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Abstract— Convolutional operator learning is gaining attention1

in many signal processing and computer vision applications.2

Learning kernels has mostly relied on so-called patch-domain3

approaches that extract and store many overlapping patches4

across training signals. Due to memory demands, patch-domain5

methods have limitations when learning kernels from large6

datasets – particularly with multi-layered structures, e.g., convo-7

lutional neural networks – or when applying the learned kernels8

to high-dimensional signal recovery problems. The so-called con-9

volution approach does not store many overlapping patches, and10

thus overcomes the memory problems particularly with careful11

algorithmic designs; it has been studied within the “synthesis”12

signal model, e.g., convolutional dictionary learning. This paper13

proposes a new convolutional analysis operator learning (CAOL)14

framework that learns an analysis sparsifying regularizer with15

the convolution perspective, and develops a new convergent16

Block Proximal Extrapolated Gradient method using a Majorizer17

(BPEG-M) to solve the corresponding block multi-nonconvex18

problems. To learn diverse filters within the CAOL framework,19

this paper introduces an orthogonality constraint that enforces20

a tight-frame filter condition, and a regularizer that promotes21

diversity between filters. Numerical experiments show that, with22

sharp majorizers, BPEG-M significantly accelerates the CAOL23

convergence rate compared to the state-of-the-art block proximal24

gradient (BPG) method. Numerical experiments for sparse-view25

computational tomography show that a convolutional sparsifying26

regularizer learned via CAOL significantly improves reconstruc-27

tion quality compared to a conventional edge-preserving regu-28

larizer. Using more and wider kernels in a learned regularizer29

better preserves edges in reconstructed images.30

Index Terms— Convolutional regularizer learning, convolu-31

tional dictionary learning, convolutional neural networks, unsu-32

pervised machine learning algorithms, nonconvex-nonsmooth33

optimization, block coordinate descent, inverse problems, X-ray34

computed tomography.35

I. INTRODUCTION36

LEARNING convolutional operators from large datasets37

is a growing trend in signal/image processing, computer38

vision, and machine learning. The widely known patch-domain39
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approaches for learning kernels (e.g., filter, dictionary, frame, 40

and transform) extract patches from training signals for simple 41

mathematical formulation and optimization, yielding (sparse) 42

features of training signals [1]–[9]. Due to memory demands, 43

using many overlapping patches across the training signals 44

hinders using large datasets and building hierarchies on the 45

features, e.g., deconvolutional neural networks [10], convolu- 46

tional neural network (CNN) [11], and multi-layer convolu- 47

tional sparse coding [12]. For similar reasons, the memory 48

requirement of patch-domain approaches discourages learned 49

kernels from being applied to large-scale inverse problems. 50

To moderate these limitations of the patch-domain approach, 51

the so-called convolution perspective has been recently intro- 52

duced by learning filters and obtaining (sparse) representa- 53

tions directly from the original signals without storing many 54

overlapping patches, e.g., convolutional dictionary learning 55

(CDL) [10], [13]–[17]. For large datasets, CDL using care- 56

ful algorithmic designs [16] is more suitable for learning 57

filters than patch-domain dictionary learning [1]; in addition, 58

CDL can learn translation-invariant filters without obtaining 59

highly redundant sparse representations [16]. The CDL method 60

applies the convolution perspective for learning kernels within 61

“synthesis” signal models. Within “analysis” signal models, 62

however, there exist no prior frameworks using the convolu- 63

tion perspective for learning convolutional operators, whereas 64

patch-domain approaches for learning analysis kernels are 65

introduced in [3], [4], [6]–[8]. (See brief descriptions about 66

synthesis and analysis signal models in [4, Sec. I].) 67

Researchers interested in dictionary learning have actively 68

studied the structures of kernels learned by the patch-domain 69

approach [3], [4], [6]–[8], [18]–[20]. In training CNNs (see 70

Appendix A), however, there has been less study of filter 71

structures having non-convex constraints, e.g., orthogonal- 72

ity and unit-norm constraints in Section III, although it is 73

thought that diverse (i.e., incoherent) filters can improve 74

performance for some applications, e.g., image recognition [9]. 75

On the application side, researchers have applied (deep) NNs 76

to signal/image recovery problems. Recent works combined 77

model-based image reconstruction (MBIR) algorithm with 78

image refining networks [21]–[30]. In these iterative NN 79

methods, refining NNs should satisfy the non-expansiveness 80

for fixed-point convergence [29]; however, their trainings lack 81

consideration of filter diversity constraints, e.g., orthogonality 82

constraint in Section III, and thus it is unclear whether the 83

trained NNs are nonexpansive mapping [30]. 84

This paper proposes 1) a new convolutional analysis oper- 85

ator learning (CAOL) framework that learns an analysis 86

sparsifying regularizer with the convolution perspective, and 87
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Fig. 1. A general flowchart from learning sparsifying operators O to solving inverse problems via MBIR using learned operators O�; see Section II. For
the lth training sample xl , F(O; xl ) measures its sparse representation or sparsification errors, and sparsity of its representation generated by O.

2) a new convergent Block Proximal Extrapolated Gradient88

method using a Majorizer (BPEG-M [16]) for solving block89

multi-nonconvex problems [31]. To learn diverse filters,90

we propose a) CAOL with an orthogonality constraint that91

enforces a tight-frame (TF) filter condition in convolutional92

perspectives, and b) CAOL with a regularizer that promotes93

filter diversity. BPEG-M with sharper majorizers converges94

significantly faster than the state-of-the-art technique, Block95

Proximal Gradient (BPG) method [31] for CAOL. This paper96

also introduces a new X-ray computational tomography (CT)97

MBIR model using a convolutional sparsifying regularizer98

learned via CAOL [32].99

The remainder of this paper is organized as follows.100

Section II reviews how learned regularizers can help solve101

inverse problems. Section III proposes the two CAOL models.102

Section IV introduces BPEG-M with several generalizations,103

analyzes its convergence, and applies a momentum coefficient104

formula and restarting technique from [16]. Section V applies105

the proposed BPEG-M methods to the CAOL models, designs106

two majorization matrices, and describes memory flexibility107

and applicability of parallel computing to BPEG-M-based108

CAOL. Section VI introduces the CT MBIR model using a109

convolutional regularizer learned via CAOL [32], along with110

its properties, i.e., its mathematical relation to a convolutional111

autoencoder, the importance of TF filters, and its algorithmic112

role in signal recovery. Section VII reports numerical exper-113

iments that show 1) the importance of sharp majorization in114

accelerating BPEG-M, and 2) the benefits of BPEG-M-based115

CAOL – acceleration, convergence, and memory flexibility.116

Additionally, Section VII reports sparse-view CT experiments117

that show 3) the CT MBIR using learned convolutional118

regularizers significantly improves the reconstruction quality119

compared to that using a conventional edge-preserving (EP)120

regularizer, and 4) more and wider filters in a learned regu-121

larizer better preserves edges in reconstructed images. Finally,122

Appendix A mathematically formulates unsupervised training123

of CNNs via CAOL, and shows that its updates attained via124

BPEG-M correspond to the three important CNN operators.125

Appendix B introduces some potential applications of CAOL126

to image processing, imaging, and computer vision.127

II. BACKGROUNDS: MBIR USING LEARNED128

REGULARIZERS129

To recover a signal x ∈ CN ′
from a data vector130

y ∈ Cm , one often considers the following MBIR optimiza-131

tion problem (Appendix C provides mathematical notations):132

argminx∈X f (x; y)+γ g(x), where X is a feasible set, f (x; y)133

is data fidelity function that models imaging physics (or image134

formation) and noise statistics, γ > 0 is a regularization135

parameter, and g(x) is a regularizer, such as total variation 136

[33, §2–3]. However, when inverse problems are extremely 137

ill-conditioned, the MBIR approach using hand-crafted 138

regularizers g(x) has limitations in recovering signals. 139

Alternatively, there has been a growing trend in learning 140

sparsifying regularizers (e.g., convolutional regularizers [16], 141

[17], [32], [34], [35]) from training datasets and applying the 142

learned regularizers to the following MBIR problem [33]: 143

argmin
x∈X

f (x; y) + γ g(x;O�), (B1) 144

where a learned regularizer g(x;O�) quantifies consistency 145

between any candidate x and training data that is encapsu- 146

lated in some trained sparsifying operators O�. The diagram 147

in Fig. 1 shows the general process from training sparsifying 148

operators to solving inverse problems via (B1). Such models 149

(B1) arise in a wide range of applications. See some examples 150

in Appendix B. 151

This paper describes multiple aspects of learning convolu- 152

tional regularizers. The next section first starts with proposing 153

a new convolutional regularizer. 154

III. CAOL: MODELS LEARNING CONVOLUTIONAL 155

REGULARIZERS 156

The goal of CAOL is to find a set of filters that “best” 157

sparsify a set of training images. Compared to hand-crafted 158

regularizers, learned convolutional regularizers can better 159

extract “true” features of estimated images and remove “noisy” 160

features with thresholding operators. We propose the following 161

CAOL model: 162

argmin
D=[d1,...,dK ]

min{zl,k } F(D, {zl,k }) + βg(D), 163

F(D, {zl,k }) :=
L∑

l=1

K∑
k=1

1

2

∥∥dk � xl − zl,k
∥∥2

2 + α‖zl,k‖0,

(P0)

164

where � denotes a convolution operator (see details about 165

boundary conditions in the supplementary material), {xl ∈ 166

C
N : l = 1, . . . , L} is a set of training images, {dk ∈ C

R : k = 167

1, . . . , K } is a set of convolutional kernels, {zl,k ∈ CN : l = 168

1, . . . , L, k = 1, . . . , K } is a set of sparse codes, and g(D) 169

is a regularizer or constraint that encourages filter diversity 170

or incoherence, α > 0 is a thresholding parameter controlling 171

the sparsity of features {zl,k}, and β > 0 is a regularization 172

parameter for g(D). We group the K filters into a matrix 173

D ∈ CR×K : 174

D := [
d1 . . . dK

]
. (1) 175

For simplicity, we fix the dimension for training sig- 176

nals, i.e., {xl, zl,k ∈ CN }, but the proposed model 177
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Fig. 2. A flowchart from CAOL (P0) to MBIR using a convolutional sparsifying regularizer learned via CAOL (P3) in sparse-view CT. See details of the
CAOL process (P0) and its variants (P1)–(P2), and the CT MBIR process (P3) in Section III and Section VI, respectively.

