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Poisson ratio mismatch drives low-strain
reinforcement in elastomeric nanocomposites

Scott M. Smitha and David S. Simmons *b

Introduction of nanoparticulate additives can dramatically impact elastomer mechanical response,

with large enhancements in modulus, toughness, and strength. Despite the societal importance of these

effects, their mechanistic origin remains unsettled. Here, using a combination of theory and molecular

dynamics simulation, we show that low-strain extensional reinforcement of elastomers is driven by a

nanoparticulate-jamming-induced suppression in the composite Poisson ratio. This suppression forces

an increase in rubber volume with extensional deformation, effectively converting a portion of the

rubber’s bulk modulus into an extensional modulus. A theory describing this effect is shown to

interrelate the Poisson ratio and modulus across a matrix of simulated elastomeric nanocomposites of

varying loading and nanoparticle structure. This model provides a design rule for structured nano-

particulates that maximizes elastomer mechanical response via suppression of the composite Poisson

ratio. It also positions elastomeric nanocomposites as having a qualitatively different character than

Poisson-ratio-matched plastic nanocomposites, where this mechanism is absent.

Introduction

The last 25 years have seen enormous interest in the properties
and design of polymer nanocomposites,1,2 with a focus on
mechanical reinforcement of engineering plastics. Despite
these efforts, the underlying physics of the earliest class of
synthetic polymer nanocomposites – nanofiller-reinforced
elastomers – remain poorly understood. The canonical example
of these materials, rubber filled with carbon black, is one of
the most societally important polymeric materials, with far-
reaching economic, safety, and environmental impacts.
Nanoparticulate additives also play a role in mechanical reinfor-
cement of next-generation elastomers such as tough biomedical
hydrogels.3,4 A settled mechanistic understanding of reinforce-
ment in these materials would thus be of great value inmaterials
design.

Several mechanisms have been proposed to account for
filler-based reinforcement of solid elastomers. The longest-
standing of these is grounded in classical composite theory,
positing that hydrodynamic interactions of the filler particles
within their medium drive an enhancement of composite
viscosity or modulus.5–7 However, because this approach gene-
rally under-predicts reinforcement at moderate to high filler
loadings, these models are empirically corrected by introducing
the idea that fillers induce the formation of non-deforming

‘‘bound’’2,8–11 or ‘‘occluded’’12–14 rubber domains. These
domains, which are hypothesized to emerge from rubber–filler
attractive interactions or from geometrical occlusion of rubber
by fillers, respectively, are often posited to increase the effective
filler loading in a loading-dependent manner. From a broader
perspective, the bound rubber hypothesis is closely related to
the idea, in nanocomposite plastics and thin films, that altera-
tions in bulk mechanical response reflect dramatic alterations
in polymer dynamics, mechanics, and glass formation near the
polymer/inorganic interface.1,15,16 In rubber, however, there is
considerable debate as to whether these hypotheses represent
a genuine microscopic mechanism or simply an empirical
correction factor to hydrodynamic models derived in a more
dilute limit.17,18

Within the past 15 years, the concept of filler percolation
and jamming has emerged as an alternate explanation for
the observed reinforcement in filled rubber.19–24 Jamming is
closely related to glass formation in that the transition into the
jammed state is characterized by an onset of dynamic arrest
without the apparent emergence of long-range order. Conduc-
tivity measurements suggest that nanofillers indeed form per-
colated networks in highly reinforced rubbers.20,24,25 Moreover,
the well-known nonlinear strain dependence of filled rubber
moduli, known as the Payne effect,26,27 is consistent with a yield
event of this network.19–24

This alternate perspective suggests, perhaps counterintui-
tively, that nanoparticle-reinforced rubber is mechanistically
similar to concrete. Concrete corresponds to a cement matrix
heavily reinforced with a jammed particulate network.28–30
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This reinforcement effect leads to a much more robust mecha-
nical response in concrete than in pure cement binder alone.
However, this raises a natural question regarding the hypo-
thesis of a jamming-based origin of rubber reinforcement.
Jammed media tend to be relatively weak under tension. For
this reason, the compressive strength of standard concrete is
much greater than its tensile strength. In contrast, filled rubber
can exhibit dramatic enhancements in modulus, toughness,
and failure strength under tension. Can this observation be
reconciled with a jamming-based origin of nanofiller reinforce-
ment of rubber?

This work proposes and tests the idea that the central
mechanism of extensional low-strain reinforcement of rubber
by nanofillers is a jamming-driven reduction in the composite
Poisson ratio. For a broader review of the role of Poisson’s ratio
in various deforming systems, we review the reader to several
excellent reviews.31,32 This reduction drives an increase in
rubber volume with deformation, such that elongational defor-
mation is resisted by the rubber’s bulk modulus rather than
simply its Young’s modulus. This scenario is consistent with
experimental evidence indicating that the low-strain Poisson
ratios of nanofilled elastomeric composites interpolate between
the pure rubber limit of an incompressible fluid (n = 0.5)33–35

and the typical Poisson ratio of 1/3 for glasses and jammed
media (n = 0.15–0.4236–38). Additional evidence for a jamming-
based origin of this effect is provided by an observed return to a
Poisson ratio of 1/2 at high strains39 coinciding with the onset
of the Payne effect, consistent with a yield event of a jammed
filler network.26,27 Since bulk moduli are commonly 1000-fold
greater than Young’s moduli in rubber,40 this proposed enhance-
ment of the Young’s modulus by a portion of its bulk modulus
can yield substantial reinforcement.

