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Abstract— This paper addresses the problem of generating
coverage paths—that is, paths that pass within some sensor
footprint of every point in an environment—for vehicles with
Dubins motion constraints. We extend previous work that solves
this coverage problem as a traveling salesman problem (TSP) by
introducing a practical heuristic algorithm to reduce runtime
while maintaining near-optimal path length. Furthermore, we
show that generating an optimal coverage path is NP-hard
by reducing from the Exact Cover problem, which provides
justification for our algorithm’s conversion of Dubins coverage
instances to TSP instances. Extensive experiments demonstrate
that the algorithm does indeed produce length paths compara-
ble to optimal in significantly less time.

I. INTRODUCTION

Coverage path planning is often described as selecting a

path that passes within a given range of every obstacle-free

point in an environment [2], [3], [7]. The range is given in

terms of a sensor radius or the robot’s physical dimensions.

Generating this path is fundamental in many problems robots

are currently solving or are ideally suited to solve. Tasks such

as lawn maintenance, floor cleaning, agriculture, environ-

mental monitoring, humanitarian demining, and numerous

naval applications such as mine sweeping and search and

rescue can be stated as coverage path planning problems.

The complexity of these problems depends on factors such

as the environment complexity and the motion constraints of

the covering vehicle. Open, obstacle-free environments are

easier to plan for than tightly bounded environments with

obstacles. A holonomic vehicle can follow any path in its en-

vironment without limitation, while one with non-holonomic

constraints is not only restricted in their movement, but may

not even be capable of covering a given space. A common

movement constraint is a restriction on the minimum turning

radius of a vehicle, as angular acceleration is limited in many

of the vehicles of practical interest.

This paper considers the coverage problem for the Dubins

vehicle [4], which has just this sort of constraint. Without

limiting ourselves to one particular robot model, a fixed-

wing aircraft performing aerial coverage with a camera or

a surface water vehicle performing coverage of bodies of

water with sonar are representative vehicles for our plans.

In the case of a water vehicle, we assume the environment

and a portion of its surroundings are sufficiently deep to

avoid collisions. In other words, obstacles are areas where

no coverage is necessary but passing through is feasible.

Practical implementations often utilize vehicles with Dubins
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Fig. 1. A path by our planner covering a lake in a search-and-rescue simulation.

kinematics, such as boats [5] or fixed wing UAVs [19], with-

out addressing the turning radius constraint while solving the

coverage problem, leaving the low-level controller to handle

the trajectory generation.

The method we use for path planning is an extension of

the approach first described by Yu, Roppel, and Hung [25],

in which they addressed the problem of visiting every row in

a farm field. Their method reduced the constrained coverage

problem to solving a variant of the traveling salesman prob-

lem (TSP) called set TSP or generalized TSP. The authors

mapped each direction in which each row might be covered

to a node in the graph and noted that two directions covering

the same row would result in two nodes in the same set.

They then determined the shortest circuit covering one node

in each set and use this to determine the order and direction

each row should be visited. Recall, however, that no efficient

algorithms are generally believed to exist for TSP, since TSP

is an NP-hard problem.

The two contributions of this paper are (1) to show that Yu,

Roppel, and Hung’s decision to map their coverage problem

to an NP-hard problem is appropriate, by proving that the

optimal Dubins coverage problem is NP-complete and (2) to

introduce an algorithm to greatly improve the runtime of this

planner by sacrificing some optimality.

We refer to our planner’s paths as semi-boustrophedon

because, while we do make use of the boustrophedon cellular

decomposition (BCD) [3], we do not limit coverage strictly

to boustrophedon paths. Instead, boustrophedon patterns

emerge in the path when they are the optimal options for

the planner.

We use the vehicle constraints to guide our planner toward

circuits that would be useful in a real-world scenario. We

assume that a robot is provided with some area for which

coverage is desired. While we do not consider the area

between regions we cover, we do not specifically avoid them.



II. RELATED WORK

Similar to Xu, Viriyasuthee, and Rekleitis [22], we address

the problem of coverage path planning for a known environ-

ment. Our objective is to produce shortest distance paths,

extending the work of [22]. Xu, et al. use a boustrophedon

decomposition to form a Reeb Graph of their environments.

The cells become the edges of a graph with the critical points

as the nodes. They solve the Chinese postman problem (CPP)

for this graph and use the results to build a coverage path.