(P0) can use training signals of different dimension, i.e.,178

{xl, zl,k ∈ CNl }. For sparse-view CT in particular, the diagram179

in Fig. 2 shows the process from CAOL (P0) to solving180

its inverse problem via MBIR using learned convolutional181

regularizers.182

The following two subsections design the constraint or183

regularizer g(D) to avoid redundant filters (without it, all184

filters could be identical).185

A. CAOL With Orthogonality Constraint186

We first propose a CAOL model with a nonconvex orthog-187

onality constraint on the filter matrix D in (1):188

argmin
D

min{zl,k } F(D, {zl,k}) subj. to DDH = 1

R
· I. (P1)189

The orthogonality condition DDH = 1
R I in (P1) enforces a190

TF condition on the filters {dk} in CAOL (P0). Proposition 3.1191

below formally states this relation.192

Proposition 3.1 (Tight-frame (TF) filters). Filters satisfy-193

ing the orthogonality constraint DDH = 1
R I in (P1) satisfy194

the following TF condition in a convolution perspective:195

K∑
k=1

‖dk � x‖2
2 = ‖x‖2

2, ∀x ∈ C
N , (2)196

for both circular and symmetric boundary conditions.197

Proof: See Section S.I of the supplementary material.198

Proposition 3.1 corresponds to a TF result from199

patch-domain approaches; see Section S.I. (Note that the200

patch-domain approach in [6, Prop. 3] requires R = K .)201

However, we constrain the filter dimension to be R ≤ K202

to have an efficient solution for CAOL model (P1); see203

Proposition 5.4 later. The following section proposes a more204

flexible CAOL model in terms of the filter dimensions R205

and K .206

B. CAOL With Diversity Promoting Regularizer207

As an alternative to the CAOL model (P1), we propose a208

CAOL model with a diversity promoting regularizer and a209

nonconvex norm constraint on the filters {dk}:210

argmin
D

min{zl,k } F(D, {zl,k }) + β

2

=: gdiv(D)︷ ︸︸ ︷∥∥∥∥DH D − 1

R
· I

∥∥∥∥2

F
,211

subject to ‖dk‖2
2 = 1

R
, k = 1, . . . , K . (P2)212

In the CAOL model (P2), we consider the following: 213

• The constraint in (P2) forces the learned filters {dk} to 214

have uniform energy. In addition, it avoids the “scale 215

ambiguity” problem [36]. 216

• The regularizer in (P2), gdiv(D), promotes filter diversity, 217

i.e., incoherence between dk and {dk′ : k ′ �= k}, measured 218

by |〈dk, dk′ 〉|2 for k �= k′. 219

When R = K and β → ∞, the model (P2) becomes (P1) 220

since DH D = 1
R I implies DDH = 1

R I (for square matrices A 221

and B , if AB = I then B A = I ). Thus (P2) generalizes (P1) 222

by relaxing the off-diagonal elements of the equality constraint 223

in (P1). (In other words, when R = K , the orthogonality 224

constraint in (P1) enforces the TF condition and promotes the 225

filter diversity.) One price of this generalization is the extra 226

tuning parameter β. 227

(P1)–(P2) are challenging nonconvex optimization problems 228

and block optimization approaches seem suitable. The fol- 229

lowing section proposes a new block optimization method 230

with momentum and majorizers, to rapidly solve the multiple 231

block multi-nonconvex problems proposed in this paper, while 232

guaranteeing convergence to critical points. 233

IV. BPEG-M: SOLVING BLOCK MULTI-NONCONVEX 234

PROBLEMS WITH CONVERGENCE GUARANTEES 235

This section describes a new optimization approach, BPEG- 236

M, for solving block multi-nonconvex problems like a) CAOL 237

(P1)–(P2),1 b) CT MBIR (P3) using learned convolutional 238

regularizer via (P1) (see Section VI), and c) “hierarchical” 239

CAOL (A1) (see Appendix A). 240

A. BPEG-M – Setup 241

We treat the variables of the underlying optimization prob- 242

lem either as a single block or multiple disjoint blocks. 243

Specifically, consider the following block multi-nonconvex 244

optimization problem:
245

min F(x1, . . . , xB) := f (x1, . . . , xB) +
B∑

b=1

gb(xb), (3) 246

where variable x is decomposed into B blocks x1, . . . , xB 247

({xb ∈ Rnb : b = 1, . . . , B}), f is assumed to be continuously 248

differentiable, but functions {gb : b = 1, . . . , B} are not 249

necessarily differentiable. The function gb can incorporate the 250

1A block coordinate descent algorithm can be applied to CAOL (P1);
however, its convergence guarantee in solving CAOL (P1) is not yet known
and might require stronger sufficient conditions than BPEG-M [37].
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constraint xb ∈ Xb, by allowing any gb to be extended-valued,251

e.g., gb(xb) = ∞ if xb /∈ Xb, for b = 1, . . . , B . It is standard252

to assume that both f and {gb} are closed and proper and the253

sets {Xb} are closed and nonempty. We do not assume that f ,254

{gb}, or {Xb} are convex. Importantly, gb can be a nonconvex255

�p quasi-norm, p ∈ [0, 1). The general block multi-convex256

problem in [16], [38] is a special case of (3).257

The BPEG-M framework considers a more general concept258

than Lipschitz continuity of the gradient as follows:259

Definition 4.1 (M-Lipschitz continuity). A function g :260

Rn → Rn is M-Lipschitz continuous on Rn if there exist261

a (symmetric) positive definite matrix M such that262

‖g(x) − g(y)‖M−1 ≤ ‖x − y‖M , ∀x, y,263

where ‖x‖2
M := x T Mx.264

Lipschitz continuity is a special case of M-Lipschitz conti-265

nuity with M equal to a scaled identity matrix with a Lipschitz266

constant of the gradient ∇ f (e.g., for f (x) = 1
2‖Ax − b‖2

2,267

the (smallest) Lipschitz constant of ∇ f is the maximum eigen-268

value of AT A). If the gradient of a function is M-Lipschitz269

continuous, then we obtain the following quadratic majorizer270

(i.e., surrogate function [39], [40]) at a given point y without271

assuming convexity:272

Lemma 4.2 (Quadratic majorization (QM) via M-Lipschitz273

continuous gradients). Let f : Rn → R. If ∇ f is M-Lipschitz274

continuous, then275

f (x) ≤ f (y) + 〈∇ f (y), x − y〉 + 1

2
‖x − y‖2

M , ∀x, y ∈ R
n .276

Proof: See Section S.II of the supplementary material.277

Exploiting Definition 4.1 and Lemma 4.2, the proposed278

method, BPEG-M, is given as follows. To solve (3), we mini-279

mize a majorizer of F cyclically over each block x1, . . . , xB ,280

while fixing the remaining blocks at their previously updated281

variables. Let x (i+1)
b be the value of xb after its i th update,282

and define283

f (i+1)
b (xb) := f

(
x (i+1)

1 ,. . ., x (i+1)
b−1 , xb, x (i)

b+1,. . ., x (i)
B

)
, ∀b, i.284

At the bth block of the i th iteration, we apply Lemma 4.2285

to functional f (i+1)
b (xb) with a M(i+1)

b -Lipschitz continuous286

gradient, and minimize the majorized function.2 Specifically,287

BPEG-M uses the updates288

x (i+1)
b = argmin

xb

〈∇xb f (i+1)
b (x́ (i+1)

b ), xb − x́ (i+1)
b 〉289

+ 1

2

∥∥∥xb − x́ (i+1)
b

∥∥∥2

M̃(i+1)
b

+ gb(xb)290

= argmin
xb

1

2

∥∥∥∥xb−
(

x́ (i+1)
b −

(
M̃(i+1)

b

)−1
291

· ∇xb f (i+1)
b (x́ (i+1)

b )

)∥∥∥∥2

M̃(i+1)
b

+gb(xb)292

= Prox
M̃(i+1)

b
gb

(
x́ (i+1)

b −
(
M̃(i+1)

b

)−1∇xb f (i+1)
b (x́ (i+1)

b )︸ ︷︷ ︸
extrapolated gradient step using a majorizer of f (i+1)

b

)
,293

(4)294

2The quadratically majorized function allows a unique minimizer if
g(i+1)

b (xb) is convex and X (i+1)
b is a convex set (note that M(i+1)

b 
0).

