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Abstract— The importance of communication in many mul-
tirobot information-gathering tasks requires the availability
of reliable communication maps. These provide estimates of
the radio signal strength and can be used to predict the
presence of communication links between different locations
of the environment. In the problem we consider, a team of
mobile robots has to build such maps autonomously in a
robot-to-robot communication setting. The solution we propose
models the signal’s distribution with a Gaussian Process and
exploits different online sensing strategies to coordinate and
guide the robots during their data acquisition. Our methods
show interesting operative insights both in simulations and on
real TurtleBot 2 platforms.

I. INTRODUCTION

Communication is a fundamental activity for multirobot
systems, for exchanging information between robots that
need to cooperate in some tasks. Applications like surveil-
lance or search and rescue heavily rely on sharing knowledge
among robots to ensure situation awareness and to enable in-
formed autonomous decision making during the mission. The
importance of this issue in multirobot applications is being
increasingly recognized as testified by the rich literature on
communication-aware multirobot systems [1], [2].

Deciding “where to go next” is a key problem in many
multirobot settings, usually addressed by optimizing the
selection of locations according to some task-related objec-
tive function [3]. Communication often comes as a further
requirement of seeking locations from where robots can ex-
change data on a wireless connection, either with a fixed base
station [4] or with teammates [5]. Independently from the
application domain, robots often need to possess knowledge
about the possibility of establishing wireless communication
links between arbitrary pairs of locations before moving
there. In this work, we call such knowledge communication
map and we address the problem, for a team of robots, to
build it from the measurements collected in the environment.

In the literature, communication-aware multirobot systems
often assume to have a communication map in advance.
Such a map is specified by a graph whose nodes and edges
represent locations and communication links, respectively.
The works presented in [1], [6] are two representative
examples of this approach in the domain of informative path
planning and exploration. In such settings, the construction
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Fig. 1: Four robots used to build a communication map.

of the communication map must happen offline and by
means of a link detection mechanism which, given a map of
the environment, computes which pairs of nodes should be
connected with an edge because communication is possible.
As discussed in [7], one important limit of this approach
is that robots’ capability of communicating over wireless
channels is heavily influenced by a number of environmental
features from which graph-based representations necessarily
abstract away (examples are the density of obstacles or the
presence of interferences). This makes offline link detection
either too conservative (e.g., limited-distance line-of-sight),
or unreliable (e.g., wall propagation model [8]) and poses
the need for methods based on signal strength measure-
ments gathered on the field. In this paper, we introduce
a formal representation of communication maps exploiting
Gaussian Processes [9]. GPs are a tool widely used in
robotics especially in applications involving spatial physical
phenomena that have to be mapped or monitored [10]–
[12]. We then tackle the problem for a team of mobile
robots to autonomously construct such maps from on-the-
field measurements of WiFi signal strength.

Similar versions of this problem have been addressed
in [13], for single-robot exploration and radio source local-
ization, in [14], for radio signal mapping with a stationary
radio source and no coordination between robots, and in [15].
The latter proposes offline methods to compute efficient joint
paths for small teams of robots with the aim of collect-
ing signal strength measures from predefined locations. We
consider a more challenging online scenario with robot-to-
robot communications and propose some multirobot sensing
strategies to build low uncertainty maps with reasonable
costs. We developed and evaluated our methods in simulation
and on a team of TurtleBot 2 platforms (see Fig. 1).

II. COMMUNICATION MAPS

We consider m mobile robots deployed in a known
environment where free space is denoted with A ⊂ R2

and pi ∈ A is any location that can be occupied. We



assume that the robots can localize themselves within a
global coordinate system and that are endowed with an
omni-directional transceiver. For example, a WiFi adapter
for transmitting and receiving data with peers over the radio
channel within a given maximum range.