This prediction is tested by employing coarse-grained mole-
cular dynamics simulations of rubber/nanoparticle composites.
In order to access a range of reinforcements and of composite
Poisson ratios, these simulations span several filler loadings
and structures. Specifically, we employ structured fillers com-
prised of randomly sintered aggregates of icosahedral primary
particles, as illustrated in Fig. 1 (rendered in VMD41). As described
in earlier work, this process for constructing sintered aggregates
yields structures bearing a remarkable resemblance to micro-
graphs of a highly structured nanoparticulate carbon black.42

Theory

We consider a rubber matrix forced to deform at a non-native
Poisson ratio by a jammed network of nanoparticulate fillers.
How should we expect this material to respond mechanically?
We begin by writing the total stress tensor as a difference of the
deviatoric (non-isotropic) stress and the pressure (the isotropic
stress):

P ¼ s� pI ¼

s11 � p s12 s13

s21 s22 � p s23

s31 s32 s33 � p

0
BBB@

1
CCCA (1)

where I is a 3 by 3 identity matrix. Note that, by definition,
the deviatoric stress tensor is traceless; that is, the sum of the
diagonal components sxx + syy + szz = 0 and the thermodynamic
pressure p can be expressed as

p ¼ �1

3
trðPÞ (2)

We first consider the ‘native’ behavior of the matrix material,
in the case of zero normal pressure at which the material’s
volume obeys its native Poisson ratio n0. Its native extensional
modulus in this case for uniaxial elongation in the x-direction
is given by

E0 �
dPxx

dgx

� �
Pyy¼Pzz¼0

¼ d sxx � pð Þ
dgx

� �
Pyy¼Pzz¼0

(3)

If the imposed uniaxial deformation introduces equal devi-
atoric stress in the normal directions (syy = szz), and recalling
that the deviatoric trace is zero (such that sxx + 2syy = 0), then
under zero normal stress, sxx = �2p and Pxx = �3p. Therefore,
sxx = 2Pxx/3, and the native extensional modulus can be
re-written as

E0 ¼
3

2

dsxx
dgx

� �
Pyy¼Pzz¼0

: (4)

Now, consider a scenario in which the material is forced to
deform at a non-native Poisson ratio n. In the present context,
this modified Poisson ratio is imposed by the presence of a
jammed filler network embedded within the matrix material;
more generally, it could be imposed by any means, such as via

Fig. 1 Top: Unstructured (Np = 1, left) and representative structured
(Np = 13, right) fillers. Bottom: Simulated elastomeric nanocomposites
containing Np = 1 (left) and Np = 13 (right) aggregates at a filler volume
fraction ff D 0.34, where the crosslinked polymer has been omitted and
each particle is colored individually. Images rendered in VMD.41
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an imposed normal boundary deformation. In this case, the
effective Young’s modulus En can be written as

En ¼
dsxx
dgx

� dp

dgx
¼ 2

3
E0 �

dp

dgx
(5)

where the replacement of (dsxx/dgx) with (2E0/3) is consistent
with the relationship in eqn (4). The pressure derivative with
respect to elongational strain can be expanded via the defini-
tion of the bulk modulus K, which is a measure of the stress
required to grow the volume V:

K � �V
@p

@V
(6)

In order to obtain a pressure derivative equal to that in (5),
we rearrange this equation to isolate p before differentiating
with respect to elongational strain:

d

dgx

ðp
p0

dp0
� �

¼ d

dgx

ðV
V0

�K

V 0dV
0

� �
(7)

where p0 and V0 are the pressure and volume under zero normal
stress, respectively. In the zero-strain limit we can additionally
employ the relation d(ln(V/V0))/dgx = d(V/V0)/dgx. Integration
and evaluation of eqn (7) then leads to the following form:

dp

dgx
� dp0

dgx
¼ �K

d

dgx
ln

V

V0

� �
ffi �K

d

dgx

V

V0

� �
(8)

where the latter approximation becomes exact in the zero-strain
limit. Using the definitions of true strain dgx � (1/x)dx and
Poisson ratio n � �dgy/dgx = �dgz/dgx, we arrive, for the volume
derivative in eqn (8), at

dV

dgx
¼ dðxyzÞ

dgx
¼ yzdxþ xzdyþ xydz

dgx
¼ Vð1� 2nÞ (9)

where x, y, and z, are the dimensions of the material. Combining
eqn (9) and (8), and (5) now yields an expression for the effective
Young’s modulus under an imposed Poisson ratio n:

En ¼
2

3
E0 �

dp

dgx
¼ 2

3
E0 �

dp0

dgx
þ V

V0
2K n0 � nð Þ (10)

Using eqn (4) and the relationship sxx = �2p that holds for
uniaxial extension under zero normal stress, dp0/dgx can be
expressed as �E0/3. Furthermore, in the zero-strain limit, V/V0
goes to 1, and the extensional modulus under fixed Poisson
ratio is written as

En = E0 + 2K(n0 � n) (11)

The physical interpretation of eqn (11) is that the extensional
modulus of a material increases beyond its native extensional
modulus when a non-native Poisson ratio is enforced. Forcing
a non-native Poisson ratio leads to a contribution from the
material’s bulk modulus that grows as the difference between
the material’s native Poisson ratio n0 and the imposed Poisson
ratio n increases. In essence, use of the non-native Poisson ratio
forces the material to deviate from its preferred volume under
strain, incurring an additional energetic cost associated with
the bulk modulus. On the other hand, if an imposed Poisson

ratio is equal to the preferred Poisson ratio, the native exten-
sional modulus is recovered such the bulk modulus term in
eqn (11) drops out and the equation reduces to En = E0.