Algorithm 1 BPEG-M

where 295

x́ (i+1)
b = x (i)

b + E (i+1)
b

(
x (i)

b − x (i−1)
b

)
, (5) 296

the proximal operator is defined by 297

ProxM
g (y) := argmin

x

1

2
‖x − y‖2

M + g(x), 298

∇ f (i+1)
b (x́ (i+1)

b ) is the block-partial gradient of f at x́ (i+1)
b , 299

an upper-bounded majorization matrix is updated by 300

M̃(i+1)
b = λb · M(i+1)

b 
 0, λb > 1, (6) 301

and M(i+1)
b ∈Rnb×nb is a symmetric positive definite majoriza- 302

tion matrix of ∇ f (i+1)
b . In (5), the Rnb×nb matrix E (i+1)

b � 0 303

is an extrapolation matrix that accelerates convergence in 304

solving block multi-convex problems [16]. We design it in 305

the following form: 306

E (i+1)
b = e(i)

b · δ(λb − 1)

2(λb + 1)
·
(

M(i+1)
b

)−1/2 (
M(i)

b

)1/2
, (7) 307

for some {0 ≤ e(i)
b ≤ 1 : ∀b, i } and δ < 1, to satisfy 308

condition (9) below. In general, choosing λb values in (6)–(7) 309

to accelerate convergence is application-specific. Algorithm 1 310

summarizes these updates. 311

The majorization matrices M(i)
b and M̃(i+1)

b in (6) influence 312

the convergence rate of BPEG-M. A tighter majorization 313

matrix (i.e., a matrix giving tighter bounds in the sense of 314

Lemma 4.2) provided faster convergence rate [41, Lem. 1], 315

[16, Fig. 2–3]. An interesting observation in Algorithm 1 is 316

that there exists a tradeoff between majorization sharpness 317

via (6) and extrapolation effect via (5) and (7). For example, 318

increasing λb (e.g., λb = 2) allows more extrapolation but 319

results in looser majorization; setting λb → 1 results in sharper 320

majorization but provides less extrapolation. 321

Remark 4.3. The proposed BPEG-M framework – with 322

key updates (4)–(5) – generalizes the BPG method [31], and 323

has several benefits over BPG [31] and BPEG-M introduced 324

earlier in [16]: 325

• The BPG setup in [31] is a particular case of 326

BPEG-M using a scaled identity majorization matrix 327

Mb with a Lipschitz constant of ∇ f (i+1)
b (x́ (i+1)

b ). The 328

BPEG-M framework can significantly accelerate conver- 329

gence by allowing sharp majorization; see [16, Fig. 2–3] 330

and Fig. 3. This generalization was first introduced for 331
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block multi-convex problems in [16], but the proposed332

BPEG-M in this paper addresses the more general prob-333

lem, block multi-(non)convex optimization.334

• BPEG-M is useful for controlling the tradeoff between335

majorization sharpness and extrapolation effect in differ-336

ent blocks, by allowing each block to use different λb337

values. If tight majorization matrices can be designed for338

a certain block b, then it could be reasonable to maintain339

the majorization sharpness by setting λb very close to 1.340

When setting λb = 1 + ε (e.g., ε is a machine epsilon)341

and using E (i+1)
b = 0 (no extrapolation), solutions of the342

original and its upper-bounded problem become (almost)343

identical. In such cases, it is unnecessary to solve the344

upper bounded problem (4), and the proposed BPEG-M345

framework allows using the solution of f (i+1)
b (xb) with-346

out QM; see Section V-B. This generalization was not347

considered in [31].348

• The condition for designing the extrapolation matrix (7),349

i.e., (9) in Assumption 3, is more general than that in350

[16, (9)] (e.g., (10)). Specifically, the matrices E (i+1)
b and351

M(i+1)
b in (7) need not be diagonalized by the same basis.352

The first two generalizations lead to the question, “Under353

the sharp QM regime (i.e., having tight bounds in Lemma 4.2),354

what is the best way in controlling {λb} in (6)–(7) in Algo-355

rithm 1?” Our experiments show that, if sufficiently sharp356

majorizers are obtained for partial or all blocks, then giving357

more weight to sharp majorization provides faster convergence358

compared to emphasizing extrapolation; for example, λb =359

1 + ε gives faster convergence than λb = 2.360

B. BPEG-M – Convergence Analysis361

This section analyzes the convergence of Algorithm 1 under362

the following assumptions.363

Assumption 1) F is proper and lower bounded in dom(F),364

f is continuously differentiable, gb is proper lower semi-365

continuous, ∀b.3 (3) has a critical point x̄ , i.e., 0 ∈ ∂ F(x̄),366

where ∂ F(x) denotes the limiting subdifferential of F at367

x (see [42, §1.9], [43, §8]).368

Assumption 2) The block-partial gradients of f , ∇ f (i+1)
b ,369

are M(i+1)
b -Lipschitz continuous, i.e.,370 ∥∥∥∇xb f (i+1)

b (u) − ∇xb f (i+1)
b (v)

∥∥∥(
M(i+1)

b

)−1371

≤ ‖u − v‖
M(i+1)

b
, (8)372

for u, v ∈ Rnb , and (unscaled) majorization matrices373

satisfy mb Inb � M(i+1)
b with 0 < mb < ∞, ∀b, i .374

Assumption 3) The extrapolation matrices E (i+1)
b � 0375

satisfy376 (
E (i+1)

b

)T
M(i+1)

b E (i+1)
b � δ2(λb − 1)2

4(λb + 1)2 · M(i)
b , (9)377

for any δ < 1, ∀b, i .378

Condition (9) in Assumption 3 generalizes that in [16,379

Assumption 3]. If eigenspaces of E (i+1)
b and M(i+1)

b coincide380

3 F : R
n → (−∞,+∞] is proper if domF �= ∅. F is lower bounded

in dom(F) := {x : F(x) < ∞} if inf x∈dom(F) F(x) > −∞. F is lower
semicontinuous at point x0 if lim inf x→x0 F(x) ≥ F(x0).

Fig. 3. Cost minimization comparisons in CAOL (P1) with different
BPG-type algorithms and datasets (R = K = 49 and α = 2.5 × 10−4;
solution (31) was used for sparse code updates; BPG (Xu & Ying ’17) [31]
used the maximum eigenvalue of Hessians for Lipschitz constants; the cross
mark x denotes a termination point). A sharper majorization leads to faster
convergence of BPEG-M; for all the training datasets considered in this
paper, the majorization matrix in Proposition 5.1 is sharper than those in
Lemmas 5.2–5.3.

(e.g., diagonal and circulant matrices), ∀i [16, Assumption 3], 381

(9) becomes 382

E (i+1)
b � δ(λb − 1)

2(λb + 1)
·
(

M(i)
b

)1/2 (
M(i+1)

b

)−1/2
, (10) 383

as similarly given in [16, (9)]. This generalization allows one 384

to consider arbitrary structures of M(i)
b across iterations. 385

Lemma 4.4 (Sequence bounds). Let {M̃b : b = 1, . . . , B} 386

and {Eb : b = 1, . . . , B} be as in (6)–(7), respectively. The 387

cost function decrease for the i th update satisfies: 388

Fb(x (i)
b ) − Fb(x (i+1)

b ) ≥ λb − 1

4

∥∥∥x (i)
b − x (i+1)

b

∥∥∥2

M(i+1)
b

389

− (λb − 1)δ2

4

∥∥∥x (i−1)
b −x (i)

b

∥∥∥2

M(i)
b

(11) 390

Proof: See Section S.III of the supplementary material. 391

Lemma 4.4 generalizes [31, Lem. 1] using {λb = 2}. Taking 392

the majorization matrices in (11) to be scaled identities with 393

Lipschitz constants, i.e., M(i+1)
b = L(i+1)

b · I and M(i)
b = L(i)

b · I , 394

where L(i+1)
b and L(i)

b are Lipschitz constants, the bound (11) 395

becomes equivalent to that in [31, (13)]. Note that BPEG-M 396

for block multi-convex problems in [16] can be viewed within 397

BPEG-M in Algorithm 1, by similar reasons in [31, Rem. 2] – 398

bound (11) holds for the block multi-convex problems by 399

taking E (i+1)
b in (10) as E (i+1)

b � δ · (M(i)
b )1/2(M(i+1)

b )−1/2 in 400

[16, Prop. 3.2]. 401



6 IEEE TRANSACTIONS ON IMAGE PROCESSING

Proposition 4.5 (Square summability). Let {x (i+1) : i ≥ 0}402

be generated by Algorithm 1. We have403

∞∑
i=0

∥∥∥x (i) − x (i+1)
∥∥∥2

2
< ∞. (12)404

Proof: See Section S.IV of the supplementary material.405

Proposition 4.5 implies that406 ∥∥∥x (i) − x (i+1)
∥∥∥2

2
→ 0, (13)407

and (13) is used to prove the following theorem:408

Theorem 4.6 (A limit point is a critical point). Under409

Assumptions 1–3, let {x (i+1) : i ≥ 0} be generated by410

Algorithm 1. Then any limit point x̄ of {x (i+1) : i ≥ 0} is411

a critical point of (3). If the subsequence {x (i j +1)} converges412

to x̄ , then413

lim
j→∞ F(x (i j +1)) = F(x̄).414

Proof: See Section S.V of the supplementary material.415

Finite limit points exist if the generated sequence {x (i+1) :416

i ≥ 0} is bounded; see, for example, [44, Lem. 3.2–3.3]. For417

some applications, the boundedness of {x (i+1) : i ≥ 0} can418

be satisfied by choosing appropriate regularization parameters,419

e.g., [16].420

C. Restarting BPEG-M421

BPEG-type methods [16], [31], [38] can be further accel-422

erated by applying 1) a momentum coefficient formula423

similar to those used in fast proximal gradient (FPG)424

methods [45]–[47], and/or 2) an adaptive momentum restart-425

ing scheme [48], [49]; see [16]. This section applies426

these two techniques to further accelerate BPEG-M in427

Algorithm 1.428

First, we apply the following increasing momentum-429

coefficient formula to (7) [45]:430

e(i+1)
b = θ(i) − 1

θ(i+1)
, θ (i+1) = 1 +√

1 + 4(θ(i))2

2
. (14)431

This choice guarantees fast convergence of FPG method [45].432

Second, we apply a momentum restarting scheme [48], [49],433

when the following gradient-mapping criterion is met [16]:434

cos
(
�
(

M(i+1)
b

(
x́ (i+1)