A communication map should provide information about
the availability of links between ordered pairs of locations.
We define it as a function f̂ : A×A → R≤0 estimating the
(equally defined) radio signal strength f between locations
pi and pj . Such measure is defined as the receiving power
in dBm at location pj with respect to a source placed
at pi. It directly relates to the link estimation over radio
transmissions: the closer it gets to zero the more reliable
the transmissions from pi to pj and, therefore, the more
likely the availability of a high-bandwidth communication
link from pi to pj . In sufficiently large environments, we
can exclude a priori the availability of some communication
links given the indicative range of the transceiver Rc. This
allows us to focus on locations lying within Rc.

To ease notation, let us assume that xij = (pi,pj) and
call f̂(xij) the estimate of the signal strength from pi to
pj . Communication links need not to be symmetric so, in
general, f(xij) 6= f(xji) [16].

A Gaussian Process is a set of random variables where
each finite subgroup follows a Gaussian multi-variate dis-
tribution [9]. Exploiting a GP seems a natural choice to
build f̂ for the following reasons. First, it must describe a
physical phenomenon (the signal strength distribution over
A2) which might exhibit significant spatial correlations.
Second, besides providing estimates for the signal strength,
it must also characterize the uncertainty of such estimates.
Such a scenario is similar to robotic mapping problems with
entropy-like measures over the partially explored regions of
the environment. For instance, it is reasonable to expect that
communication-aware navigation strategies using f̂ to evalu-
ate candidate locations would be able to make more informed
decisions by weighting the uncertainty of the obtained signal
strength estimates. These requirements are met by GPs in a
principled way and, for this reason, they find employment
in several robotic applications like exploration [11], environ-
mental monitoring [10], and localization [7].

Within this framework, we aim at estimating f̂ as a poste-
rior distribution fitted over a set of noisy observations made
by robots which explore and coordinate in the environment
to gather signal strength measurements. Let us assume that
the robot team as a whole collected q measurements over
the environment. Call Y = [y1, y2, . . . , yq]T the set of those
measurements and X = [x1,x2, . . . ,xq]T the set of the
corresponding pairs of locations from where they have been
collected (recall that xi ∈ A2). Clearly yi = f(xi) + ε
where the additive sensing error is assumed to be i.i.d. and
ε ∼ N (0, σ2

n). The spatial correlation between any two
values of f is expressed with a covariance function taking
as input the two location pairs corresponding to each value.
Such a function is denoted as k(x,x′) and can be defined
in different ways. In this work, following the mainstream

approach we adopt a radial basis kernel (RBF):

k(x,x′) = σ2
f exp

(
− |x− x′|2

2l2

)
. (1)

where σ2
f is the signal variance and l2 length scale.

To ease notation, given X1 = [x1
1, . . . , x

a
1 ]
T and X2 =

[x1
2, . . . , x

b
2]
T , we denote with K(X1, X2) the a× b matrix

where Kij = k(xi1, x
j
2) and with Iq the q×q identity matrix.

The correlation between the observed function values is then
given by

cov(Y) = K(X,X) + σ2
nIq (2)

The kind of GP considered in this work (with a zero
mean function) is then fully specified by the parameter
vector θ = [σ2

n, σ
2
f , l

2]T which is computed as the one
maximizing the observations log-likelihood. Namely, θ∗ =
argmaxθ log p(Y | X, θ) where:

log p(Y | X, θ) =

− 1

2

(
YTcov(Y)−1Y − log |cov(Y)| − n log 2π

)
. (3)

The obtained parameters can then be used to calculate
an estimate of the signal strength in unobserved regions
by evaluating the posterior. In particular, called W =
[w1,w2, . . . ,wl]T a set of arbitrary location pairs for which
a signal strength estimate is requested, p(f(W) | X,Y) ∼
N (µW,ΣW) where the mean vector is obtained as µW =
K(W,X)cov(Y)−1Y and represents the estimate f̂(W),
while the covariance matrix is given by ΣW = K(W,W)−
K(W,X)cov(Y)−1K(W,X)T . In particular, the main di-
agonal of ΣW is usually called predictive variance and is
used to measure the uncertainty of estimates in W.

