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Abstract—This paper addresses distributed data sampling
in marine environments using robotic devices. We present
a method to strategically sample locally observable features
using two classes of sensor platforms. Our system consists
of a sophisticated autonomous surface vehicle (ASV) which
strategically samples based on information provided by a
team of inexpensive sensor nodes. The sensor nodes effectively
extend the observational capabilities of the vehicle by capturing
georeferenced samples from disparate and moving points across
the region. The ASV uses this information, along with its own
observations, to plan a path so as to sample points which
it expects to be particularly informative. We compare our
approach to a traditional exhaustive survey approach and
show that we are able to effectively represent a region with
less energy expenditure. We validate our approach through
simulations and test the system on real robots in field.
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I. INTRODUCTION

We propose a system for adaptive sampling of an un-
known marine environment with an autonomous surface
vehicle (ASV) which utilizes information gathered by dis-
persed sensor nodes for selective coverage. Data-indepen-
dent, exhaustive coverage of a region can be unnecessarily
time consuming in cases where important features are spa-
tially localized. Many features in marine systems which are
of scientific importance are indeed localized including coral
and sediment distribution, salinity, or algal concentration
in confluence zones. Our approach to effective sampling
revolves around the premise that we can inexpensively gather
low-quality data across a broad area and synchronously
transfer that knowledge to a sophisticated vehicle which is
capable of directed sampling. Our strategy allows the surface
vehicle to reduce its energy expenditure when compared
to exhaustive coverage by only sampling areas which are
important to its goal with only a marginal increase in
hardware expenditure. This is analogous to a journalist who
screens tips from the public about current events, choosing
only interesting stories to cover in detail.

Coral reefs are a critical part of the marine ecosystem
and support a rich diversity of life with consequent economic
value and social amenity. However, sea surface temperatures
have increased over the past few decades, resulting in
widespread coral bleaching at an increasing rate. In this
paper, we consider the task of effectively sampling the visual
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Figure 1: System overview which depicts a deployment
scenario with two drifting sensor nodes and an autonomous
surface vehicle (ASV). One floating sensor (drifter 1) is
floating over an interesting area and reports this location
to the boat via wireless communication. Another (drifter 2)
is floating over an area with no interesting features does not
report any location. The surface vehicle is currently sampling
an interesting region, but when it finishes, it will consider
the information provided by its team of drifters to choose
the next optimal coverage area based on the information as
described in Section III.

data of a coastal region which is known to contain coral reef
outcrops and build an image mosaic to monitor the health
of the reefs over years. The exact distribution of coral is
unknown, though we do know that the reef is not continuous
over the entire region. An exhaustive survey of this area with
our ASV spends the majority of time collecting images in
which coral is not observed, wasting valuable battery power
for data which is not useful for our goal of building image
mosaics of reefs. Having a team of heterogeneous platforms
operate together allows us to reap the benefits of both the
platforms - drifting sensor nodes (Figure 2(a)) which are
low-cost, passively floating, less power consuming drifters,
and an autonomous surface vehicle (Figure. 2(b)) which is
more controllable and loaded with high quality sensors.

After a brief overview of related work in Section I-A,
we describe the components our system in Section I-B. In
Section II, we discuss the extraction and scoring of image
feature and then show how we use this information to
choose areas to sample in Section III. Experimental results
of simulations and field trials are presented in Sections IV
and V followed by future work and conclusions in Section
VI.

A. Related Work

Monitoring of marine environments is important for un-
derstanding natural and human processes, but it is often



(a) Low-cost sensor nodes (drifters [1]) (b) Autonomous surface vehicle (c) ASV responding to drifter information

Figure 2: Hardware used in our field experiments over a region with coral outcrops.

costly and/or labor intensive to collect quality data. Many
factors like fauna distribution, oxygen concentration, or coral
bleaching are only locally observable and require sensors or
humans to be deployed in harsh environments at or below
the water’s surface.