Eqn (11) thus provides a prediction for the effective extensional
modulus of a neat material forced to deform at a non-native
Poisson ratio. This would apply, for example, if a fixed-Poisson-
ratio boundary condition were artificially applied in the normal
directions. When applied to the more realistic scenario of interest
here – a non-native Poisson ratio imposed by a nanoparticulate
filler – one additional factor must be introduced to eqn (11) to
arrive at the composite modulus. In this case, introduction of
(nearly non-deformable) filler nanoparticles can additionally
cause localization of strain within the rubber domain. This can
be accounted for via a strain amplification factor f, such that
eqn (11) then becomes

Ec = f [E0 + 2K(n0 � n)] (12)

where Ec is the effective extensional modulus of the composite,
accounting for both Poisson ratio and strain localization effects.
An effective upper bound for the value of f can be obtained from
a ‘series’ composite mechanical model (also known as the iso-
stress model), in which f is given by 1/fdef, where fdef is the
volume fraction of the deformable material. In this case fdef

would be given by the volume fraction of rubber within the
composite. However, because rubber and nanofiller are not truly
in mechanical series, the true value of f can be expected to be
between one and this prediction.

Notably, eqn (11) resembles the following Lamé relationship
from the theory of linear elasticity:

E0 = 3K(1 � 2n0) (13)

where implicit in the theory is the notion that the material
deforms at its natural/preferred Poisson ratio. This Lamé rela-
tion can be inserted into eqn (11) to yield a generalized Lamé
relation that accounts for differences between the imposed and
native Poisson ratio:

En = 3K(1 � 2~n) (14)

where

~n ¼ 2

3
n0 þ

1

3
n (15)

This generalized Lamé relation thus accounts for both the native
properties of the material and for an imposed non-zero-stress
boundary condition. The central question is now whether this type
of mismatch between the preferred Poisson ratio of a rubber matrix
and an alternate value imposed by a jammed reinforcing nano-
particles can account for the observed reinforcement in a reasonable
rubber model. We next employ molecular dynamics simulations of
a reinforced rubber in an effort to answer this question.

Simulation methodology
Forcefield

We now seek to test the predictions of eqn (12) against coarse-
grained molecular dynamics simulations of an elastomeric
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nanocomposite. These simulations employ a bead-spring model
of crosslinked polymer that is well-established in the literature.43

Each simulation includes a loading-dependent number of highly
dispersed filler particles, consisting of sintered icosahedra, and a
fixed amount of polymer: 5000 unentangled44 polymer chains of
length 20 beads each, and 2500 crosslinker beads, where the
amount of crosslinker is selected to give a correct stoichiometric
ratio for a network with junctions of functionality equal to four.

Nonbonded interactions are modeled by the 12-6 Lennard-
Jones (LJ) potential,

ELJðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� �
(16)

where r is the distance between non-bonded segments, s and e
are characteristic energy and length scales, and rc is a distance
cutoff for the potential, beyond which the potential is equal to
zero. The non-bonded interaction parameters between each
species are summarized in Table 1.

Bonded polymer interactions are modeled with two different
potentials, depending on the stage of the simulation. In
summary, the generation and equilibration phases of the simula-
tion employ an unbreakable bond potential, while the deforma-
tion phase employs a breakable bond. The bond type employed
during each stage of the simulation is reprised in subsequent
sections that provide further methodological details. The
unbreakable bond is modeled as the finitely extensible non-
linear elastic (FENE) potential,

EFENEðrÞ ¼ �0:5KR0
2 1� r

R0

� �2
" #

þ ELJðrÞ þ e (17)

where the spring constant K = 30, and the maximum bond
extensibility R0 = 1.5. In simulation phases that employ a
breakable bond, the quartic potential is used:

Ebond;quarticðrÞ ¼ kq r� r0ð Þ2 r� r0 � B1ð Þ r� r0 � B2ð Þ

þ E0 þ ELJðrÞ þ e
(18)

In eqn (18), kq is a spring constant, r0 is the maximum
extensibility before bond failure, B1 and B2 are distance para-
meters, and E0 is an energy parameter. The values for these
coefficients yield a potential that closely resembles the FENE
potential:45,46 Kq = 2351, r0 = 1.5, B1 = �0.7425, B2 = 0, and
E0 = 92.74. Despite this changeover in the nature of the bond,
bond breaking is generally not observed at the strains reported
in this study; use of a breakable bond during deformation is
implemented to enable future extensibility of this work to high
strains approaching failure.