The GP provides a mechanism to integrate noisy readings
collected in the environment into a posterior distribution of
the signal strength that can be used to obtain link estimates
with quantified uncertainty. To deploy such a mechanism in
real multirobot settings we need to tackle two additional
issues. The first is to design a mission execution scheme
according to which robots repeatedly coordinate, gather sen-
sor data, share information, and update the communication
map maximizing Eq. (3). The second problem is to design
utility functions to optimize the online selection of joint
data-gathering locations. Both problems are central in the
definition of what we call a sensing strategy.

III. SENSING STRATEGIES

A signal strength measurement at the joint location xij
is obtained by a robot at location pi polling another robot
at location pj . The polling frequency between two moving
robots can be set arbitrarily, but, in practice, high frequencies
collecting large datasets would require large computational
efforts for the GP parameter estimation (maximizing Eq. 3
takes O(#samples3)). As a consequence, the number of
measurements must be limited to a set of few but significant
samples. Our sensing strategies deal with this problem by
privileging data acquisition locations that are expected to
induce high reductions in the current map’s uncertainty.



Moreover, robot teams might have non-homogeneous
computational capabilities, a sensitive issue for the GP
parameter estimation process. We capture this by considering
two settings. In the homogeneous setting, we assume that
any robot is equipped with sufficient computational power
to construct the GP model. In the non-homogeneous setting,
we restrict this feature to an elite of robots. Real multirobot
systems are often composed by many cheap/basic platforms
that can navigate and partner up in taking measurements
but cannot do intensive on-board computations which only
a limited number of more expensive robots can afford.

Both strategies are based on a leader-follower paradigm,
because of the necessary coordination between measure-
ments and robots. Leaders are robots in charge of main-
taining a communication map by iteratively estimating the
GP parameters that best fit the data acquired so far. They
are also in charge of selecting the best locations to be
visited in coordination with the corresponding followers. In
general, we allow for multiple leaders to be present in the
robotic team, assuming a rendez-vous phase at the end of the
mission in which the leaders meet to merge their communi-
cation maps in the final one. Coordination between different
groups of leader-followers is achieved by broadcasting or
selectively relaying relevant information to be shared in a
multi-hop fashion. In practice, the two strategies give rise
to a “grouply distributed” multirobot system. Each group
of robots acts as an autonomous entity and benefits from
episodic encounters with robots belonging to other groups,
while, at the same time, each follower is subject to the
directives of the corresponding leader. Both strategies favor
selection of locations in regions of A2 currently displaying
high predictive variance, trying to spread the robots.

A. Pairwise Mapping in Homogeneous Settings

With the Pairwise Mapping (PM) strategy the team is
divided in pairs of robots, where one robot acts as leader
and the other as follower. The leader iteratively drives itself
and the follower to take measurements in the locations
p∗l ,p

∗
f ∈ A2, |p∗l − p∗f | ≤ Rc currently displaying a high

predictive variance in the current communication map. While
moving to such locations, the two robots poll other robots
in the environment for additional measurements. The polling
frequency is adapted from the estimated mission length, to
limit the number of acquired samples. Coordination between
different leader-follower pairs is achieved in two ways. First,
each robot broadcasts the waypoints of its current path, along
with those of its corresponding teammate, so that the other
leaders know which regions of A2 can be excluded from
planning as they will be visited and sensed by other robots.
Second, each robot maintains an updated collection of all
the data gathered by the team by periodically asking its
teammates to selectively relay the portion of the collected
dataset not yet received by any other team member. This
is done to make the most updated dataset available to each
leader for training a new GP at replanning time.

In case two robots are not able to communicate from two
target destinations p∗l ,p

∗
f , a recovery mechanism is adopted.