As sensing platforms become more accessible, many
scientists have turned to autonomous devices to collect high-
resolution data in-situ. Employing a team of heterogeneous
robots was shown to have distinct advantages in environ-
mental monitoring [2]. There are generally two classes of
autonomous platforms for performing these surveys. On the
high-end, surveys are performed by robotic vehicles which
either exhaustively survey a region [3, 4] or selectively
explore a region based on local information [5]. On the
low-cost end of the spectrum, numerous sensor nodes are
deployed to sample points in a region, usually without
actuation. Sensor nodes such as those presented in [6] are
fixed to a location on the seafloor to monitor environmental
change. Others, such as the drifter used in our experiment
[1, 7], are moved about by external forces. Robotic vehicle
typically have large power and computational requirements
while sensor nodes tend to be designed to perform limited
operations for a long period of time. Our approach seeks
to combine the appealing traits of these two sampling
platforms. We seek to efficiently utilize the controllability of
our sophisticated robotic platform by employing information
gathered by affordable, but uncontrollable sensor nodes.

To completely represent a partially observable region, one
is required to exhaustively sample the area as defined by
the limits of the sensor [8, 9, 10]. The traditional approach
to covering a partially observable, obstacle-free region is
to employ a boustrophedon path [11]. The boustrophedon
or lawnmower path is the approach a farmer takes when
using an ox to plow a field, making back and forth straight
passes over the region in alternating directions until the area
is fully observed. We refer to the boustrophdeon approach
as a metric for measuring the performance of our informed
coverage approach.

We realize that our approach surrenders the guarantee
of successfully finding all features in the region by not

surveying exhaustively, but maintain that this is a reasonable
trade-off for some surveys where important features are
spatially localized forming hot-spots of information. In short,
we trade off completeness for efficiency. Recently there is a
growing interest in non-uniform coverage [12, 13]. Seyed et
al. propose a coverage strategy based on space-filling curves
that explore the region non-uniformly [14]. They propose a
coverage tree with Hilbert-based ordering of nodes. We have
previously demonstrated an anytime algorithm to selectively
cover a region based on the underlying reward distribu-
tion [15]. This technique, however, requires prior knowledge
about the underlying distribution of the field which is not
available in the proposed approach. In related work it was
shown that even an approximate model of a drifting sensor’s
motion could enable an autonomous agent to rendezvous for
data transfer [16].

A similar problem of visiting sensor nodes deployed in
the ocean using an autonomous agent as a variant of the
Traveling Salesman Problem has been considered by several
researchers [17, 18]. Our problem is similar if we consider a
node to be a point where a drifter made an observation, but
we do not consider visiting all of these observation points.
Instead we consider only those points which we expect to
significantly increase our understanding about the region.

B. Overview of Our Approach

Our proposed method employs a sophisticated vehicle
which is able to strategically sample points where it expects
to provide the most fruitful data based on information
gathered by a network of low-cost sensors [19] spread about
the region of consideration. Both systems are only able to
observe local features. In our case study, the local features
are images captured from downward-facing cameras on both
of the platforms. The drifters used in our study have no
control over the region in which they survey, but the ASV
can make planar changes on the ocean’s surface to selec-
tively sample. Our sensor nodes only report observations for
the locally observed phenomena which they happen to float
over, meaning that our estimate of the distribution is highly
influenced by natural forces (wind, current, wave action) and



(a) Shallow image with strong feature score (b) Deep image with strong feature score (c) Deep image with poor feature score

Figure 3: Examples of underwater images with ORB keypoints shown in red. These samples illustrate the benefit of
selectively sampling a region so that we avoid areas with low information content. Feature score indicates how well we

expect to be able to stitch overlapping images together to represent the ocean floor.

their starting positions.
Figure 1 presents an overview of our approach. In this

figure, the drifter on the left (Drifter 1) observes an important
feature in its local area and communicates this information
to the surface vehicle. The drifter in the middle (Drifter 2)
observes unimportant features and does not communicate
any information to the ASV. The ASV then prioritizes
these suggested locations according to a cost function which
weighs relative distance and entropy and visits the most
information-rich location. In this case the ASV will choose
to travel to the left sensor (Drifter 1) location to closely
sample, skipping the uninteresting areas, thus adaptively
sampling the region of interest to maximize the knowledge
gain with minimum distance traveled.