We extend their work by choosing a different graph, in which

our nodes are the individual passes necessary to cover each

cell and edges are the weights to transition from one pass to

another. Instead of solving the CPP for our graph, we solve

a generalized TSP.

The way in which we cover individual cells was first

demonstrated in the work by Yu, Roppel, and Hung [25]. In

their work, the authors map their Dubins coverage problem

to a set TSP by an implement-width discretization of their

environment. They treat each axis-aligned cell-crossing as

a node in a graph. They modify the graph to a set TSP

problem with a set containing each direction a cell-crossing

might be covered. Finally, they use the TSP circuit to cover

the cell. Though a specific environmental decomposition

was not presented in that paper, there are many known

techniques for dealing with non-convex environments [17]

and the Boustrophedon decompositions used in [24] is where

we begin our decomposition.

In work by both Huang [10] and Yao [23], the environmen-

tal decomposition is used to reduce path length by minimiz-

ing the amount of rotation and so environmental partitioning

is very important. That line of research is orthogonal to our

own; we use a simple axis-aligned decomposition of the

environment, and focus instead on allowing the minimum

turning radius of the robot to guide our search for good plans.

Gabriely and Rimon [6] also decompose their environment

into a graph, using a grid in which cells are the nodes of

a spanning tree. Their construction, however, is online and

represents what the robot has covered, while our graph is

constructed from a map and is used offline to generate the

coverage path.

In Kong, Peng, and Rekleitis [12] the environment is de-

composed into boustrophedon cells online by multiple robots

covering a “virtually bounded” space. Our algorithm could be

extended to a multi-robot solution using a similar approach.

Likewise, Acar and Choset [1] build a decomposition and

graph online to cover all available areas, but also require a

backtracking step. Our work is similar in the way we use

decompositions for path planning, however our algorithm is

offline and single-robot.

The metric traveling salesman problem with Dubins curve

constraints, called Dubins traveling salesman problem, has

been well studied [16], [21]. It is defined in the same way

as the TSP, but adds a new constraint—that the path to visit

all nodes must consist of line segments and curves of a given

minimum radius. The Dubins TSP is closely related to our

problem. We show that the path to cover a corresponding
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Fig. 2. The robot executing plan τ , at position xt, with a minimum turn
radius ρ, and a sensor footprint φ.

Fig. 3. A non-convex, disconnected environment solvable by our algorithm.

coverage problem can be extracted from a plan to visit all

the nodes of a certain Dubins TSP.

The coverage problem for a Dubins vehicle considered

in Savla, Bullo, and Frazzoli [20] addresses the coverage

problem using a Dubins vehicle from a control-theoretic ap-

proach. They make no attempt to discretize their environment

or form plans to cover it. Our problem differs in that we

are very explicit in our decomposition and use it to guide a

structured plan to completely cover all area(s) of interest.

III. PROBLEM STATEMENT

This section formalizes the global path planning problem

presented in this paper. These plans provide coverage for

a given area for a Dubins vehicle—that is, for a robot

that moves forward at a constant speed, constrained by a

minimum turn radius. We call this problem optimal Dubins

coverage (DCov).

A point robot moves in the plane with position and

orientation. Its state space is R
2× [0, 2π). At any given time

t the robot’s pose is the tuple (xt, θt), in which xt ∈ R
2

and θt ∈ [0, 2π). The robot has a sensor which allows it

to observe a disk centered on its position with radius φ.

The robot’s translations are limited by a constraint on its

minimum turning radius ρ and a constraint that movement

maintains a constant forward speed. These constraints result

in a vehicle capable of following only Dubins paths [4].

Figure 2 illustrates this notation.

We consider a bounded polygonal subset of the plane,

denoted P ⊂ R
2. We allow P to be possibly disconnected

and/or non-convex areas of interest as illustrated in Figure 3.

The goal is to generate a plan τ defined as

τ : [0, T ] −→ R
2 × [0, 2π) , (1)



in which T is a finite termination time for the plan, obeying

the robot’s motion constraints. We call τ a coverage path

if, for every point p ∈ P , there exists a time t ∈ [0, T ] for

which

|xt − p| ≤ φ, (2)

where |xt−p| is the Euclidean norm. Our goal is to compute

an optimal coverage path, in the sense of minimizing the

length of the plan τ .