Algorithm 1 PM planning algorithm for a pair rl, rf
Input: D (dataset), pl,pf (current positions), P (teammate paths),M (environment

map), nPM
s (# samples), dmin (minimum distance)

Output: p∗l ,p
∗
f (target positions), pb

l ,p
b
f (backup positions)

1: J ← extrapolateJointLocations(P)
2: X ← sampleLocations(M, nPM

s ,J , dmin)
3: θ ← learnHyperParams(D)
4: ΣX ← predictUncertaintyGP(X , D, θ)
5: p∗1 ,p

∗
2 ← arg max(p1,p2)∈X {Σxx + Σx′x′}(x = (p1,p2),x′ =

(p2,p1))
6: p∗l ,p

∗
f ← assignMinMaxDist(p∗1 ,p

∗
2 ,pl,pf )

7: pb
l ,p

b
f ← backupDest(p∗l ,p

∗
f ,M)

Specifically, a pair of backup destinations are selected and
assigned to robots. The selection criterion, see below, guar-
antees the presence of a communication link. Called rl and
rf the leader and follower robots, the PM strategy is formally
defined by these steps:

(1) rl and rf are connected;
(2) rl selects the target destinations, p∗l ,p

∗
f , and backup

destinations pbl ,p
b
f (see Algorithm 1), informing rf ;

(3) rl and rf agree on a deadline td to reach p∗l and p∗f ;
(4) rl and rf move to p∗l and p∗f , opportunistically ex-

changing the collected signal data and the undertaken
path with other teammates, and possibly polling them
to get additional measurements;

(5) if rl and rf are connected before td, go to (1); other-
wise, go to the next step;

(6) rl and rf set pbl and pbf as destinations; as soon as they
regain connection, go to (1).

In Step (3), the value of td can simply be chosen as
the maximum estimated arrival time of the two robots,
augmented by some tolerance value; 4% in our experiments.

Algorithm 1 describes how each leader chooses the next
pairs of target and backup destinations. The algorithm takes
as input the collected signal data D = {X,Y}, the current
leader-follower positions pl,pf , the paths currently under-
taken by the other leader-follower pairs P , and a map of
the physical environment M. As additional parameters, the
algorithm requires the number of samples nPM

s to generate,
and a value dmin used to exclude some location pairs from
planning as they will be probably close to pairs already
visited by other subteams. Initially (Lines 1-2), the algorithm
samples candidate pairs of locations X in which to send
rl and rf . Specifically, it first computes the set J of joint
waypoints that the other leader-follower teams will traverse
while moving to their target destinations, assuming a constant
speed along their path; then, it selects nPM

s samples from A2

at distance not greater than Rc, pruning those that are not at
least dmin far apart (in travel distance) from each location
pair in J . In Line 3, a new GP is trained with the gathered
data, and in Lines 4-5 the most uncertain pair p∗1,p

∗
2 ∈ X is

selected. The two locations are then assigned to the robots to
minimize the maximum traveled distance (hence optimizing
the energy consumption), thus producing p∗l ,p

∗
f (Line 6).

Finally, in Line 7 backup destinations pbl ,p
b
f are chosen

as the pair of points closest to the target locations, and for
which a safe communication link is guaranteed. (Section IV



presents a possible way of computing backup destinations.)

B. Region Mapping in Non-Homogeneous Settings

The Region Mapping (RM) strategy is again based on a
leader-follower paradigm, but this time leader robots (the
only ones capable of computing the GP model) can dis-
pose of an arbitrary but fixed number of followers Rf =
{rf1 , . . . , rfk}. As in the previous strategy, leaders are in
charge of maintaining the GP model. However, now they
iteratively drive the followers in regions R∗ with high
predictive variance. Once a region has been selected, the
leader moves in its center pc. At the same time, the followers
move towards safe positions Sf = {ps1, . . . ,psk} from which
they can acknowledge that the leader has reached its goal.
Then, the followers move along pre-computed paths Pf =
{p1, . . . , pk} that can significantly reduce the prediction
uncertainty in the region of A2 centered in pc. If a follower
rfi cannot communicate with the leader at the end of its path,
it will move to its backup destination chosen from a pre-
computed set Bf = {pb1, . . . ,pbk}. The coordination among
teams is achieved by letting the leaders choose regions to
visit whose centers are sufficiently far apart. As with PM
strategy, robots can also acquire additional measurements,
while selectively relaying the gathered dataset. The rationale
behind this strategy is that it might be more convenient to
lower down the uncertainty around a fixed leader position
now, rather than take only sparse measurements with the
possible need of re-visiting the same region later. Formally,
leader rl and followers Rf act as follows:
(1) rl is initially connected to each follower in Rf ;
(2) rl decides the region R∗ to explore next, computing pc,
Pf , Sf , Bf (see Algorithm 2);