Icosahedral filler particles and their aggregates also consist
of Lennard-Jones beads held together by bonds. An in-house

sintering algorithm developed in previous work42 is used for
building primary particles and connecting them into structured
aggregates. However, unlike in previous filler particle construction,
the updated algorithm completely fills each particle such that
there is no hollow space within the icosahedra. Multiple icosa-
hedral ‘shells’, from 1 to n � 1 beads per edge are fit inside the
outermost shell containing n beads per edge. This is illustrated in
Fig. 2 for a primary (icosahedral) filler particle with n = 4 beads per
edge along the outermost/surface shell. Completely filling the
particles, although more computationally expensive, is required
for shape preservation: each icosahedra structure ismaintained via
a network of bonds between neighboring beads at several unique
separation distances. An example of the filler bonding protocol for
a structured aggregate (containing Np = 5 primary particles) is
illustrated in Fig. 3 and described below.

The equilibrium length of each bond is key in defining the
icosahedral shape of the primary particles. After a primary

Table 1 Non-bonded LJ parameters for simulated rubber/filler composites

Interaction pair e s rc

Polymer–polymer 1.0000 1.0000 2.5s
Polymer–filler 1.0000 1.0000 2.5s
Filler–filler 1.0000 1.0000 21/6s

Fig. 2 Illustration of the shells of a filled primary (icosahedral) filler particle
with n = 4 beads per icosahedral edge. The outermost shell contains within
it all smaller icosahedra from n � 1 beads per edge to 1 bead per edge
(single bead).

Fig. 3 Illustration of filler shape preservation that is attained via bonding of
individual beads with close neighbors within the filler particles/aggregates.
The blue and green bead overlays are used to illustrate bonding within
individual primary particles (icosahedra); the blue bead forms bonds with
six nearest neighbors (green beads), where the bonds are shown as green
lines. Additionally, the blue bead bonds to other (internal) beads beneath the
surface shell that are not visible here. The separation distance between
intra-shell beads and inter-shell beads is not equal, and therefore multiple
bonding potentials are required tomaintain the preferred icosahedral shape.
In order to form structured aggregates, individual icosahedra are also
bonded together through beads at their sintering faces (bonds span two
primary particles), which is shown in the remaining two green overlays.
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particle is generated, an algorithm compares the distance
between a given bead and every other bead in the icosahedra,
which consists of a distance comparison between beads in
the same shell as well as beads in separate shells. If two beads
are separated by a distance 1.5s or less, a bond is generated
between the two beads in the primary particle. The limit of
1.5s is chosen based on empirical evidence that the particles
adequately retain their shape; the increased computational cost
of applying a higher cutoff (thereby leading to a greater filler
bond count) is therefore not necessary. When a separation
distance less than 1.5s is identified, a new bond is formed
between the two beads with an equilibrium distance equal to
their separation distance set by the nanoparticle generating
algorithm. Setting their bonded potential energy minimum
equal to their geometric separation distance ensures that the
initially constructed icosahedral shape is the lowest energy
state. The bead separation distances that result in the forma-
tion of filler bonds are as follows: (1) 0.9511s between nearest
neighbors of adjacent shells, (2) 1.0000s between nearest
neighbors of the same shell, and (3) 1.3800s between second-
nearest neighbors of adjacent shells. For icosahedral particles
containing 4 LJ beads per edge, this bonding protocol results in a
total of 936 bonds formed among 147 LJ beads per icosahedra.
Additionally, for composite simulations containing structured
aggregates in which primary particles are sintered together,
nearest-neighbor beads between the two sintered primary parti-
cles gain bonds with equilibrium separation distance 1.0000s,
and second-nearest neighbors gain bonds with equilibrium
distance 1.4142s.

In the pre-deforming stages of the simulation, filler bonds
are modeled by a harmonic (unbreakable) potential:

Ebond,harm = kharm(r � req)
2 (19)

where Ebond,harm is the harmonic bond energy, kharm is the
harmonic spring constant, r is the distance between the bonded
segments, and req is the equilibrium bond length. The typical
pre-factor of 1/2 observed in Hooke’s law is absorbed by kharm.
A value of kharm = 4000 is used to represent a relatively stiff filler
bond. During the deformation phase of the simulation, fillers
bonds are switched to the breakable quartic potential. The
quartic potential coefficients for the filler bonds are shown in
Table 2. The harmonic and quartic bonds used to maintain
filler shape are modeled to be much stiffer than the imposed
polymer bonds (the standard FENE potential well resembles
a harmonic potential with kharm = 500) such that simulated

deformation is consistent with experiment in that material
failure resides within the polymer phase. Moreover, the bond
density, or number of bonds per filler bead, is much greater in
the fillers than in the polymer.

The matrix of investigated composites spans a range of filler
loadings and filler structures as quantified by Np, the number
of primary particles per aggregate. The matrix of simulated
composites is described in Table 3. While each system contains
aggregates with a specified Np, a distribution of aggregate
shapes is incorporated to eliminate bias in the mechanical
response that may result from a specific filler shape. A detailed
description of the algorithm developed for generating struc-
tured filler particles can be found in earlier work.42

Simulations are performed in the Large Scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS)47 software
package, and employ reduced LJ units, where the unit of distance
s corresponds to approximately 1–2 nm in real units.48 Simula-
tions are performed at a reduced LJ temperature of 1.0, which is
greater than 2.5Tg for this model polymer.49 Prior work on
dynamics of similar model polymers at interfaces indicates that
near-filler polymer dynamics should not be substantially altered
under these conditions.48,50–52 Combined with the absence of
filler–filler attractions, this choice also allows for the study of
reinforcement without appreciable enthalpic adhesion between
filler particles. Periodic boundary conditions are enforced, and
the equations of motion are integrated via the velocity-Verlet
algorithm53 with a timestep of 0.005t, where t (the reduced LJ
unit of time) is equal to s(m/e)1/2.