b − x (i+1)
b

)
, x (i+1)

b − x (i)
b

))
> ω, (15)435

where the angle between two nonzero real vectors ϑ and436

ϑ ′ is �(ϑ, ϑ ′) := 〈ϑ, ϑ ′〉/(‖ϑ‖2

∥∥ϑ ′∥∥
2) and ω ∈ [−1, 0].437

This scheme restarts the algorithm whenever the momentum,438

i.e., x (i+1)
b − x (i)

b , is likely to lead the algorithm in an439

unhelpful direction, as measured by the gradient mapping440

at the x (i+1)
b -update. We refer to BPEG-M combined with441

the methods (14)–(15) as restarting BPEG-M (reBPEG-M).442

Section S.VI in the supplementary material summarizes the443

updates of reBPEG-M.444

To solve the block multi-nonconvex problems proposed in445

this paper (e.g., (P1)–(P3)), we apply reBPEG-M (a variant of446

Algorithm 1; see Algorithm S.1), promoting fast convergence447

to a critical point.448

V. FAST AND CONVERGENT CAOL VIA BPEG-M 449

This section applies the general BPEG-M approach to 450

CAOL. The CAOL models (P1) and (P2) satisfy the assump- 451

tions of BPEG-M; see Assumption 1–3 in Section IV-B. 452

CAOL models (P1) and (P2) readily satisfy Assump- 453

tion 1 of BPEG-M. To show the continuously differentia- 454

bility of f and the lower boundedness of F , consider that 455

1)
∑

l
∑

k
1
2

∥∥dk � xl − zl,k
∥∥2

2 in (P0) is continuously dif- 456

ferentiable with respect to D and {zl,k}; 2) the sequences 457

{D(i+1)} are bounded, because they are in the compact set 458

D(P1) = {D : DDH = 1
R I } and D(P2) = {dk : ‖dk‖2

2 = 1
R ,∀k} 459

in (P1) and (P2), respectively; and 3) the positive thresholding 460

parameter α ensures that the sequence {z(i+1)
l,k } is bounded 461

(otherwise the cost would diverge). In addition, for both (P1) 462

and (P2), the lower semicontinuity of regularizer gb holds, 463

∀b. For D-optimization, the indicator function of the sets 464

D(P1) and D(P2) is lower semicontinuous, because the sets are 465

compact. For {zl,k}-optimization, the �0-quasi-norm is a lower 466

semicontinuous function. Assumptions 2 and 3 are satisfied 467

with the majorization matrix designs in this section – see 468

Sections V-A–V-B later – and the extrapolation matrix design 469

in (7), respectively. 470

Since CAOL models (P1) and (P2) satisfy the BPEG-M 471

conditions, we solve (P1) and (P2) by the reBPEG-M method 472

with a two-block scheme, i.e., we alternatively update all 473

filters D and all sparse codes {zl,k : l = 1, . . . , L, k = 474

1, . . . , K }. Sections V-A and V-B describe details of D-block 475

and {zl,k}-block optimization within the BPEG-M framework, 476

respectively. The BPEG-M-based CAOL algorithm is par- 477

ticularly useful for learning convolutional regularizers from 478

large datasets because of its memory flexibility and parallel 479

computing applicability, as described in Section V-C and 480

Sections V-A–V-B, respectively. 481

A. Filter Update: D-Block Optimization 482

We first investigate the structure of the system matrix in 483

the filter update for (P0). This is useful for 1) accelerat- 484

ing majorization matrix computation in filter updates (e.g., 485

Lemmas 5.2–5.3) and 2) applying R×N-sized adjoint operators 486

(e.g., � H
l in (17) below) to an N-sized vector without needing 487

the Fourier approach [16, Sec. V-A] that uses commutativity 488

of convolution and Parseval’s relation. Given the current 489

estimates of {zl,k : l = 1, . . . , L, k = 1, . . . , K }, the filter 490

update problem of (P0) is equivalent to 491

argmin
{dk}

1

2

K∑
k=1

L∑
l=1

∥∥�ldk − zl,k
∥∥2

2 + βg(D), (16) 492

where D is defined in (1), �l ∈ CN×R is defined by 493

�l := [
PB1 x̂l . . . PBR x̂l

]
, (17) 494

PBr ∈ CN×N̂ is the r th (rectangular) selection matrix that 495

selects N rows corresponding to the indices Br = {r, . . . , r + 496

N − 1} from IN̂ , {x̂l ∈ CN̂ : l = 1, . . . , L} is a set 497

of padded training data, N̂ = N + R − 1. Note that 498

applying � H
l in (17) to a vector of size N is analogous 499

to calculating cross-correlation between x̂l and the vector, 500

i.e., (� H
l ẑl,k)r = ∑N

n=1 x̂∗
n+r−1(ẑl,k)n , r = 1, . . . , R. In 501

general, ˆ(·) denotes a padded signal vector. 502
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TABLE I

COMPUTATIONAL COMPLEXITY OF DIFFERENT MAJORIZATION MATRIX
DESIGNS FOR THE FILTER UPDATE PROBLEM (16)