(3) rl moves to pc, while the followers move to Sf ;
(4) followers follow their paths in Pf , rl remains still;
(5) followers regain connection with rl either in their last

path waypoints, or by resorting to their backup destina-
tions in Bf ; go to (1).

Before passing from Step (3) to Step (4), once the leader
arrives at pc, it waits until all followers communicate with
the leader. In this way, excessive delays of some of them can
be handled by reorganizing the paths of the remaining ones.

Algorithm 2 describes the RM strategy. The algorithm
takes as input the collected signal data D, the current leader
and followers positions pl, Pf , the centers of the regions

Algorithm 2 RM planning algorithm for a group rl, Rf
Input: D (dataset), pl, Pf (current followers positions), Pc (other region centers),
M (environment map), nRM

s (# region samples), dmin (minimum distance), nw

(# waypoints)
Output: pc (new region center), Pf (followers’ paths), Sf (initial positions), Bf

(backup positions)
1: R ← sampleRegions(M, nRM

s ,Pc, dmin)
2: θ ← learnHyperParams(D)
3: Σ[R]← meanVarianceRegionsGP(R,D, θ)
4: R∗ ← arg max

R∈R
Σ[R]

5: W ← getWaypoints(R∗, nw,D, θ)
6: Sf ← initialDests(Pf ,W,M)
7: Pf ← assignMinMaxDistPaths(Sf ,W,M)
8: Bf ← backupDest(Pf ,M)

being visited by other groups Pc as known by rl, a map
of the physical environment M, the number of regions
to sample nRM

s , a parameter dmin used for coordinating
the spreading of the different groups, and the number of
waypoints to visit in the new region nw. As with the previous
strategy, a suitable choice of dmin avoids that two different
subteams of robots with a close replanning time decide to
start mapping the same region of the environment.

In Line 1, nRM
s candidate circular regions R with diameter

2Rc are selected. In Line 2, a new GP is trained with the
gathered data, and in Lines 3-4 the most uncertain region
R∗ ∈ R is selected as the region displaying the highest mean
predictive variance. In Line 5, a set W of nw waypoints to
visit is selected from a fine-grained discretization of A∩R∗
according to the following method: iteratively choose the
point pw displaying the highest sum of predictive variance
when paired with pc and sufficiently far apart from the
already chosen waypoints (this distance threshold could also
be the same dmin). Notice that this spacing is required
because it would be inefficient to chose a waypoint very
close to another one, since the uncertainty of the former
will be already reduced by visiting the latter. In Line 6, the
initial safe destinations for the followers Sf are selected
as follows: first, followers are iteratively assigned to the
closest locations in W guaranteeing a safe communication
link to pc, consistently updating W so that, at the end of
this first phase, W ∩ Sf = ∅. Then, if any follower remains
unassigned, its corresponding safe destination is chosen as
the closest point from its current position in A guaranteeing a
safe communication link. In Line 7, the remaining waypoints
are assigned to the robots with the aim of minimizing the
maximum followers’ traveled distance, and finally in Line 8
the backup destinations are computed as in the PM strategy.