Optimal Dubins Coverage Problem (DCov)

Input: A polygon P , sensor footprint φ, and

minimum turning radius ρ.

Output: A plan τ of minimum length, which

when followed by a robot with sensor footprint

φ and minimum turning radius ρ results in

coverage of the polygon P .

We later refer to the length of the optimal path for a given

P , φ, and ρ as DCov(P , φ, ρ).

IV. HARDNESS OF OPTIMAL DUBINS COVERAGE

In this section, we establish that DCov, when cast as a

decision problem, is NP-Complete. Specifically, we consider

the following problem.

Dubins Coverage (Decision Version)

Input: A polygon P , sensor footprint φ,

minimum turning radius ρ, and maximum path

length d ∈ R
+.

Output: YES if there exists a τ , which when

followed by a robot with sensor footprint φ
and minimum turning radius ρ which results

in coverage of the polygon P with length such

that |τ | ≤ d, NO otherwise.

The proof, which proceeds by reduction from Exact

Cover [8], [9]—a known NP-complete problem—draws

heavily from existing hardness proofs for the Euclidean

Traveling Salesman (ETSP) [9], [18] and Dubins Traveling

Salesman (DTSP) [16] problems.

In what follows, we write ETSP(Q) to refer to the length

of the shortest path that visits each of the points in a given

finite set of points Q. Likewise, we write DTSP(Q, ρ) for

the length of the shortest Dubins curve with turning radius

ρ that visits every point in Q.

The Exact Cover problem from which we reduce is defined

thusly.

Exact Cover (EC)

Input: A finite set U and a finite family F of

subsets of U .

Output: YES if there exists a subfamily of F ,

F ′ consisting of disjoint sets, such that F ′

covers U , NO otherwise.

Papadimitriou [18] describes a construction that maps an

instance of EC to a set of points Q = {q1, . . . , qm} in

the plane with size O(n2). The construction also produces

numbers L > 0 and δ > 0, and provides two guarantees. If

the EC instance has a solution, then

ETSP(Q) ≤ L. (3)

If the EC instance has no solution, then

ETSP(Q) ≥ L+ δ. (4)

Our reduction from EC to DCov utilizes this construction

directly. Given an instance of EC, we form an instance of

DCov as follows.

1) Execute Papadimitriou’s construction to obtain Q, L,

and δ.

2) Choose, for the minimum turn radius ρ, any positive

value

ρ ≤
δ

2mκπ
, (5)

in which κ ≈ 2.6575 is the constant that appears in

Ny, Feron, and Frazzoli [16].

3) Choose, for the sensor footprint φ, any positive value

φ ≤ δ/(2m)− κπρ. (6)

Note that Equation 5 guarantees the existence of a

positive φ satisfying this constraint.

4) Select P =
⋃

q∈Q S(q, φ), in which S(x, r) refers to

an axis-aligned square centered at x, with diagonal

length r.

5) Set

d = L+ κ⌈n/2⌉πρ, (7)

where n is the number of points in Q.

This construction clearly takes polynomial time. To show

that it is indeed a reduction from EC to DCov, we will use

three lemmas, two from the literature and one original.

Lemma 1: (Savla, Frazzoli, and Bullo [21], Theorem 4.2)

There exists a constant κ < 2.658 such that, for any finite

set of points Q and any turning radius ρ, we have

ETSP (Q) ≤ DTSP (P, ρ) ≤ ETSP (P )+κ
⌈n

2

⌉

πρ. (8)

Lemma 2: (Savla, Frazzoli, and Bullo [21], Theorem 3.1)

For two planar poses whose positions are separated by

distance d, the shortest Dubins curve connecting those poses

has length at most d+ κπρ.

Lemma 3: For any set Q of m points in the plane, any

sensor footprint φ and any minimum turning radius ρ, let



P =
⋃

q∈Q S(q, φ). Then we have

DCov (P, ρ, φ) ≤ DTSP(Q, ρ) (9)

and

DTSP(Q, ρ) ≤ DCov (P, ρ, φ) + 2m(φ+ κπρ). (10)

Proof: For Equation 9, observe that, when the robot is

at any point q ∈ Q, its sensor footprint covers all of S(q, φ).
Therefore, any path which visits each point in Q also covers

all of P .