1) Majorizer Design: This subsection designs multiple503

majorizers for the D-block optimization and compares their504

required computational complexity and tightness. The next505

proposition considers the structure of �l in (17) to obtain506

the Hessian
∑L

l=1 � H
l �l ∈ CR×R in (16) for an arbitrary507

boundary condition.508

Proposition 5.1 (Exact Hessian Matrix MD). The follow-509

ing matrix MD ∈ CR×R is identical to
∑L

l=1 � H
l �l :510

[MD]r,r ′ =
L∑

l=1

〈PBr x̂l, PBr′ x̂l〉, r, r ′ = 1, . . . , R. (18)511

512

A sufficiently large number of training signals (with513

N ≥ R), L, can guarantee MD = ∑L
l=1 � H

l �l 
 0 in514

Proposition 5.1. The drawback of using Proposition 5.1 is its515

polynomial computational complexity, i.e., O(L R2 N) – see516

Table I. When L (the number of training signals) or N (the517

size of training signals) are large, the quadratic complexity518

with the size of filters – R2 – can quickly increase the519

total computational costs when multiplied by L and N . (The520

BPG setup in [31] additionally requires O(R3) because it521

uses the eigendecomposition of (18) to calculate the Lipschitz522

constant.)523

Considering CAOL problems (P0) themselves, differ-524

ent from CDL [13]–[17], the complexity O(L R2 N) in525

applying Proposition 5.1 is reasonable. In BPEG-M-based526

CDL [16], [17], a majorization matrix for kernel update527

is calculated every iteration because it depends on updated528

sparse codes; however, in CAOL, one can precompute MD via529

Proposition 5.1 (or Lemmas 5.2–5.3 below) without needing530

to change it every kernel update. The polynomial computa-531

tional cost in applying Proposition 5.1 becomes problematic532

only when the training signals change. Examples include 1)533

hierarchical CAOL, e.g., CNN in Appendix A, 2) “adaptive-534

filter MBIR” particularly with high-dimensional signals [2],535

[6], [50], and 3) online learning [51], [52]. Therefore, we also536

describe a more efficiently computable majorization matrix537

at the cost of looser bounds (i.e., slower convergence; see538

Fig 3). Applying Lemma S.1, we first introduce a diagonal539

majorization matrix MD for the Hessian
∑

l � H
l �l in (16):540

Lemma 5.2 (Diagonal majorization matrix MD). The541

following matrix MD ∈ CR×R satisfies MD � ∑L
l=1 � H

l �l :542

MD = diag

(
L∑

l=1

|� H
l ||�l |1R

)
, (19)543

where |·| takes the absolute values of the elements of a matrix.544

The majorization matrix design in Lemma 5.2 is more545

efficient to compute than that in Proposition 5.1, because546

no R2-factor is needed for calculating MD in Lemma 5.2,547

i.e., O(L RN); see Table I. Designing MD in Lemma 5.2548

takes fewer calculations than [16, Lem. 5.1] using Fourier 549

approaches, when R < log(N̂ ). Using Lemma S.2, we next 550

design a potentially sharper majorization matrix than (19), 551

while maintaining the cost O(L RN): 552

Lemma 5.3 (Scaled identity majorization matrix MD ). The 553

following matrix MD ∈ CR×R satisfies MD �
∑L

l=1 � H
l �l : 554

MD =
R∑

r=1

∣∣∣∣∣
L∑

l=1

〈PB1 x̂l , PBr x̂l〉
∣∣∣∣∣ · IR, (20) 555

for a circular boundary condition. 556

Proof: See Section S.VII of the supplementary material. 557

For all the training datasets used in this paper, we observed 558

that the tightness of majorization matrices in Proposition 5.1 559

and Lemmas 5.2–5.3 for the Hessian
∑

l � H
l �l is 560

given by 561

L∑
l=1

� H
l �l = (18) � (20) � (19). (21) 562

(Note that (18)� (19) always holds regardless of training 563

data.) Fig. 3 illustrates the effects of the majorizer sharp- 564

ness in (21) on CAOL convergence rates. As described in 565

Section IV-A, selecting λD (see (22) and (26) below) controls 566

the tradeoff between majorization sharpness and extrapolation 567

effect. We found that using fixed λD = 1 + ε gives faster 568

convergence than λD = 2; see Fig. 4 (this behavior is more 569

obvious in solving the CT MBIR model in (P3) via BPEG-M 570

– see [32, Fig. 3]). The results in Fig. 4 and [32, Fig. 3] show 571

that, under the sharp majorization regime, maintaining sharper 572

majorization is more critical in accelerating the convergence 573

of BPEG-M than giving more weight to extrapolation. 574

Sections V-A2 and V-A3 below apply the majorization 575

matrices designed in this section to proximal mappings of 576

D-optimization in (P1) and (P2), respectively. 577

2) Proximal Mapping With Orthogonality Constraint: The 578

corresponding proximal mapping problem of (16) using the 579

orthogonality constraint in (P1) is given by 580

{d(i+1)
k } = argmin

{dk}

K∑
k=1

1

2

∥∥∥dk − ν
(i+1)
k

∥∥∥2

M̃D
, 581

subject to DDH = 1

R
· I, (22) 582

where 583

ν
(i+1)
k = d́(i+1)

k − M̃−1
D

∑L
l=1 � H

l

(
�l d́

(i+1)
k − zl,k

)
, (23) 584

d́(i+1)
k = d(i)

k + E (i+1)
D

(
d(i)

k − d(i−1)
k

)
, (24) 585

for k = 1, . . . , K , and M̃D = λD MD by (6). One can 586

parallelize over k = 1, . . . , K in computing {ν(i+1)
k } in (23). 587

The proposition below provides an optimal solution to (22): 588

Proposition 5.4. Consider the following constrained mini- 589

mization problem: 590

min
D

∥∥∥M̃1/2
D D − M̃1/2

D V
∥∥∥2

F
, subj. to DDH = 1

R
· I, (25) 591

where D is given as (1), V = [ν(i+1)
1 · · · ν(i+1)

K ] ∈ CR×K , 592

M̃D = λD MD, and MD ∈ RR×R is given by (18), (19), 593



8 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 4. Cost minimization comparisons in CAOL (P1) with different BPEG-M
algorithms and datasets (Lemma 5.2 was used for MD ; R = K = 49;
deterministic filter initialization and random sparse code initialization). Under
the sharp majorization regime, maintaining sharp majorization (i.e., λD =
1 + ε) provides faster convergence than giving more weight on extrapolation
(i.e., λD =2). (The same behavior was found in sparse-view CT application
[32, Fig. 3].) There exist no differences in convergence between solution (31)
and solution (33) using {λZ =1 + ε}.
or (20). The optimal solution to (25) is given by594

D� = 1√
R

· U
[

IR, 0R×(K−R)

]
V H , for R ≤ K ,595

where M̃DV has (full) singular value decomposition, M̃DV =596

U�V H .597

Proof: See Section S.VIII of the supplementary material.598

When using Proposition 5.1, M̃Dν
(i+1)
k of M̃DV in Propo-599

sition 5.4 simplifies to the following update:600

M̃Dν
(i+1)
k = (λD − 1) MDd́(i+1)

k +
L∑

l=1

� H
l zl,k .601

Similar to obtaining {ν(i+1)
k } in (23), computing {M̃Dν

(i+1)
k :602

k = 1, . . . , K } is parallelizable over k.603

3) Proximal Mapping With Diversity Promoting Regular-604

izer: The corresponding proximal mapping problem of (16)605

using the norm constraint and diversity promoting regularizer606

in (P2) is given by607

{d(i+1)
k } = argmin

{dk}

K∑
k=1

1

2

∥∥∥dk − ν
(i+1)
k

∥∥∥2

M̃D
+ β

2
gdiv(D),608

subject to ‖dk‖2
2 = 1

R
, k = 1, . . . , K , (26)609

where gdiv(D), ν
(i+1)
k , and d́(i+1)

k are given as in (P2), (23),610

and (24), respectively. We first decompose the regularization611

term gdiv(D) as follows: 612

gdiv(D) =
K∑

k=1

K∑
k′=1

(
d H

k dk′d H
k′ dk − R−1)

613

=
K∑

k=1

d H
k

(∑
k′ �=k

dk′d H
k′

)
dk + (

d H
k dk − R−1)2

614

=
K∑

k=1

d H
k �kdk, (27) 615

where the equality in (27) holds by using the constraint in (26), 616

and the Hermitian matrix �k ∈ CR×R is defined by 617

�k :=
∑
k′ �=k

dk′d H
k′ . (28) 618

Using (27) and (28), we rewrite (26) as 619

d(i+1)
k = argmin

dk

1

2

∥∥∥dk − ν
(i)
k

∥∥∥2

M̃D
+ β

2
d H

k �kdk, 620

subject to ‖dk‖2
2 = 1

R
, k = 1, . . . , K . (29) 621

This is a quadratically constrained quadratic program with 622

{M̃D + β�k 
 0 : k = 1, . . . , K }. We apply an accel- 623

erated Newton’s method to solve (29); see Section S.IX. 624

Similar to solving (22) in Section V-A2, solving (26) is a 625

small-dimensional problem (K separate problems of size R). 626

B. Sparse Code Update: {zl,k}-Block Optimization 627

Given the current estimate of D, the sparse code update 628

problem for (P0) is given by 629

argmin
{zl,k }

L∑
l=1

K∑
k=1

1

2

∥∥dk � xl − zl,k
∥∥2

2 + α
∥∥zl,k

∥∥
0 . (30) 630

This problem separates readily, allowing parallel computation 631

with L K threads. An optimal solution to (30) is efficiently 632

obtained by the well-known hard thresholding: 633

z(i+1)
l,k = H√

2α (dk � xl) , (31) 634

for k = 1, . . . , K and l = 1, . . . , L, where 635

Ha(x)n :=
{

0, |xn| < an,

xn, |xn| ≥ an.
(32) 636

for all n. Considering λZ (in M̃Z = λZ MZ ) as λZ → 1, 637

the solution obtained by the BPEG-M approach becomes 638

equivalent to (31). To show this, observe first that the 639

BPEG-M-based solution (using MZ = IN ) to (30) is 640

obtained by 641

z(i+1)
l,k = H√ 2α

λZ

(
ζ

(i+1)
l,k

)
, 642

ζ
(i+1)
l,k =

(
1 − λ−1

Z

)
· ź(i+1)

l,k + λ−1
Z · dk � xl, 643

ź(i+1)
l,k = z(i)

l,k + E (i+1)
Z

(
z(i)

l,k − z(i−1)
l,k

)
. (33) 644

The downside of applying solution (33) is that it would 645

require additional memory to store the corresponding 646

extrapolated points – {ź(i+1)
l,k } – and the memory grows 647

with N , L, and K . Considering the sharpness of the 648
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TABLE II

COMPARISONS OF COMPUTATIONAL COMPLEXITY AND MEMORY USAGES
BETWEEN CAOL AND PATCH-DOMAIN APPROACH

majorizer in (30), i.e., MZ = IN , and the memory issue, it is649

reasonable to consider the solution (33) with no extrapolation,650

i.e., {E (i+1)
Z = 0}:651

z(i+1)
l,k = H√ 2α

λZ

(
(λZ − 1)−1λZ · z(i)