Note that, in Line 7, the objective of minimizing the
bottleneck traveled distance gives rise to the Multiple Trav-
eling Salesman Path Problem, which is NP-hard [17]. This
problem can be formalized in terms of a simple Mixed
Integer Linear Program (MILP) as follows. With a slight
notation overload, let f be a generic follower robot, and
V (f) be the setW∪{psf}. We define three sets of variables:
xfij , with i, j ∈ V (f), is a binary variable taking value 1 iff
in the path of f a visit to i is followed by a visit to j; yfi ,
with i ∈ W , is a binary variable taking value 1 iff waypoint i
is visited by f ; ufi , with i ∈ W , is a continuous variable for
representing the possible position of waypoint i in the path
of f . A continuous variable b is also defined to represent the
objective function value. The MILP model reads as follows:



min b s.t. (4)∑
j∈V (f)

x
f
ps
f
j

=
∑

i∈V (f)

x
f
ips

f
∀f ∈ Rf (5)

∑
j∈V (f)

x
f
ps
f
j

= 1 ∀f ∈ Rf (6)

∑
i∈V (f)

x
f
iw =

∑
j∈V (f)

x
f
wj ∀f ∈ Rf , ∀w ∈ W (7)

∑
j∈V (f)

x
f
wj = y

f
w ∀f ∈ Rf , ∀w ∈ W (8)

∑
f∈Rf

y
f
w = 1 ∀w ∈ W (9)

b ≥
∑

i∈V (f)

∑
j∈W

dijx
f
ij ∀f ∈ Rf (10)

2 ≤ uf
w ≤ |W|+ 1 ∀f ∈ Rf , ∀w ∈ W (11)

u
f
i − u

f
j + 1 ≤ |W|(1− xf

ij) ∀f ∈ Rf , ∀i, j ∈ W. (12)

Constraints (5) and (6) enforce, for each follower, a path
that starts and ends at the corresponding psf . Constraints (7)
and (8) guarantee path consistency. Constraints (9) impose
that each waypoint must be visited by exactly one follower.
Constraints (10) bind the objective function to the maximum
traveled distance (notice that starting points are excluded
from the inner summation, as we are not interested in
building a tour). Finally, Constraints (11) and (12) avoid the
presence of subtours. The time required to solve this model to
optimality rapidly grows with the size of the input. However,
preliminary experiments showed that it is usually better to
keep the size of W relatively small (i.e., only a few points),
as robots can also periodically obtain measurements while
moving along their planned paths.

IV. EXPERIMENTAL EVALUATIONS

We validate our strategies with Stage [18] simulations
(with teams of 2, 4, and 6 robots) and on four TurtleBot 2
robots. (We used ROS [19] and GPy [20] as framework for
GPs.) For both strategies, backup locations are determined
according to this criterion: two robots can always communi-
cate within a distance of Rc/3, or Rc/2 if in line-of-sight.

PM and RM are compared against a baseline strategy,
RAND, where robots independently move to random desti-
nations while polling teammates. To ensure acceptable real-
time performance, we conducted a preliminary experimental
phase to set appropriate polling frequencies for PM, RM, and
RAND. (Differently from [14], we assume that our GPs have
a constant mean function, so that only covariance parameters
need to be optimized.) Note that RAND is an uninformed
strategy not requiring any GP training for deciding where
to go next. Still, we assume that the data it collects will be
used, at some point, to build a communication map. For PM
and RM, we discard the samples acquired by a leader and its
followers during the computation of plans, since such robots
will remain still at a fixed position. The polling period of
RAND is set to a higher value compared to PM and RM to
ensure a fair comparison based on a comparable amount of
gathered samples. Specifically, we use the following polling
periods: for 2 s robots, 3 s for PM and RM, 3.5 s for RAND;

Fig. 2: Simulation environments (Office, left, and Cluttered,
right), approximate size 80m × 30m.

for 4 robots, 5 s for PM and RM, 10 s for RAND; for 6
robots, 10 s for PM and RM, 18 s for RAND.