A multi-step preparation procedure is employed in order to
generate configurations in which the fillers are highly dis-
persed in a model rubber matrix. In an initial simulation stage,
the polymer–filler interactions are turned entirely off such that
fillers and polymer chains equilibrate separately within a shared
box of fixed volume without interacting. This volume is chosen
by an estimation of the composite volume under constant zero
pressure. During this stage, filler dynamics obey a Langevin
thermostat, and the temperature of the fillers is increased to
100 fold greater than the polymer temperature to promote faster
and more efficient generation of the random filler configuration.
Specifically, at the level of primary icosahedral filler particles,

Table 2 Quartic bond parameters for the polymer and filler bonding
potentials. The filler aggregates contain several bond types parameters:
one type for every unique equilibrium LJ bead separation distance less
than 1.5s

Phase req kq B1 B2 r0 E0

Polymer 0.9609 2351.0000 �0.7425 0.0000 1.5000 92.7400
Filler 0.9511 �4513.4062 �1.2700 �0.9920 1.4902 451.5171
Filler 1.0000 �5765.8867 �1.1180 �1.0560 1.5391 520.6378
Filler 1.3800 �7166.4613 �1.0300 �1.1359 1.9191 629.8370
Filler 1.4142 �6610.8126 �1.0150 �1.1598 1.9533 587.0767

Table 3 Number of simulated filler aggregates in each nanocomposite
containing filler volume fraction ff and filler structure Np. Here, ff is shown
as an average over the 50 simulated configurations of each composite and
over the various Np. Cells containing a ‘‘—’’ were not simulated due to low
number of fillers that would be involved, which would lead to poor
statistical sampling (less than 30 aggregates)

ff

Np

1 3 5 7 9 11 13

0.046 48 — — — — — —
0.087 96 32 — — — — —
0.125 144 48 — — — — —
0.190 240 80 48 48 34 — —
0.261 360 120 72 51 40 33 —
0.320 480 160 96 69 53 44 37
0.415 720 240 144 103 80 65 55
0.455 839 280 168 120 93 76 —
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the filler is roughly 100 times more massive than the polymer
Kuhn segments, and an equal increase in filler temperature
generates a filler velocity comparable to the polymer velocity,
which enables faster generation of the filler configuration using
a shared time step with the polymer chains (0.005t). This phase
is executed for a period of 2625t (where t is the LJ unit of time),
after which the filler positions are fixed. With their positions
fixed, the fillers are ‘grown’ into the polymer matrix by gradually
turning on polymer–filler nonbonded interactions over a period
of 6785t, such that the polymer and filler no longer occupy the
same space. To correct for potential deviations in the preferred
volume at constant zero pressure, the system is then briefly
equilibrated, with both polymer and filler degrees of freedom
subject to time integration, under constant zero pressure using a
Nose–Hoover barostat for 2000t. Next, with the fillers fixed in
place, the polymer component of the nanocomposite is equili-
brated under constant volume for a period of 105t at a tempera-
ture of 1.0 using a Nose–Hoover thermostat. At this temperature,
the equilibration period is roughly 10 fold longer than the chain
end-to-end relaxation time.42 This is sufficient to permit the
polymer melt to obtain its equilibrium state within the con-
straints imposed by the fixed filler particles.

Following equilibration, the polymer melt is crosslinked
using a well-established end-linking strategy54,55 over a period
of 2500t. End-linking produces a network of strands that are
equal in length to the precursor chains, which, in this case,
generates a network of monodisperse strands of length 20 Kuhn
segments. The crosslinking phase has been described in detail
in previously published work.42

After this crosslinking stage, the system is subject to another
equilibration period (6250t) at fixed temperature and pressure
(via a Nose–Hoover thermostat and barostat), with both chains
and fillers included in time integration. This permits short-
range motion of the filler particles within the cross-linked
matrix to relieve any unfavorable short-ranged interactions
between fillers. Given that (a) the primary filler size is of the
order of the strand gyration radius, and (b) the fillers are given only
a brief time to relocate, long-range aggregation is hindered, and
the nanocomposite is therefore expected to retain a highly dis-
persed filler configuration. During the final 5000t of short-range
filler network relaxation, all chemical bonds, both in the polymer
network and within the fillers, are switched from unbreakable
(FENE potential for polymers, harmonic for fillers) to breakable
(quartic potential) in order to simulate a more realistic scenario of
nanocomposite deformation. Example images (rendered in VMD41)
of the highly dispersed filler configurations achieved in these
simulations are shown in Fig. 1.

From each equilibrated nanocomposite configuration,
50 thermally random configurations are generated by assigning
new random velocities to the polymer and filler and performing
a simulation for 100t at constant temperature (1.0 LJ units) and
pressure (0.0), using a Nose–Hoover thermostat and barostat.
This ‘forked’ simulation allows for improved statistical sampling
over thermal noise in the stress tensor during deformation. Each
thermally randomized configuration is then stretched uniaxially
at a rate of 5 � 10�5/t, with both filler and polymer degrees of

freedom subject to time integration. This rate has been chosen
based on a prior investigation42 that located the regime of strain-
rate independence in the stress response for this crosslinked
polymer model. The rate used in this study is at the onset of the
rate-independence, such that the mechanical response at the
chosen strain rate is dominated primarily by the rubbery plateau
rather than by high-frequency dynamics. Constant zero pressure
boundary conditions are imposed in the directions normal to
deformation using a Nose–Hoover barostat. This allows the
normal dimensions to respond dynamically to the imposed
strain, as would be expected in a traditional tensile test in
which a sample’s volume is set by its Poisson ratio.