For Equation 10, consider a coverage path τ for P . We

form a new path τ ′ identical to τ , except that we insert some

additional path segments to guarantee that τ ′ passes through

each q ∈ Q. Because τ is a coverage path for P and Q ⊂ P ,

we know that for each each q ∈ Q, there exists some t at

which the robot’s position x(t) passes within distance φ of

q, that is, |x(t) − q| ≤ φ. At this point, we insert into τ ′ a

Dubins curve from τ(t) to q (with arbitrary orientation) and

from this pose back to τ(t). Lemma 2 ensures that each of

these two path segments have length no longer than φ+κπρ.

The total length of all of these ‘repairs’ is therefore bounded

by 2m(φ+ κπρ), completing the proof.

We can now state the main result of this section.

Theorem 1: DCov is NP-hard.

Proof: Reduction from Exact Cover, using the construc-

tion outlined above. We need to show that the EC instance

has a solution if and only if the corresponding DCov instance

(P, φ, ρ, d) has a coverage path of length at most d. We write

Q to denote the finite point set generated by Papadimitriou’s

construction.

Suppose the EC instance has a solution. Then we have

DCov(P, φ, ρ) ≤ DTSP(Q, ρ)

≤ ETSP(Q, ρ) + κ
⌈m

2

⌉

πρ

≤ L+ κ
⌈m

2

⌉

πρ

= d.

Here we have used, in order, Lemma 3, Lemma 1, Equa-

tion 3, and Equation 7.

For the other direction, suppose the EC instance has no

solution. In that case, we know

DCov(P, φ, ρ) ≥ DTSP(Q, ρ)− 2m(φ+ κπρ)

≥ ETSP(Q, ρ)− 2m(φ+ κπρ)

≥ L+ δ − 2m(φ+ κπρ)

≥ L

≥ d

These inequalities derive from Lemma 3, Lemma 1, Equa-

tion 4, Equations 6 and 5, and Equation 7 respectively.

Corollary 1: DCov is NP-Complete.

Proof: It remains only to show that DCov is in NP.

We can use the coverage path τ as the certificate, and

compute the region covered by τ , a finite union of circles

and rectangles. Then verify (1) that this region is a superset

of P using a standard clipping algorithm, (2) that the length

Algorithm 1 DUBINSCOVERAGE(P, φ, ρ)

D ← BOUSTROPHEDONCELLDECOMPOSITION(P )
P ← REFINEINTOPASSES(D, φ)
V ← P × {↑, ↓}
E ← V × V
w ← COMPUTEWEIGHTS(E, ρ)
(V ′, E′)← REDUCEGRAPH(V,E,w)
(v1, . . . , vn)← SOLVEGTSP(V ′, E′, w)
τ ← CONSTRUCTPLAN(v1, . . . , vn)
return τ

2φ

Fig. 4. Decomposing the environment into passes. [left] The original
environment P . [middle] A decomposition of P into 4 cells, each y-
monotone, via Boustrophedon Cell Decomposition. [right] A refinement the
above decomposition into 14 passes of width at most 2φ.

of τ is at most d, and (3) that τ is indeed a Dubins curve

for turning radius ρ.

V. GRAPH REDUCTION FOR EFFICIENT COVERAGE

In the previous section we showed that unless P =
NP , DCov cannot be solved optimally by any polynomial

time algorithm. Indeed, the best known algorithm, due to

Yu, Roppel, and Hung [25], scales quite poorly as the

number of passes increases. In addition, the algorithm as

originally presented omits a number of geometric details

that are essential for a complete implementation. In this

section, we introduce an improvement to that algorithm that

generates high-quality coverage paths much more efficiently.

Algorithm 1 summarizes our approach.

To begin, we require a decomposition of P into simple

pieces. To accomplish this, the planner partitions P into

monotone regions using the boustrophedon cell decompo-

sition (BCD) algorithm [3] (Alg. 1, line 1).

Next, we further refine the decomposition, cell-by-cell,

into a set P of “passes” Pi ∈ P such that each pass is

a connected region that can be covered in a single sweep

from end-to-end (Alg. 1, line 2). Without loss of generality,

we construct these passes with vertical orientations, utilizing

divisions parallel to the y-axis; see Figure 4. In a practical

deployment the choice for the direction of coverage would be

affected by a variety of factors, such as, wind- or sea-current

direction, desired sensor placement, location of obstacles,

etc [22].