The strategies are evaluated by considering the quality of
the GPs that would be obtained by merging all the collected
data in a global rendez-vous after 5min (see Fig. 3(a)
for the GPs training times with 4 robots in one of the
simulation environments). In particular, quality is measured
both in terms of Rooted Mean Squared Error (RMSE) on a
given test set (10000 samples for simulations, 2000 for real
robots, collected randomly), as well in terms of the average
predictive standard deviation (i.e., the squared root of the
predictive variance) of the predictions. The latter metric is
fundamental for an online scenario and should be as high as
possible, as other information is typically not available.

A. Simulations

We simulate communications using the signal propagation
model of [8]. The signal strength S at a distance dm
from the emitting source is computed as S = Pd0 −
10Pl log10(dm/d0) − Wf min (C,Nw), where Pd0 denotes
the signal strength at the reference distance d0, Pl is the
path loss factor, Wf is the wall attenuation factor, Nw
is the number of walls between emitter and receiver, and
C is the maximum number of walls. In our case, we set
Pd0 =−38 dBm, d0 =1m, Pl = 2.3, Wf = 3.37, C = 5.
A bidirectional communication link is available between any
two simulated robots if S ≥−93 dBm in both directions. The
indicative communication range Rc is set to 50m.

We select two representative environments of realistic size
depicted in Fig. 2. “Office” is a portion of the “sdr site b”
environment from the Radish repository [21], while “Clut-
tered” is inspired from the “grass” environment of the
MRESim repository [22]. The mission duration is set to
30 minutes. For the RM strategy, we assume the presence
of at most 2 leaders (we use RM-N to denote the results
for the RM strategy where each group is composed of N
robots). We use the following set of parameters, obtained
from preliminary experiments: nPM

s =10000, nRM
s =100 for

all the team sizes, dmin=25, 20, 15m for 2, 4, and 6
robots, respectively. The nw parameter is chosen to allow
a fair coverage of a region, compatibly with the mission
duration and accounting for the available number of robots.
In particular, nw=3|Rf |, 2|Rf |, 1|Rf | for 2, 4, and 6 robots,
respectively. We execute 5 runs for each experimental setting.

Fig. 3 reports the results obtained in the Office environ-
ment. Focusing on the prediction performance for 2 robots
(Fig. 3(a)-(b)), we can see that all the strategies are able to
significantly lower down both the RMSE and the predictive
standard deviation. Comparing PM against RM, we can



5 10 15 20 25 30
Time (minutes)

6

8

10

12

14

16

18

R
M

S
E

RAND
PM
RM-2

(a) 2 robots, RMSE

5 10 15 20 25 30

Time (minutes)

5

6

7

8

9

10

11

12

13

P
re

d.
S

td
.

D
ev

.

RAND
PM
RM-2

(b) 2 robots, pred. std. dev.

5 10 15 20 25 30
Time (minutes)

5

6

7

8

9

10

11

12

13

R
M

S
E

RAND
PM
RM-2
RM-4

(c) 4 robots, RMSE

5 10 15 20 25 30

Time (minutes)

4

5

6

7

8

9

10

11

P
re

d.
S

td
.

D
ev

.

RAND
PM
RM-2
RM-4

(d) 4 robots, pred. std. dev.

5 10 15 20 25 30
Time (minutes)

4

6

8

10

12

14

16

R
M

S
E

RAND
PM
RM-3
RM-6

(e) 6 robots, RMSE

5 10 15 20 25 30

Time (minutes)

4

5

6

7

8

9

10

P
re

d.
S

td
.

D
ev

.

RAND
PM
RM-3
RM-6

(f) 6 robots, pred. std. dev.
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(g) 4 robots, GP training time
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Fig. 3: Simulation experiments, Office environment.

observe an advantage in terms of both performance metrics.
However, compared to RAND, PM does not seem to provide
a significant advantage: in fact, RAND also provides the best
performance in terms of predictive standard deviation across
the whole mission. This means that, when the extension
of the spatial phenomenon to learn is large (compared
to the available robots), the advantage provided in terms
of performance may be not enough to justify the use of
complex mapping strategies. Looking at the results with 4
(Fig. 3(c)-(d)) and 6 (Fig. 3(e)-(f)) robots, we can observe
an advantage in the use of PM compared to RAND, with
RM still not behaving as well as PM overall. For the RMSE,
the advantage offered by PM is slight, but often statistically
significant (e.g., p-value=0.004064 in one-way ANOVA at
30min between PM and RAND for 4 robots). Looking at the
predictive standard deviation, we can observe a substantial
advantage in the usage of PM towards the middle of the
mission, which is consistently maintained until the end and
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Fig. 4: Simulation experiments, Cluttered environment.