Results

The stress–strain behavior of the simulated rubbery composites
is shown in Fig. 4, where true stress sx = F/A, in which the
extensional force F is divided by the instantaneous cross-
sectional area A, and true strain gx = ln(Lx/Lx,0), where Lx is the
current length and Lx,0 is the initial length. Qualitatively, these
composites exhibit a reinforcement effect that increases with
structure Np, or the number of primary icosahedra per nano-
particle (aggregate), and this trend is consistent across a wide
range of loadings. Moreover, they exhibit a modest softening of
the modulus with increasing strain, which is consistent with
the Payne effect26,27 observed in experimental filled rubbers.

In order to better quantify this reinforcement effect, we
compute the instantaneous (tangent) composite moduli Ec. As
shown in Fig. 5A–C, the extensional modulus exhibits a strongly
nonlinear enhancement with increasing filler content, with
more structured nanoparticles yielding greater reinforcement
at fixed nanoparticle loading. These data are qualitatively com-
parable to trends in reinforcement observed in experimental
rubber/nanofiller composites.56,57 Notably, the extensional moduli
increase by as much as a factor of 10–20 relative to the neat
rubber, particularly in highly loaded composites containing
highly structured fillers. The observed increase is much greater
than early predictions of modulus enhancement from the
Einstein or Guth equations. What is this origin of this large
reinforcement effect?

Test of occluded rubber hypothesis

We first test the long-standing proposition, summarized in
the introduction, that the formation of non-deforming rubber
domains introduced by the addition of filler is responsible for
anomalously large elastomer reinforcement effects such as those
reported above. This hypothesis proposes that the reduced frac-
tion of deforming rubber leads to a strain amplification effect that
yields an effective stiffening of the composite.

As noted above, in our simulations, interactions between the
polymer and filler have been chosen such that interfacial glassy
rubber is not present. Therefore, the only form of non-deforming
rubber domains that could exist in these systems are hypo-
thesized ‘‘occluded rubber’’ domains, or rubber that is posited to
be geometrically trapped within highly structured filler aggregates.
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This occluded rubber hypothesis was formulated on the basis of
electron microscopy images from Medalia,12–14 who suggested
that the crevices of highly structured carbon black aggregates
could potentially house rubber domains that are shielded from
deformation, thereby leading to a modulus increase via a
reduction in the amount of deformable material.

To test for the presence of occluded rubber domains, we
compute the x-component (uniaxial stretching direction) of the
end-to-end vectors Ree,x for each of the 5000 strands that make
up the crosslinked network. For each composite with filler

loading ff and structure Np, Ree,x is computed continuously in
time, such that a distribution of end-to-end vectors is established
at all strains throughout the low-strain regime investigated.
In order to improve sampling statistics, Ree,x histograms are
computed for each of 12 parallel deformation simulations and
a mean histogram is computed by averaging over individual
histogram bins. Averaged histograms are then area-normalized
to yield a probability distribution and fit with two variations of a
Gaussian functional form, which is described in more detail
below. This process is performed for all simulated composites
and at several strains in order to understand the effect of filler

Fig. 4 Representative (true) stress–strain curves of rubbery composites
containing filler volume fractions ff of (A) 0.125, (B) 0.261, and (C) 0.415.
Neat rubber is shown as a reference in each plot and is represented by
solid black circles. The other curves represent various filler structures:
Np = 1 (solid blue diamonds); Np = 3 (solid orange squares); Np = 5 (solid
purple triangles); Np = 7 (solid red circles); Np = 9 (hollow blue diamonds);
Np = 11 (hollow green squares); Np = 13 (hollow black triangles). Straight
lines connecting symbols are included as a guide to the eye.

Fig. 5 Ratio of tangent moduli for elastomer composites—containing a
particular filler loading and level of filler structure—to that of the neat rubber,
plotted vs. filler volume fraction ff. The tangent moduli ratios are taken at a
strain of (A) gx = 0.049; (B) gx = 0.068; (C) gx = 0.086. The horizontal black
dotted line represents the neat rubber limit. Symbols retain their meaning
from Fig. 4 and lines are guides to the eye.
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structure on the evolution of network strand statistics with
increasing (global) elongation.

