual Conference
of the IEEE Industrial Electronics Society, Nov 2015, pp. 4052-4058.
X. Yu, T. A. Roppel, and J. Y. Hung, “An optimization approach for
planning robotic field coverage,” in Proc. Annual Conference of the
IEEE Industrial Electronics Society, 2015.