(a) Office (b) Cluttered

Fig. 5: Maps for a source located in the center of the
simulation environments (6 robots, PM strategy).

is statistically significant (e.g., p-value=0.00005615 at 30min
between PM and RAND for 6 robots). In general, the results
obtained by RM suggest that it could not be convenient to
spend too much time on lowering down the uncertainty of
a single region. However, we argue that, by setting the nw
parameter equal to 1, we could obtain a performance similar
to that of PM even for 2 and 4 robots. The relatively com-
parable performance of RAND comes from the fact that this
strategy uniformly sample the spatial phenomenon (recall
that robots keep poll each other). Obviously, RAND has a
remarkable downside in the distance it requires the robots
to travel, making it a very inefficient sampling strategy.
Fig. 3(h) shows an example of such results for 4 robots.

The results for the Cluttered environment are very similar
to those of Office, and all the above considerations still hold.
For reasons of space, we only report in Fig. 4 the results
obtained for 4 robots. Fig. 5 shows two communication maps
built for a source located in the center of the simulation
environments for 6 robots and the PM strategy.

B. Experiments with Real Robots

We also deployed and tested our algorithms on a team
of four TurtleBots 2. Each platform is equipped with a
Microsoft Kinect and an on-board laptop with an integrated
WiFi card. We run some communication map construction
missions in the Swearingen Engineering Center at the Uni-
versity of South Carolina. The maps used for localization
are built in a setup phase where a single robot is manually
driven around the environment to collect readings which are
processed by the ROS gmapping package [23]. An example
of map is depicted in Fig. 6 (the size is about 50 by 30m). We
tuned the parameters selecting those values which achieved
the best performance in simulations up to some refinement,
using insights from simulated experiments. For example, the
timeout td needs to be increased due to locomotion noise



Fig. 6: Part of a floor in the department of Computer Science
and Engineering at the University of South Carolina.
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Fig. 7: Comparison between PM and RM and the estimated
communication map from the T-intersection of the corridors
at the center of the map in Fig. 6 (left PM; right RM).

which, in the real world, is clearly non-negligible.
The trends of the quantitative results are comparable to

those obtained in simulation (see Fig. 7), and the robots travel
comparable distances. However, the values of uncertainty and
MSE are higher compared to simulation: real signal strength
is much more complex than the model used. Despite this,
the communication map that is built by GP looks consistent
with the obstacles; e.g., Fig. 7 shows a 2D communication
map, by fixing one location for the two strategies. Since
we experience some noise in localization, the associated
WiFi strength measurements few times are not accurate.
Further, although our approach relies not only on the selected
destination location, but also on the paths of each robot to
compute the utility function, few times the robots interfered
with the motion of others, especially using the PM strategy,
which has a lower coordination level compared to RM.

V. CONCLUSIONS

In this work, we designed and tested multirobot sensing
strategies for mapping the availability of WiFi communica-
tion links in an environment. We provided a formalism based
on Gaussian Processes to represent the WiFi signal strength
distribution and devised sensing strategies to build and main-
tain it with teams of (homogeneous or non-homogeneous)
autonomous mobile robots. Results from simulation and
real-world experiments show how distributed coordination
schemes can effectively perform such mapping task.

In future works, we will consider problem settings where
the task of building communication maps coexists with other

online tasks, like exploration or search. Assessing how the
optimal resolution of one task can benefit or penalize the
other is an interesting challenge towards the definition of
strategies that try to combine them.
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