The most probable scenario in which occluded rubber
would cause pronounced strain amplification (and therefore a
modulus enhancement) would be in a simulation of a compo-
site containing a highly loaded, highly structured filler. A
composite with loading ff = 0.417 and structure Np = 13 is
thus chosen as the test case for this hypothesis. In simulation,
the moduli are compared at gx = 0.166 (the highest true strain
probed), as differences in strand conformations would be most
prominent under large deformations wherein the deforming
network strands are far from their equilibrium (unperturbed)
state. The distribution of Ree,x distances is shown in Fig. 6. The
distribution reveals a narrow peak that is centered at Ree,x = 0;
this peak is attributed to a small fraction of network strands

that form loops during crosslinking. The crosslinking strategy
for this investigation links terminal segments of precursor
strands to a shared crosslinking segment, such that loop
formation leads to small separation distances between terminal
segments of network strands and therefore small end-to-end
distances. At larger end-to-end distances (|Ree,x| 4 3), another
distribution is observed in Fig. 6, which corresponds to strands
that do not participate in loops and are expected to deform
under an imposed global composite extension. In analyzing
these data, we assume Gaussian chain statistics, such that the
total probability distribution P(Ree,x) of end-to-end distances
can be represented as the sum of two Gaussian probability
distributions:

P Ree;x

� 	
¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2psloop2
p exp �1

2

Ree;x

sloop

� �2
" #

þ 1� rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psdef 2

p exp �1

2

Ree;x

sdef

� �2
" # (20)

where the first term represents a Gaussian distribution for
loops, and the second term represents a Gaussian distribution
for the deforming strands (the remaining strands that are non-
loops). In eqn (20), r is the fraction of network strands partici-
pating in loops, sloop is the standard deviation of the Gaussian
fit to the population of loops, and sdef is the standard deviation
of the Gaussian fit to the population of deforming network
strands. Since the fraction of strands that participate in loops is
constant (no new loops form during extension) and the loops
are non-deforming, the values of r and sloop are pre-determined
at all non-zero strains by using their respective fit values obtained
to a fit at zero-strain (before deformation). The standard deviation
of the deforming strand population sdef is left as a free parameter
since it is dependent on the global composite strain.

The individual fits to the non-deforming loop population
and deforming strands population are shown in Fig. 6A. The
value of r is 0.021, which suggests that the fraction of strands
participating in loops is small – of order a few percent. The total
(summed) fit to the distribution is shown in Fig. 6B. The total
fit is in excellent agreement with the data for distances |Ree,x|
less than 8–10. The disagreement between the fit and data in the
tails of the distribution is a consequence of the finite exten-
sibility of real polymer chains; the Gaussian approximation
over-predicts the probability of very large end-to-end distances.
Nevertheless, the breakdown of the two-term (total) Gaussian fit
occurs beyond two standard deviations of the deforming strand
population fit (sdef = 3.844). Therefore, the supposition of two
populations of network strands (non-deforming loops and
deforming strands) is highly representative of the distribution
of end-to-end vectors.

If occluded rubber were the primary origin for the observed
reinforcement in the composites with highly structured fillers,
then a successful fit to these data would require a third popu-
lation of strands. In addition to a population of deforming
strands and a small population of non-deforming loops, there
would also exist a population of non-deforming ‘occluded’

Fig. 6 Two-population fit to the distribution of end-to-end distances of
network strands. (A) Blue circles represent the probability distribution of
end-to-end vectors of the network strands in the x-direction for a com-
posite with ff = 0.417 and structure Np = 13 at a true strain of gx = 0.166.
The dashed purple line is a Gaussian fit to the fraction of strands that
are elastically ineffective due to loop formation during crosslinking.
The Gaussian fit to loops takes the following parameters: r = 0.021,
sloop = 0.844. The dashed black line is a Gaussian fit to the remaining
fraction of strands that are not loops. The Gaussian fit to non-loops takes
the following parameters: snon-loop = 3.844. (B) The solid black line is the
sum of the two Gaussian fits in comparison to the actual data shown as
blue circles.
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network strands. Thus, under the occluded rubber hypothesis,
the total probability distribution of end-to-end vectors would be
represented with the following functional form:

P Ree;x

� 	
¼ rloopffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2psloop2
p exp �1

2

Ree;x

sloop

� �2
" #

þ rdefffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psdef 2

p exp �1

2

Ree;x

sdef

� �2
" #

þ 1� rloop � rdefffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psocc2

p exp �1

2

Ree;x

socc

� �2
" #

(21)

Here, the first term represents the population of non-deforming
loops, the second term represents the population of deforming
network strands, and the third term represents the population
of non-deforming, occluded strands. For clarity, discussions
will use the following notation for these fits: the Gaussian fit to
the loop population is Gloop (which adopts a pre-determined
loop fraction rloop and standard deviation sloop from the zero
strain, 2-term Gaussian fit previously discussed), the Gaussian
fit to the deforming rubber population is Gdef (with a deforming
rubber fraction equal to rdef and standard deviation sdef), and
the Gaussian fit to the occluded rubber population is Gocc (with
an occluded rubber fraction equal to (1 � rloop � rdef) and
standard deviation socc equal to the zero-strain standard devia-
tion of the population of non-loops).

As described above, within the occluded rubber hypothesis,
filled elastomers are argued to possess a (loading dependent)
fraction of non-deforming rubber sufficient to yield the observed
modulus as a consequence of strain amplification within a series
(iso-stress) model. This approach is commonly used to ‘correct’
the Guth equation, which predicts the modulus enhancement as
a function of filler loading:

Ec/Er = 14.1feff
2 + 2.5feff + 1 (22)

where Ec and Er are the composite and neat rubber tangent
extensional modulus, and feff is an effective filler volume
fraction, taken as the sum of the true filler volume fraction f
and an occluded rubber fraction focc. Here, occluded rubber is
treated as a fitting parameter, which is adjusted to achieve
agreement between the Guth equation and measured moduli.