l,k + λ−1
Z · dk � xl

)
652

becoming equivalent to (31) as λZ →1.653

Solution (31) has two benefits over (33): compared to (33),654

(31) requires only half the memory to update all z(i+1)
l,k vectors655

and no additional computations related to ź(i+1)
l,k . While having656

these benefits, empirically (31) has equivalent convergence657

rates as (33) using {λZ = 1 + ε}; see Fig. 4. Throughout the658

paper, we solve the sparse coding problems (e.g., (30) and659

{zk}-block optimization in (P3)) via optimal solutions in the660

form of (31).661

C. Lower Memory Use Than Patch-Domain Approaches662

The convolution perspective in CAOL (P0) requires much663

less memory than conventional patch-domain approaches;664

thus, it is more suitable for learning filters from large datasets665

or applying the learned filters to high-dimensional MBIR666

problems. First, consider the training stage (e.g., (P0)). The667

patch-domain approaches, e.g., [1], [6], [7], require about R668

times more memory to store training signals. For example, 2D669

patches extracted by
√

R×√
R-sized windows (with “stride”670

one and periodic boundaries [6], [12], as used in convolution)671

require about R (e.g., R = 64 [1], [7]) times more memory672

than storing the original image of size
√

N × √
N . For L673

training images, their memory usage dramatically increases674

with a factor L RN . This becomes even more problematic in675

forming hierarchical representations, e.g., CNNs – see Appen-676

dix A. Unlike the patch-domain approaches, the memory use677

of CAOL (P0) only depends on the L N-factor to store training678

signals. As a result, the BPEG-M algorithm for CAOL (P1)679

requires about two times less memory than the patch-domain680

approach [6] (using BPEG-M). See Table II-B. (Both the681

corresponding BPEG-M algorithms use identical computations682

per iteration that scale with L R2 N ; see Table II-A.)683

Second, consider solving MBIR problems. Different from684

the training stage, the memory burden depends on how685

one applies the learned filters. In [53], the learned filters686

are applied with the conventional convolutional operators 687

– e.g., � in (P0) – and, thus, there exists no additional 688

memory burden. However, in [2], [54], [55], the
√

R ×√
R- 689

sized learned kernels are applied with a matrix constructed 690

by many overlapping patches extracted from the updated 691

image at each iteration. In adaptive-filter MBIR problems 692

[2], [6], [8], the memory issue pervades the patch-domain 693

approaches. 694

VI. SPARSE-VIEW CT MBIR USING CONVOLUTIONAL 695

REGULARIZER LEARNED VIA CAOL, AND BPEG-M 696

This section introduces a specific example of applying the 697

learned convolutional regularizer, i.e., F(D�, {zl,k}) in (P0), 698

from a representative dataset to recover images in extreme 699

imaging that collects highly undersampled or noisy mea- 700

surements. We choose a sparse-view CT application since 701

it has interesting challenges in reconstructing images that 702

include Poisson noise in measurements, nonuniform noise or 703

resolution properties in reconstructed images, and complicated 704

(or no) structures in the system matrices. For CT, undersam- 705

pling schemes can significantly reduce the radiation dose and 706

cancer risk from CT scanning. The proposed approach can be 707

applied to other applications (by replacing the data fidelity and 708

spatial strength regularization terms in (P3) below). 709

We pre-learn TF filters {d�
k ∈ RK : k = 1, . . . , K } via 710

CAOL (P1) with a set of high-quality (e.g., normal-dose) CT 711

images {xl : l = 1, . . . , L}. To reconstruct a linear attenuation 712

coefficient image x ∈ RN ′
from post-log measurement y ∈ 713

Rm [54], [56], we apply the learned convolutional regularizer 714

to CT MBIR and solve the following block multi-nonconvex 715

problem [32], [35]: 716

argmin
x≥0

1

2
‖y−Ax‖2

W︸ ︷︷ ︸
data fidelity f (x; y)

717

+ γ · min{zk }

K∑
k=1

1

2

∥∥d�
k � x − zk

∥∥2
2 + α′

N ′∑
n=1

ψ j φ((zk)n)︸ ︷︷ ︸
learned convolutional regularizer g(x, {zk}; {dk})

.

(P3)

718

Here, A ∈ R
m×N ′

is a CT system matrix, W ∈ R
m×m is 719

a (diagonal) weighting matrix with elements {Wl,l = ρ2
l /(ρl + 720

σ 2) : l = 1, . . . , m} based on a Poisson-Gaussian model for 721

the pre-log measurements ρ ∈ Rm with electronic readout 722

noise variance σ 2 [54]–[56], ψ ∈ RN ′
is a pre-tuned spatial 723

strength regularization vector [57] with non-negative elements 724

{ψn = (
∑m

l=1 A2
l,n Wl,l )

1/2/(
∑m

l=1 A2
l,n)

1/2 : n = 1, . . . , N ′}4
725

that promotes uniform resolution or noise properties in the 726

reconstructed image [54, Appx.], an indicator function φ(a) is 727

equal to 0 if a = 0, and is 1 otherwise, zk ∈ RN ′
is unknown 728

sparse code for the kth filter, and α′ > 0 is a thresholding 729

parameter. 730

We solved (P3) via reBPEG-M in Section IV with a 731

two-block scheme [32], and summarize the corresponding 732

4See details of computing {A2
l, j : ∀l, j} in [32].
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BPEG-M updates as733

x (i+1) =
[(

M̃A + γ IR
)−1 ·

(
M̃Aη(i+1)

734

+ γ

K∑
k=1

(P f d�
k ) � H√

2α′ψ
(
d�

k � x (i)))]
≥0

, (34)735

where736

η(i+1) = x́ (i+1) − M̃−1
A AT W

(
Ax́ (i+1) − y

)
,737

x́ (i+1) = x (i) + E (i+1)
A

(
x (i) − x (i−1)

)
, (35)738

M̃A = λA MA by (6), a diagonal majorization matrix MA �739

AT W A is designed by Lemma S.1, and Pf ∈ CR×R flips a740

column vector in the vertical direction (e.g., it rotates 2D filters741

by 180◦). Interpreting the update (34) leads to the following742

two remarks:743

Remark 6.1. When the convolutional regularizer learned744

via CAOL (P1) is applied to MBIR, it works as an autoen-745

coding CNN:746

M(x) =
K∑

k=1

(P f d�
k ) � H√

2α′
k

(
d�

k � x
)

(36)747

(setting ψ = 1N ′ and generalizing α′ to {α′
k : k = 1, . . . , K }748

in (P3)). This is an explicit mathematical motivation for749

constructing architectures of iterative regression CNNs for750

MBIR, e.g., BCD-Net [28], [58]–[60] and Momentum-Net751

[29], [30]. Particularly when the learned filters {d�
k } in (36)752

satisfy the TF condition, they are useful for compacting energy753

of an input signal x and removing unwanted features via the754

non-linear thresholding in (36).755

Remark 6.2. Update (34) improves the solution x (i+1)
756

by weighting between a) the extrapolated point considering757

the data fidelity, i.e., η(i+1) in (35), and b) the “refined”758

update via the (ψ-weighting) convolutional autoencoder,759

i.e.,
∑

k(Pf d�
k ) � H√

2α′ψ(d�
k � x (i)).760

VII. RESULTS AND DISCUSSION761

A. Experimental Setup762

This section examines the performance (e.g., scalability,763

convergence, and acceleration) and behaviors (e.g., effects of764

model parameters on filters structures and effects of dimen-765

sions of learned filter on MBIR performance) of the proposed766

CAOL algorithms and models, respectively.767

1) CAOL: We tested the introduced CAOL768

models/algorithms for four datasets: 1) the fruit dataset769

with L = 10 and N = 100×100 [10]; 2) the city dataset with770

L = 10 and N = 100×100 [14]; 3) the CT dataset of L = 80771

and N = 128 × 128, created by dividing down-sampled772

512 × 512 XCAT phantom slices [61] into 16 sub-images773

[13], [62] – referred to the CT-(i) dataset; 4) the CT dataset774

of with L = 10 and N = 512 × 512 from down-sampled775

512×512 XCAT phantom slices [61] – referred to the CT-(ii)776

dataset. The preprocessing includes intensity rescaling to777

[0, 1] [10], [13], [14] and/or (global) mean substraction778

[1], [63, §2], as conventionally used in many sparse coding779

studies, e.g., [1], [10], [13], [14], [63]. For the fruit and780

city datasets, we trained K = 49 filters of size R = 7×7.781

For the CT dataset (i), we trained filters of size R = 5×5, 782

with K = 25 or K = 20. For CT reconstruction experiments, 783

we learned the filters from the CT-(ii) dataset; however, 784

we did not apply mean subtraction because it is not modeled 785

in (P3). 786

The parameters for the BPEG-M algorithms were defined 787

as follows.5 We set the regularization parameters α, β as 788

follows: 789

• CAOL (P1): To investigate the effects of α, we tested 790

(P1) with different α’s in the case R = K . For the fruit 791

and city datasets, we used α = 2.5×{10−5, 10−4}; for 792

the CT-(i) dataset, we used α = {10−4, 2×10−3}. For the 793

CT-(ii) dataset (for CT reconstruction experiments), see 794

details in [32, Sec. V1]. 795

• CAOL (P2): Once α is fixed from the CAOL (P1) 796

experiments above, we tested (P2) with different β’s to 797

see its effects in the case R > K . For the CT-(i) dataset, 798

we fixed α = 10−4, and used β = {5×106, 5×104}. 799

We set λD = 1 + ε as the default. We initialized filters in 800

either deterministic or random ways. The deterministic filter 801

initialization follows that in [6, Sec. 3.4]. When filters were 802

randomly initialized, we used a scaled one-vector for the first 803

filter. We initialize sparse codes mainly with a deterministic 804

way that applies (31) based on {d(0)
k }. If not specified, we used 805

the random filter and deterministic sparse code initializations. 806

For BPG [31], we used the maximum eigenvalue of Hessians 807

for Lipschitz constants in (16), and applied the gradient-based 808

restarting scheme in Section IV-C. We terminated the iterations 809

if the relative error stopping criterion (e.g., [16, (44)]) is met 810

before reaching the maximum number of iterations. We set 811

the tolerance value as 10−13 for the CAOL algorithms using 812

Proposition 5.1, and 10−5 for those using Lemmas 5.2–5.3, 813

and the maximum number of iterations to 2×104. 814

The CAOL experiments used the convolutional operator 815

learning toolbox [64]. 816

2) Sparse-View CT MBIR With Learned Convolutional Reg- 817

ularizer via CAOL: We simulated sparse-view sinograms of 818

size 888×123 (‘detectors or rays’ × ‘regularly spaced projec- 819

tion views or angles’, where 984 is the number of full views) 820

with GE LightSpeed fan-beam geometry corresponding to a 821

monoenergetic source with 105 incident photons per ray and 822

no background events, and electronic noise variance σ 2 =52. 823

We avoided an inverse crime in our imaging simulation and 824

reconstructed images with a coarser grid with �x = �y = 825

0.9766 mm; see details in [32, Sec. V-A2]. 826

For EP MBIR, we finely tuned its regularization parameter 827

to achieve both good root mean square error (RMSE) and 828

structural similarity index measurement [65] values. For the 829

CT MBIR model (P3), we chose the model parameters {γ, α′} 830

that showed a good tradeoff between the data fidelity term 831

and the learned convolutional regularizer, and set λA =1 + ε. 832

We evaluated the reconstruction quality by the RMSE (in a 833

modified Hounsfield unit, HU, where air is 0 HU and water 834

is 1000 HU) in a region of interest. See further details 835

in [32, Sec. V-A2] and Fig. 6. 836

5The remaining BPEG-M parameters not described here are identical to
those in [16, VII-A2].
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The imaging simulation and reconstruction experiments837