II. ASSIGNING A FEATURE SCORE TO VISUAL SAMPLES

We evaluate our adaptive sampling technique by setting up
an experiment to strategically sample a region using visual
features. The region considered has coral reef outcrops
with an unknown distribution from which we would like
to sample. Areas between corals are usually sand which is
difficult to mosaic and uninformative. We wish to produce
visually appealing surveys of sections (see Figure 8) of rep-
resentative coral while minimizing the energy expenditure of
our ASV which is carrying a quality camera needed for the
survey. Our approach attempts to achieve this by prioritizing
sampling in areas which are identified to have images that
are assigned a high feature score by randomly dispersed
drifters.

Underwater environments impose limitations on what can
be captured with optical sensors and local water conditions
greatly affect the quality of images captured. Perhaps the
most basic reason that an image captured from the surface
is of poor quality is because the scene is too deep or too
shallow. This is a limitation of our surface observational
capability that makes areas outside of some optimal depth
range uninformative. If a depth map of the region is avail-
able, it can provide some insight into which areas may be
effectively sampled, but there are other factors which influ-
ence the quality of the image that are difficult to determine

in advance. These include water clarity, natural illumination,
and scattering which can make objects in an image difficult
to ascertain [20]. Our experiments are conducted in relatively
turbid water without the benefit of an artificial light source
and thus many of these conditions are non-stationary over
time and space.

In addition to quantifying how well we expect to see
objects on the seafloor, we also want to determine if there
is anything worth sampling at a particular point. Since our
ultimate goal is to create appealing mosaics of coral outcrops
(Figure 8), we use the number of keypoints detected in an
sampled image as a metric of quality [21]. Image keypoints,
which are pixels that represent distinctive points in an image,
are matched across two images with overlapping scenes in
feature-based mosaicking methods to calculate homography.
Images captured over deep water, regions of solid sand, or
in conditions with low visibility are often blurry or solid in
colors and thus have few or no keypoints required to align
them with their neighbors. On the other hand, observations
over coral reef contain numerous distinctive corners, as
seen in Figure 3. There are many well-known approaches
to detecting keypoints in an image that vary widely in
computational complexity and invariance. We chose to use
an ORB (Oriented Fast and Rotated Brief) [22] feature
detector because it is relatively lightweight and performs
well in underwater scenes according to feature detector
analysis presented by Quattrini Li et al. in [23].

In our system, each drifter captures images at a rate of
1Hz and then calculates the number of feature points in
those images. The feature score is determined by dividing
the number of features detected by a scaling factor such
that its value is 1 for feature-rich images and 0 for images
which fail to align with images of the same scene. Prior to
deployment, we experimentally calculated a scaling factor
for each camera to calibrate the system such that we can pro-
duce a feature score that is approximately equivalent across
platforms. Figure 3 demonstrates several images captured
in our experiment with relative depths and feature scores.
If the feature score is over a certain threshold, the location



(a) Ground truth map of visual features (b) Our method of strategic coverage (Chosen
georeferences are represented by Red ∗).

(c) Boustrophedon coverage

Figure 4: Ground truth and maps generated by extensive coverage 4(c) and our strategic sampling 4(b) after the surface
vehicle has traveled 2400 m (sampling points are represented by White ∗). The axes are in meters.

is considered to be information-rich and drifter sends this
feature score along with its georeferences to the ASV.

III. STRATEGIC SAMPLING BASED ON EXPECTED
INFORMATION GAIN

Our approach seeks to intelligently sample a region of
interest so as to reduce the time spent sampling areas which
are unimportant for our goal. We make use of randomly
dispersed, low-cost sensor nodes to improve our sophis-
ticated vehicle’s understanding of the region. The vehicle
uses this improved estimate of the underlying distribution
to effectively plan a route so as to maximally sample
information-rich areas. One of the significant features of
our approach is that the communication between drifter and
ASV happens asynchronously from planning and execution
of the survey. Thus the plan can be adapted in real-time to
improve the survey quality by including the recent location
suggestions by the drifters.

Team of drifters start reporting feature scores and geo-
references for regions which pass the feature score inter-
estingness threshold. The ASV maintains a list, L, which
contains all reported points and their respective scores. This
list is continuously updated as information is received from
drifters. The ASV chooses a point, l∗ , to densely survey
by finding a previously unvisited point in L which has the
lowest associated cost as calculated by Eq. 1.

l∗ = argmin
l∈L

Cl (1)

where the cost Cl used for waypoint ranking is given by,

Cl = dl + α(1− sl) (2)

Eq. 2 weighs the relative distance, dl, from the current
position of the vehicle to each point l with its reported

feature score sl. The parameter α allows us to tune the
priority given to distance and the feature score at a given
point. For instance, we can adaptively tune α based on
the battery level of the vehicle, preferring nearby, but less
interesting points when we are low on power. For our
simulations we used α = 1 as we weigh the feature score
and the distance equally. But we would like to test the effect
of this parameter in our future experiments.