The result is a set of passes, each no more than 2φ wide,

such that the robot can cover a pass in a single sweep of

its sensor. To cover a given pass Pi, a robot must follow a

segment of the pass’s vertical bisector. We call this segment

the covering path segment for the pass. The covering path

segment, specified by its top point t (Pi) and its bottom point

b (Pi), is defined as the smallest segment along the vertical



t (Pi)

b (Pi)

t (Pi)

b (Pi)

t (Pi)

b (Pi)

Fig. 5. [left] A pass Pi and its covering path segment. The shaded
region area is covered by the robot’s sensor as it traverses the covering
path segment. [middle] The graph vertex (P, ↑) has entry pose (b (Pi) ,

π

2
)

and exit pose (t (Pi) ,
π

2
). [right] The graph vertex (P, ↓) has entry pose

(t (Pi) ,
3π

2
) and exit pose (b (Pi) ,

3π

2
).

bisector of Pi for which

Pi ⊆
⋃

q∈t(Pi)b(Pi)

B (q, 2φ)

as illustrated in Figure 5. When every pass Pi ∈ P is

covered, then P is covered.

We must next map our passes into the vertices of a graph

and create the necessary edges. Once we have a graph and

the solution to a TSP on the graph, we need only map the

circuit to a path. These steps are described below.

• The vertex set V consists of 2|P| vertices defined as

V = P × {↑, ↓}. The interpretation is that visiting a

vertex indicates that the robot should cover the given

pass by traversing that pass’s covering path segment

in the given direction. For each up vertex (Pi, ↑) we

define the entry pose as
(

b (Pi) ,
π
2

)

and the exit pose as
(

t (Pi) ,
π
2

)

. For down vertices (Pi, ↓), we define entry

and exit poses similarly mutatis mutandis. Figure 5

illustrates the construction.

• The edge set E contains 4|P|2 elements, connecting all

pairs of vertices. For a given edge eij ∈ E, its weight

wij is defined as the length of a Dubins curve from the

exit pose of the source vertex vi, to the entry pose of

the target vertex vj (Alg 1, line 5).

• Given a circuit that visits, for each pass Pi, either (Pi, ↑)
or (Pi, ↓), we can directly construct a coverage path

τ by alternating covering path segments with Dubins

curves between the successive passes in the circuit.

To generate the required circuit mentioned above, we solve

an instance of the generalized traveling salesman problem

(GTSP) [15].

Generalized TSP

Input: A weighted graph G = (V,E) and a

partition of V into nodesets S1, . . . , Sm.

Output: The shortest cycle in G that visits each

nodeset exactly once.

This problem is readily shown to be NP-hard by reduction

from the standard traveling salesman problem and GTSP

instances can be converted to instances of asymmetric TSP

(aTSP) by a straightforward linear time construction [13].

As in Yu et al., we form a GTSP instance, by partitioning

the nodes of our graph into |P| nodesets

{(P1, ↑), (P1, ↓)}, . . . , {(P|P|, ↑), (P|P|, ↓)},

each containing the two complementary vertices for a single

pass. This forces a GTSP solution to visit each pass exactly

once, either its ↑ or its ↓ vertex. While the authors found

no solvers for the GTSP, there exist heuristic optimizers for

the aTSP are available [14] that are fast in practice (Alg 1,

line 7).

The result of SOLVEGTSP is a circuit providing the

order in which each nodeset should be visited. Due to our

construction of aTSP from GTSP, the circuit contains each

pass in the environment twice, once for the up pass and once

for the down pass in either order. To build τ , note that the

first occurrence of a pass is the correct direction in which

the pass should be covered. For each of these, we link the

coverage path segment with a Dubins curve to the first pass

in the next node set given in the circuit.

Even with fast heuristic optimizers, GTSP is a difficult

problem. Performance is directly related to the complexity

of the graph, in that the larger the number of vertices and

edges, the larger the search space. Intuitively, the more nodes

to visit and more connections to consider, the more possible

paths to visit all nodes, and therefore the longer the run time.

To combat this complexity, we considered several heuris-

tics which use subgraphs of G, omitting some vertices and/or

edges. The objective is to eliminate nodes or edges which

are unlikely to be part of the optimal solution. In the end we

determined, experimentally, that the ability to cover a pass in

either direction did not significantly improve the path length

of coverage, though it did drastically affect the run time. This

strategy, which we call specified directions decomposition

(SDD), is to impose an ordering of passes within each cell of

the BCD. We randomly select one of the two directed nodes

for the first pass and then alternate that selection of nodes

for each pass (Alg 1, line 6). The opposite node for each

pass, along with all of its incident edges, is deleted from the

graph.