used the Michigan image reconstruction toolbox [66].838

B. CAOL With BPEG-M839

Under the sharp majorization regime (i.e., partial or all840

blocks have sufficiently tight bounds in Lemma 4.2), the pro-841

posed convergence-guaranteed BPEG-M can achieve sig-842

nificantly faster CAOL convergence rates compared with843

the state-of-the-art BPG algorithm [31] for solving block844

multi-nonconvex problems, by several generalizations of BPG845

(see Remark 4.3) and two majorization designs (see Propo-846

sition 5.1 and Lemma 5.3). See Fig. 3. In controlling the847

tradeoff between majorization sharpness and extrapolation848

effect of BPEG-M (i.e., choosing {λb} in (6)–(7)), maintaining849

majorization sharpness is more critical than gaining stronger850

extrapolation effects to accelerate convergence under the sharp851

majorization regime. See Fig. 4.852

While using about two times less memory (see Table II),853

CAOL (P0) learns TF filters corresponding to those given by854

the patch-domain TF learning in [6, Fig. 2]. See Section V-C855

and Fig. S.1 with deterministic {d(0)
k }. Note that BPEG-856

M-based CAOL (P0) requires even less memory than857

BPEG-M-based CDL in [16], by using exact sparse coding858

solutions (e.g., (31) and (34)) without saving their extrapolated859

points. In particular, when tested with the large CT dataset of860

{L =40, N =512×512}, the BPEG-M-based CAOL algorithm861

ran fine, while BPEG-M-based CDL [16] and patch-domain862

AOL [6] were terminated due to exceeding available863

memory.6 In addition, the CAOL models (P1) and (P2)864

are easily parallelizable with K threads. Combining these865

results, the BPEG-M-based CAOL is a reasonable choice866

for learning filters from large training datasets. Finally, [34]867

shows theoretically how using many samples can improve868

CAOL, accentuating the benefits of the low memory usage869

of CAOL.870

The effects of parameters for the CAOL models are shown871

as follows. In CAOL (P1), as the thresholding parameter α872

increases, the learned filters have more elongated structures;873

see Figs. 5(a) and S.2. In CAOL (P2), when α is fixed, increas-874

ing the filter diversity promoting regularizer β successfully875

lowers coherences between filters (e.g., gdiv(D) in (P2)); see876

Fig. 5(b).877

In adaptive MBIR (e.g., [2], [6], [8]), one may apply adap-878

tive image denoising [53], [67]–[71] to optimize thresholding879

parameters. However, if CAOL (P0) and testing the learned880

convolutional regularizer to MBIR (e.g., (P3)) are separated,881

selecting “optimal” thresholding parameters in (unsupervised)882

CAOL is challenging – similar to existing dictionary or883

analysis operator learning methods. Our strategy to select the884

thresholding parameter α in CAOL (P1) (with R = K ) is885

given as follows. We first apply the first-order finite difference886

filters {dk : ‖dk‖2
2 = 1/R,∀k} (e.g., 1√

2R
[1,−1]T in 1D) to all887

training signals and find their sparse representations, and then888

find αest that corresponds to the largest 95(±1)% of non-zero889

elements of the sparsified training signals. This procedure890

6Their double-precision MATLAB implementations were tested on 3.3 GHz
Intel Core i5 CPU with 32 GB RAM.

Fig. 5. Examples of learned filters with different CAOL models and
parameters (Proposition 5.1 was used for MD ; the CT-(i) dataset with a
symmetric boundary condition).

defines the range [ 1
10αest, αest] to select desirable α� and its 891

corresponding filter D�. We next ran CAOL (P1) with multiple 892

α values within this range. Selecting {α�, D�} depends on 893

application. For CT MBIR, D� that both has (short) first-order 894

finite difference filters and captures diverse (particularly diag- 895

onal) features of training signals, gave good RMSE values and 896

well preserved edges; see Fig. S.2(c) and [32, Fig. 2]. 897

C. Sparse-View CT MBIR With Learned Convolutional 898

Sparsifying Regularizer (via CAOL) and BPEG-M 899

In sparse-view CT using only 12.5% of the full projec- 900

tions views, the CT MBIR (P3) using the learned convo- 901

lutional regularizer via CAOL (P1) outperforms EP MBIR; 902

it reduces RMSE by approximately 5.6–6.1HU. See the 903

results in Figs. 6(c)–(e). The model (P3) can better recover 904

high-contrast regions (e.g., bones) – see red arrows and 905

magnified areas in Fig. 6(c)–(e). Nonetheless, the filters with 906

R = K = 52 in the (ψ-weighting) autoencoding CNN, 907

i.e.,
∑

k(Pf d�
k ) �H√

2α′ψ(d�
k � (·)) in (36), can blur edges in 908

low-contrast regions (e.g., soft tissues) while removing noise. 909

See Fig. 6(d) – the blurry issues were similarly observed 910

in [54], [55]. The larger dimensional kernels (i.e., R = 911

K = 72) in the convolutional autoencoder can moderate 912

this issue, while further reducing RMSE values; compare the 913

results in Fig. 6(d)–(e). In particular, the larger dimensional 914

convolutional kernels capture more diverse features – see 915

[32, Fig. 2]) – and the diverse features captured in kernels 916

are useful to further improve the performance of the pro- 917

posed MBIR model (P3). (The importance of diverse features 918

in kernels was similarly observed in CT experiments with 919

the learned autoencoders having a fixed kernel dimension; 920

see Fig. S.2(c).) The RMSE reduction over EP MBIR is 921

comparable to that of CT MBIR (P3) using the {R, K = 82}- 922

dimensional filters trained via the patch-domain AOL [7]; 923

however, at each BPEG-M iteration, this MBIR model using 924

the trained (non-TF) filters via patch-domain AOL [7] requires 925

more computations than the proposed CT MBIR model (P3) 926
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Fig. 6. Comparisons of reconstructed images from different reconstruction methods for sparse-view CT (123 views (12.5% sampling); for the MBIR model
(P3), convolutional regularizers were trained by CAOL (P1) – see [32, Fig. 2]; display window is within [800, 1200] HU) [32]. The MBIR model (P3) using
convolutional sparsifying regularizers trained via CAOL (P1) shows higher image reconstruction accuracy compared to the EP reconstruction; see red arrows
and magnified areas. For the MBIR model (P3), the autoencoder (see Remark 6.1) using the filter dimension R = K = 49 improves reconstruction accuracy
of that using R = K =25; compare the results in (d) and (e). In particular, the larger dimensional filters improve the edge sharpness of reconstructed images;
see circled areas. The corresponding error maps are shown in Fig. S.5 of the supplementary material.