Once the optimal point, l∗, is chosen, we execute a
small, dense boustrophedon pattern which is centered over
the interesting area, starting from the corner nearest to the
ASV’s current position. This small survey helps in collecting
continuous samples and not just one point-sample in the
interesting area. After executing this dense coverage, the
ASV will reconsider L according to its new position. While
the ASV was executing its dense survey of the previous l∗,
L is updated with new l values which were reported by the
drifters and added by the ASV itself from the data collected
during transit.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

We evaluate our approach in simulation over ground-truth
data gathered from field observations. This simulation con-
sists of three main parts: the underlying feature distribution
from which we sample, semi-synthetic drifter tracks, and
the planning and execution of ASV paths. The underlying
feature map (Figure 4(a)) is generated by densely sampling
the survey site (see Section V for details on survey site) with
a surface vehicle and building a map of feature scores using
RBF-kerneled Gaussian Processes for interpolation.

Although we control the initial location from which a
drifter begins its survey, we have little control over its path
as it floats about the surface. To encapsulate realistic drifter
movement in our simulation, we generated 43 synthetic



Figure 5: This figure represents the output from one of the
simulation runs with four drifters (orange, lavender, blue,

and green tracks indicate where a drifter captured an
image). Red points indicate an area of interest that the

ASV (tracks shown in white) chose to sample densely. The
region of interest is represented by the bounding box with

orange dotted lines (100m× 90m).

drifter tracks by randomly shifting the start point of 5 real
drifter tracks that were captured at the survey site. Thus, the
simulated drifters exhibit realistic movement and timescales.
Like a real drifter, a simulated drifter samples a feature
score from the ground-truth distribution and if score passes
the threshold for interestingness, it reports this information
synchronously to the ASV. A threshold of 0.25 was used
in our simulations. The simulated ASV considers time and
distance covered based on estimates from our real vehicle.
Timestamps across the drifters and ASV are consistent with
the realistic system, but sped up for experimental purposes.
The ASV only considers drifter reports which were avail-
able prior to its current simulated time for consideration.
For simplicity, we ignore non-holonomic constraints of the
surface vehicle in simulation and also consider a complete
communication between drifters and the ASV.

Figure 5 illustrates simulated trajectory paths for four
drifters (depicted by orange, lavender, blue, and green
points) along with the survey path planned and executed
by the simulated robot (depicted in white lines). In this
figure, the ASV has selected the red points to perform small,
dense surveys. We evaluate our approach by comparing
our feature score map to one generated by sampling on a

Figure 6: Plot of mean squared error in the map vs.
distance traveled (m). We see that our model is able to
predict values in the region quicker than an exhaustive
search, though full coverage ultimately gives a clearer

picture of the ground truth.

traditional boustrophedon path. Figure 4(b) and Figure 4(c)
are the maps generated by our approach and a traditional
boustrophedon path after traveling a total of 2400 meters
in simulation. The white markers indicate the sampling
points. The chosen sampling points used in our algorithm
is denoted by red markers in Figure 4(b). We quantify these
maps, which indicate how well the underlying distribution
is estimated, by finding the mean squared error (MSE) of
the map as compared to the ground-truth distribution (Figure
4(a)).

We evaluated the performance of our approach by running
100 simulations with a varying number of n randomly
selected synthetic drifter tracks. For the considered survey
area, n ranged from 2 to 10 with selected results depicted
in Figure 6. The data in Figure 6 indicates the mean of the
MSE of the feature score map generated after a distance
traveled by the ASV compared against our ground truth.
The solid lines represent the mean and error bars represent
the standard deviation over 100 trials. We also consider 100
trials of boustrophedon paths starting at random corners and
directions of the region. We exclude the first 10 meters of
all surveys on this figure as the initial estimate is the same
for all trials.