In addition to the specified directions strategy, we also

investigated three other graph reduction heuristics whose

performance did not prove as effective.

1) Alternating directions — Delete all edges that con-

nect vertices with the same direction. That is, we

remove any edge from an ↑ vertex to an ↑ vertex, or

from a ↓ vertex to a ↓ vertex. The effect is to force

the robot to alternate between upward and downward

sweeps, without pre-specifying the coverage direction

for each pass.

2) Restricted weights — Compute the mean µ and

standard deviation σ of the edge weights. Select a

parameter z ∈ R and delete all edges whose weight

exceeds µ+zσ. The observation we make is that when

all passes are connected to all other passes, there are

a very large number of long edges, connecting passes



Fig. 6. [left] An environment wrapping around an area which does not
requirecoverage. [right] An environment with two areas which do not need
coverage.

which would not be directly connected in an optimal

plan.

3) Proximate passes — Perform deletions based on

distance in the x-axis between cells. This approach

most closely realizes our goal of allowing paths which

cover cells partially–depending on how many times the

cell is crossed–without giving up the ability to jump

areas of disinterest or obstacles.

VI. EXPERIMENTS

We used C++ to implement our algorithms in simulation.

To solve GTSP instances, our implementation uses Local-

Solver, “a hybrid mathematical programming solver,” [14] as

our TSP solver. LocalSolver does not solve the TSP exactly,

rather optimizes toward a solution. Because LocalSolver does

not compute an optimal solution, it requires a termination

condition specified either in time or in iterations. Iterations

are linked to the complexity of the problem, so we use

this as our termination metric–LocalSolver can complete

more iterations per second for simpler problems. Due to the

construction of an aTSP graph from a GTSP graph and the

use of an optimizer, there are times when the path returned

is invalid. This is discussed in Section VI-B.

A. Comparison Experiments

To compare the algorithms, we conducted experiments

on two simple environments, shown in Figure 6. The left

environment represents an area with a large hole in the

middle with no interest for coverage. The right environment

containing two smaller holes. The left environment might

represent a crop-duster spraying farmland with a farm house

in the middle. The right could represent covering a body

of water with islands which do not need to be covered. In

a set of experiments, we compare the run time to solve

the coverage problem using each algorithm on both envi-

ronments. In all of the experiments, we chose an arbitrary

5,000,000 iterations as our halting condition. This gives us a

means by which we may judge the improvement our different

algorithms may provide.

1) Figure 7: The first experiment repeatedly covers the

left environment from Figure 6 holding the sensor φ, constant

and varying the minimum turning radius ρ. The restricted

weights decomposition, though having the worst runtime

growth, eventually leads to the best paths. The proximate

passes decomposition does well in runtime against the com-

plete graph, but suffers in path length. The clear winner

in this case, as the problem gets harder, is the SDD. Not

only are its paths of nearly identical length as the complete

graph, its runtime growth is markedly better as the problem’s

difficulty increases. The alternating edges decomposition did

not show up in this graph, due to the degeneracy described

above.

2) Figure 8: Our second experiment again uses the left

environment of Figure 6. However, this time we keep ρ
constant and vary φ. Again, it is clear that the SDD algorithm

is an improvement over the complete graph in run time. The

gap is smaller this time, appearing to be a constant offset

of the complete decomposition. When the φ is very small,

implying more passes required to cover the environment

and a larger problem, the difference in runtime is obvious.

The other graph decompositions perform on par with the

complete decomposition. For graphs with few nodes, there

is not a clear winner.

3) Figure 9: The third experiment uses the right environ-

ment shown in Figure 6, holds φ constant while varying

ρ and again demonstrates the runtime improvement with

SDD. This experiment demonstrates the largest improvement

in runtime when using the SDD. As the problem becomes

more difficult, through increasing ρ, the growth rate of SDD

appears to be possibly sub-linear. The proximate passes

decomposition also performs well as difficulty increases. It

begins at the same starting point as restricted weights and

the complete graph, but maintains a much better search time

as the problem difficulty increases. Again, however, its path

length is sub par compared to the other decompositions.