using the learned convolutional regularizer via CAOL (P1).927

See related results and discussion in Fig. S.4 and Section S.X,928

respectively.929

On the algorithmic side, the BPEG-M framework can guar-930

antee the convergence of CT MBIR (P3). Under the sharp931

majorization regime in BPEG-M, maintaining the majorization932

sharpness is more critical than having stronger extrapolation933

effects – see [32, Fig. 3], as similarly shown in CAOL934

experiments (see Section VII-B).935

VIII. CONCLUSION936

Developing rapidly converging and memory-efficient CAOL937

engines is important, since it is a basic element in training938

CNNs in an unsupervised learning manner (see Appendix A).939

Studying structures of convolutional kernels is another fun-940

damental issue, since it can avoid learning redundant fil-941

ters or provide energy compaction properties to filters. The942

proposed BPEG-M-based CAOL framework has several ben-943

efits. First, the orthogonality constraint and diversity pro-944

moting regularizer in CAOL are useful in learning filters945

with diverse structures. Second, the proposed BPEG-M algo-946

rithm significantly accelerates CAOL over the state-of-the-947

art method, BPG [31], with our sufficiently sharp majorizer948

designs. Third, BPEG-M-based CAOL uses much less mem-949

ory compared to patch-domain AOL methods [3], [4], [7],950

and easily allows parallel computing. Finally, the learned951

convolutional regularizer provides the autoencoding CNN952

architecture in MBIR, and outperforms EP reconstruction in953

sparse-view CT.954

Similar to existing unsupervised synthesis or analysis oper-955

ator learning methods, the biggest remaining challenge of956

CAOL is optimizing its model parameters. This would become957

more challenging when one applies CAOL to train CNNs958

(see Appendix A). Our first future work is developing “task-959

driven” CAOL that is particularly useful to train threshold-960

ing values. Other future works include further acceleration961

of BPEG-M in Algorithm 1, designing sharper majorizers962

requiring only O(L RN) for the filter update problem of963

CAOL (P0), and applying the CNN model learned via (A1)964

to MBIR.965

APPENDIX 966

A. Training CNN in a Unsupervised Manner via CAOL 967

This section mathematically formulates an unsupervised 968

training cost function for classical CNN (e.g., LeNet-5 [11] 969

and AlexNet [72]) and solves the corresponding optimization 970

problem, via the CAOL and BPEG-M frameworks studied in 971

Sections III–V. We model the three core modules of CNN: 972

1) convolution, 2) pooling, e.g., average [11] or max [63], and 973

3) thresholding, e.g., RELU [73], while considering the TF 974

filter condition in Proposition 3.1. Particularly, the orthogo- 975

nality constraint in CAOL (P1) leads to a sharp majorizer, 976

and BPEG-M is useful to train CNNs with convergence 977

guarantees. Note that it is unclear how to train such diverse (or 978

incoherent) filters described in Section III by the most common 979

CNN optimization method, the stochastic gradient method in 980

which gradients are computed by back-propagation. The major 981

challenges include a) the non-differentiable hard thresholding 982

operator related to �0-norm in (P0), b) the nonconvex filter 983

constraints in (P1) and (P2), c) using the identical filters in 984

both encoder and decoder (e.g., W and W H in Section S.I), 985

and d) vanishing gradients. 986

For simplicity, we consider a two-layer CNN with a single 987

training image, but one can extend the CNN model (A1) 988

(see below) to “deep” layers with multiple images. The first 989

layer consists of 1c) convolutional, 1t) thresholding, and 1p) 990

pooling layers; the second layer consists of 2c) convolu- 991

tional and 2t) thresholding layers. Extending CAOL (P1), 992

we model two-layer CNN training as the following optimiza- 993

tion problem: 994

argmin
{d [1]

k ,d [2]
k,k′ }

min
{z[1]

k ,z[2]
k′ }

K1∑
k=1

1

2

∥∥∥d [1]
k � x − z[1]

k

∥∥∥2

2
+ α1

∥∥∥z[1]
k

∥∥∥
0

995

+ 1

2

∥∥∥∥∥∥∥∥
⎛⎜⎜⎝ K1∑

k=1

⎡⎢⎢⎣
d [2]

k,1 � Pz[1]
k

...

d
[2]
k,K2

� Pz[1]
k

⎤⎥⎥⎦
⎞⎟⎟⎠−

⎡⎢⎣ z[2]
1
...

z[2]
K2

⎤⎥⎦
∥∥∥∥∥∥∥∥

2

2

996

+ α2

K2∑
k′=1

∥∥∥z[2]
k′
∥∥∥

0
997
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subject to D[1](D[1])H = 1

R1
· I,998

D[2]
k

(
D[2]

k

)H = 1

R2
· I, k = 1, . . . , K1,

(A1)

999

where x ∈ RN is the training data, {d [1]
k ∈ RR1 : k =1000

1, . . . , K1} is a set of filters in the first convolutional layer,1001

{z[1]
k ∈ RN : k = 1, . . . , K1} is a set of features after the1002

first thresholding layer, {d [2]
k,k′ ∈ RR2 : k′ = 1, . . . , K2} is a1003

set of filters for each of {z[1]
k } in the second convolutional1004

layer, {z[2]
k′ ∈ RN/ω : k = 1, . . . , K2} is a set of features1005

after the second thresholding layer, D[1] and {D[2]
k } are1006

similarly given as in (1), P ∈ R
N/ω×ω denotes an average1007

pooling [11] operator (see its definition below), and ω is1008

the size of pooling window. The superscripted number in the1009

bracket of vectors and matrices denotes the (·)th layer. Here,1010

we model a simple average pooling operator P ∈ R(N/ω)×ω
1011

by a block diagonal matrix with row vector 1
ω 1T

ω ∈ Rω:1012

P := 1
ω

⊕N/ω
j=1 1T

ω . We obtain a majorization matrix of PT P1013

by PT P � diag(PT P1N ) = 1
ω IN (using Lemma S.1). For1014

2D case, the structure of P changes, but PT P � 1
ω IN holds.1015

We solve the CNN training model in (A1) via the BPEG-M1016

techniques in Section V, and relate the solutions of (A1) and1017

modules in the two-layer CNN training. The symbols in the1018

following items denote the CNN modules.1019

1c) Filters in the first layer, {d [1]
k }: Updating the filters is1020

straightforward via the techniques in Section V-A2.1021

1t) Features at the first layers, {z[1]
k }: Using BPEG-M with1022

the kth set of TF filters {d [2]
k,k′ : k ′} and PT P � 1

ω IN (see1023

above), the proximal mapping for z[1]
k is1024

min
z[1]

k

1

2

∥∥∥d [1]
k � x − z[1]

k

∥∥∥2

2
+ 1

2ω′
∥∥∥z[1]

k − ζ
[k]
k

∥∥∥2

2
+α1

∥∥∥z[1]
k

∥∥∥
0
,

(37)1025

where ω′ = ω/λZ and ζ [k]
k is given by (4). Combining the1026

first two quadratic terms in (37) into a single quadratic1027

term leads to an optimal update for (37):1028

z[1]
k = H√

2 ω′α1
ω′+1

(
d [1]

k � x + 1

ω′ ζ
[k]
k

)
, k ∈ [K ],1029

where the hard thresholding operator Ha(·) with a thresh-1030

olding parameter a is defined in (32).1031

1p) Pooling, P: Applying the pooling operator P to {z[1]
k }1032

gives input data – {Pz[1]
k } – to the second layer.1033

2c) Filters in the second layer, {d [2]
k,k′ }: We update the kth1034

set filters {d [2]
k,k′ : ∀k ′} in a sequential way. Updating1035

the kth set filters is straightforward via the techniques1036

in Section V-A2.1037

2t) Features at the second layers, {z[2]
k′ }: The corresponding1038

update is given by1039

z[2]
k′ = H√

2α2

( K1∑
k=1

d [1]
k,k′ � Pz[1]

k

)
, k ′ ∈ [K2].1040

Considering the introduced mathematical formulation of1041

training CNNs [11] via CAOL, BPEG-M-based CAOL has1042

potential to be a basic engine to rapidly train CNNs with big 1043

data (i.e., training data consisting of many (high-dimensional) 1044

signals). 1045

B. Examples of { f (x; y),X } in MBIR Model (B1) Using 1046

Learned Regularizers 1047

This section introduces some potential applications of using 1048

MBIR model (B1) using learned regularizers in imaging 1049

processing, imaging, and computer vision. We first consider 1050

quadratic data fidelity function in the form of f (x; y) = 1051

1
2‖y−Ax‖2

W . Examples include 1052

• Image debluring (with W = I for simplicity), where y is 1053

a blurred image, A is a blurring operator, and X is a box 1054

constraint; 1055

• Image denoising (with A = I ), where y is a noisy image 1056

corrupted by additive white Gaussian noise (AWGN), 1057

W is the inverse covariance matrix corresponding to 1058

AWGN statistics, and X is a box constraint; 1059

• Compressed sensing (with {W = I,X ∈CN ′ } for simplic- 1060

ity) [74], [75], where y is a measurement vector, and 1061

A is a compressed sensing operator, e.g., subgaussian 1062

random matrix, bounded orthonormal system, subsampled 1063

isometries, certain types of random convolutions; 1064

• Image inpainting (with W = I for simplicity), where y is 1065

an image with missing entries, A is a masking operator, 1066

and X is a box constraint; 1067

• Light-field photography from focal stack data with 1068

f (x; y) = ∑
c ‖yc − ∑

s Ac,s xs‖2
2, where yc denotes 1069

measurements collected at the cth sensor, Ac,s models 1070

camera imaging geometry at the sth angular position for 1071

the cth detector, xs denotes the sth sub-aperture image, 1072

∀c, s, and X is a box constraint [29], [76]. 1073

Examples that use nonlinear data fidelity function include 1074

image classification using the logistic function [77], magnetic 1075

resonance imaging considering unknown magnetic field vari- 1076

ation [78], and positron emission tomography [59]. 1077

C. Notation 1078

We use ‖·‖p to denote the �p-norm and write 〈·, ·〉 for 1079

the standard inner product on CN . The weighted �2-norm 1080

with a Hermitian positive definite matrix A is denoted by 1081

‖·‖A = ∥∥A1/2(·)∥∥2. ‖·‖0 denotes the �0-quasi-norm, i.e., the 1082

number of nonzeros of a vector. The Frobenius norm of a 1083

matrix is denoted by ‖ · ‖F. (·)T , (·)H , and (·)∗ indicate 1084

the transpose, complex conjugate transpose (Hermitian trans- 1085

pose), and complex conjugate, respectively. diag(·) denotes 1086

the conversion of a vector into a diagonal matrix or diagonal 1087

elements of a matrix into a vector.
⊕

denotes the matrix 1088

direct sum of matrices. [C] denotes the set {1, 2, . . . , C}. 1089

Distinct from the index i , we denote the imaginary unit 1090√−1 by i. For (self-adjoint) matrices A, B ∈ CN×N , 1091

the notation B � A denotes that A − B is a positive semi- 1092

definite matrix. 1093
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