Boustrophedon paths cover a region one transect at a
time, gradually collecting more information, regardless of
the data, until the survey area is completely covered. We
show this experimentally in the red line of Figure 6, which
depicts the MSE for boustrophedon path slowly decreasing
to zero as the ASV covers more area. In our approach,
because the robot is driven to information rich locations by
the drifters, the initial few hundred meters of travel brings



down the MSE significantly, but the system never achieves
complete representation of the region. A careful observation
of final MSE achieved with drifters reveals that more drifters
tends to reduce the final MSE score. This makes sense,
as more drifters will tend to observe more points in the
region driving the vehicle to cover more terrain. Also due
to uncontrollable motion of drifters, they will not visit all
the locations in the region of interest. Thus with less number
(<= 4) of drifters deployed, some part of the region remains
unexplored resulting in non-zero MSE.

V. FIELD DEPLOYMENTS

We tested over a shallow region known to have several
coral outcrops in the Folkestone Marine Reserve in Bar-
bados. To build a baseline, we initially sampled the region
extensively and built a feature score map which was utilized
for developing the ground truth in our simulator.

Figure 7: Sampling points from our field experiment. Four
drifter points (Black) were chosen by the ASV for dense

sampling (Red).

To evaluate the strategic sampling approach presented in
this paper, we placed four drifters (Figure 2(a)) randomly
over the region and used a Clearpath Kingfisher (Figure 2(b))
as our ASV. Marine field deployments are always a challenge
and are highly dependent on weather, current, and tidal
conditions. Unfortunately, our field experiment was plagued
by strong wind and low tides which stirred up sand and
silt, greatly reducing visibility. This meant that our cameras
were unable to see the reef during our trial and only reported
feature scores of 0. This somewhat validates our work, as
the ASV was not compelled to survey any of points over
the unobservable reef.

Ultimately, we tested the algorithm by inducing strong
feature scores by removing the drifters from the water so that
they captured images above water. This prompted the ASV
to correctly survey the areas around our artificial survey
points as depicted in Figure. 7. In future field trials, we plan
to perform additional experiments which test our approach
and expand our sensing capabilities so that we are less
dependent on local meteorological conditions.

Figure 8: Mosaic developed using 27 images captured from
ASV over coral heads. The mosaic is cropped to fit the
column width.

VI. CONCLUSIONS

In this paper, we proposed a method for strategically
sampling locally observable features from a spatially varying
field using a tiered team of sensor platforms. This approach
allows us to efficiently deploy an expensive, sophisticated
sensor by deploying a team of low-cost sensors which
provide insight that would otherwise be costly to capture.
We evaluated our approach on a visual survey of a coral reef
and were able to effectively represent the underlying feature
score map with less energy expenditure than exhaustive
coverage. We are currently working towards developing



hardware so that we can monitor other phenomena such
as algae blooms or surface currents. In addition, we posit
that this general approach will extend beyond marine ap-
plications. For example, we think it will extend nicely to
systems which do not need to own the sensor node hardware.
Consider a situation where a sophisticated wheeled or flying
robot uses participating smart phones to passively provide
information which is useful for achieving its goals.

In addition to extending potential applications, there are
many improvements and research directions that are in-
teresting to pursue. In this approach, we have assumed
that communication is perfect, but this may not always be
the case, especially when the survey area is large. Future
work will consider routing the ASV so as to maximize the
likelihood of achieving communication with nodes which
have lost connection. We will also explore adding simple
steering capabilities to the drifters so that they can have
some control over their position, while still keeping cost
down. After field experiments, we now understand that while
our approach reduced the distance that the ASV needed to
cover to effectively survey the area, the process of deploying
and collecting disparate sensors requires considerably more
human labor than an exhaustive pattern. Ideally the ASV
could perform these tasks autonomously, though this will
require significant additional hardware. On the algorithmic
side, we will evaluate our approach against intelligent adap-
tive sampling strategies, which we did not have time to
consider in this report. In addition, we recognize that the
success of the proposed approach is largely dependent on
the underlying feature distribution. Future effort will work
to evaluate strategies for determining the most appropriate
sampling behavior for an ASV as it learns the underlying
distribution from sampling provided by the system. We
future plan to incorporate additional planning strategies to
optimize across additional sensor sources [15]. This will
allow us to develop informed probabilistic paths to cover
interesting points, rather than simply covering interesting
points with small, boustrophedon patterns.
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