Though it is unclear why, the restricted edges decomposition

results in similar length paths as the complete graph, but with

a much worse run time.

4) Figure 10: In the fourth experiment we held ρ constant

and varied φ repeatedly solving the coverage problem for the

right environment depicted in Figure 6. Again, the SDD has

a better run time than the complete graph with similar path

lengths. The biggest run time difference is experienced when

the number of vertices is large. The restricted weights graph

decomposition experiences points at which its run time is

worse than the complete graph, but it and the others perform

as well as the complete graph.

B. Search & Rescue Simulation

In contrast to the rectilinear environments, what follows is

a simulation of a search and rescue scenario. We assume that

a person is lost somewhere on a lake as shown in Figure 1.

The person is wearing a life-preserver which would offer an

average of one half meter of visible area across. By Johnson’s

criteria [11], this would require around 6 pixels of height or

width to recognize therefore a resolution of 12 pixels/meter is

required. Given a standard 1080p camera with a 60° field of

view, we determine that a UAV must fly at a height of 78m to

have a cone of 90m for the required resolution. We executed
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Fig. 7. Coverage of the left environment Figure 6 with φ constant at 10.0, varying ρ.
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Fig. 8. Coverage of the left environment in Figure 6 with φ varying, and ρ constant at 15.0.

each of our decompositions and report the results in the

following table, allowing LocalSolver 5,000,000 iterations

to optimize each TSP. It is evident that SDD is the superior

Decomposition Run Time Distance

Complete graph 4m 34s 3662km

Specified directions 2m 26s 3532km

Alternating directions 4m 25s FAIL

Restricted Weights 4m 52s 3520km

Proximate Passes 2m 7s FAIL

algorithm in this simulation. Even though the complete

decomposition contains the same path found in the SDD,

it was not found due to the volume of nodes and edges

being considered by the optimizer. Additionally, the SDD

found the path in roughly half the time. The restricted weight

decomposition, discarding edges with “too high” resulted

in the longest run time in this simulation, but the best

path length. The alternating directions and proximate passes

decompositions failed to generate a valid path. This occurs

due to the reduction from GTSP to aTSP described in [15].

Because LocalSolver is an optimizer, not an exact solver,

it gets stuck in local optima. This behavior may lead to

paths which violate the Noon and Bean’s construction. The

violation results in paths which do not always visit all node

sets of GTSP and therefore do not cover an environment.

VII. SUMMARY

This paper presented our solution for the coverage problem

using a mobile robot with kinematic constraints. We showed

that the Dubins Coverage problem is an NP-complete prob-

lem by reduction from the Exact Coverage Problem. We

presented an algorithm for generating Dubins Paths which

when followed provide paths by which a robot capable of

following a Dubins Path might cover an environment. Next

we reduced the number of ways the robot might cover

an environment by considering less options, yet did not

substantially increase the length of coverage plans. Finally,

we presented the results of our simulation by showing a side-

by-side comparison of the algorithms’ performance across

two different environments varying the size of the robot’s

sensor footprint and minimum turn radius.

The analysis of those comparisons led us to the conclusion

that there are a large number of edges which only seem to

serve to make the problem larger without adding any useful

choices. Our attempts to reduce the number of edges seems

mostly successful when we chose to only connect cells within

relatively close proximity of each other. We also noted that

forcing the problem to cover passes in a specific direction

did not seem to hurt the length of the best path and resulted

in the expected solution speed up.

In the future, we will continue the exploration of this

problem by considering both a physical implementation as

well as a multiple robot formulation. Multiple robots often

make tasks easier, when good cooperative planners can be

found to split a task. A good planner to break up the

environment such that n robots might work together to cover

the environment could not only offer the linear decrease in

calculation time, but could also offer a linear decrease in

the time to execute the plan. Additionally, we are currently

developing a fleet of six ASVs based on the Mokai ES-

Kape at our university. Deploying the presented algorithm

on one of these vessels will provide field testing validation.

Furthermore, a multi-robot coverage extension of the above

described approach will be tested with SONAR mapping as

the target application.
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Fig. 9. Coverage of the right environment in Figure 6 with φ constant at 10.0, varying ρ.
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Fig. 10. Coverage of the right environment in Figure 6 with φ varying, and ρ constant at 15.0.
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