In order to test this hypothesis, we thus first back-calculate
the value of focc inferred by this approach. At gx = 0.166, the
composite modulus is 16.4 times greater than the neat rubber
modulus. In order for the Guth equation to capture a moduli
ratio of 16.4, an effective filler loading of feff = 0.961 would be
required. With a true filler loading f = 0.417, the occluded
rubber fraction focc of the total composite would be 0.544. This
hypothesis therefore anticipates that only 3.9% of the compo-
site (or 6.7% of the rubber fraction of the composite) would be
responsible for all deformation. We thus employ these fractions
to obtain the r values in eqn (21): 6.7% of the strands are treated
as deforming; the fraction of loops is assumed to remain
constant from the previous (two-population) assessment
(rloop = 0.021 and sloop = 0.844) since the choice of hypothesis

(two populations vs. three populations of strands) has no
influence on the crosslinking behavior; and the remaining
fraction of strands are treated as occluded. The standard devia-
tion of the occluded strands socc is held constant with elonga-
tion to reflect the posited non-participation of these strands in
deformation and is taken as the standard deviation of the
distribution of non-loops at zero-strain (unperturbed) from
the two-term Gaussian fit (which gives a value of socc = 3.23).
The standard deviation of the deforming rubber distribution
sdef is determined as follows: at a true (global composite) strain
of gx = 0.166, the engineering strain ge is 0.18. Since only 3.9%
of the material in the composite is deformable under the
occluded rubber hypothesis, the deforming strands experience
an amplified engineering strain equal to ge = 0.18/0.039 = 4.56.
Thus, when the composite is extended to an engineering strain
of 0.18, the average length of the deforming strands at this
global strain, recalling that the average zero-strain (unperturbed)
strand length Ree,x0 = 3.23, must be Ree,x = 17.9 if this model is
to account for the observed overall modulus. A value of 17.9
is thus employed for the standard deviation of the deforming
(and highly strain amplified) population sdef.

The results for this three-population model are shown
in Fig. 7. This model evidently underpredicts the end-to-end
distance at low/medium strand lengths, and overpredicts the
end-to-end distance at high strand length (in the distribution
tails). Overall, the data suggest that there is not an appreciable
population of non-deforming rubber beyond covalent loops, nor is
there a small population of highly strain amplified, deforming
rubber. These distributions of end-to-end strand lengths indicate
that these model systems contain no population of non-deforming
rubber beyond network defects. Evidently, the occluded rubber
hypothesis does not explain the modulus enhancement in these
simulated elastomeric nanocomposites.

Reinforcement by Poisson ratio mismatch

We next test the hypothesis, quantified by eqn (12), that the
Poisson ratio mismatch between the rubber matrix and a
jammed filler network leads to reinforcement of the extensional
modulus by a fraction of the matrix bulk modulus. To do so, we
first consider whether the Poisson ratio of these composites
behaves in the manner anticipated by this theory: enhance-
ments in modulus should generally accompany a reduction in
composite Poisson ratio. In Fig. 8, the Poisson ratio is plotted as
a function of elongational strain for the same nanocomposites
for which stress–strain curves were shown in Fig. 4. Similar to
the trend in extensional modulus, for a given loading, there
exists a monotonic trend in the Poisson ratio suppression with
structure Np: as structure increases, the Poisson ratio of the
rubbery composite decreases. This trend becomes more pro-
nounced at higher loadings. When we replot these data in Fig. 9
to show the filler-loading-dependence of the Poisson ratio at fixed
strain, a striking similarity emerges with the corresponding
modulus enhancement shown in Fig. 5. As the compositemodulus
increases, the composite Poisson ratio is increasingly suppressed
below n = 0.5, the ideal limit of volume conservation under
deformation (which is the typical assumption for n in neat rubber).
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At low loadings, the Poisson ratio nearly obeys the expected
value for neat rubber, and the extensional modulus does not
see appreciable reinforcement. However, at higher loadings,
particularly with higher structures, the Poisson ratio is reduced
to values as low as 0.44, and this drop in Poisson ratio is
accompanied by substantial enhancement in the extensional
modulus. Put another way, the composites undergo greater
volume growth on extension in more highly reinforced (greater
extensional modulus) cases.

In order to more quantitatively test the relationship between
Poisson ratio suppression and enhanced modulus predicted

by eqn (12), we must first obtain values for the strain amplifica-
tion factor f in eqn (12). The value of f should in general be
bounded between one and the series model prediction of one
over the rubber volume fraction. Instead of relying upon either
of these models, here we employ data directly from the end-to-
end vector analysis described above. Specifically, we define a
molecular-level polymer strain as

gRee;x
¼ ln

Ree;x

� �
Ree;x;0

� �
 !

(23)

Fig. 7 Three-population fit to the distribution of end-to-end distances of
network strands as predicted by the occluded rubber hypothesis. (A) Blue
circles represent the probability distribution of end-to-end vectors of the
network strands in the x-direction for a composite with ff = 0.417 and structure
Np = 13 at a true strain of gx = 0.166. The dashed purple line is a Gaussian fit to
the fraction of strands that are elastically ineffective due to loop formation
during crosslinking. The Gaussian fit to loops takes the following parameters:
r = 0.021, sloop = 0.844. These parameters are identical to the two-term fit
parameters for the loop population. The black dashed line represents the
hypothesized occluded rubber population, with an occluded rubber fraction
of 0.916 and standard deviation socc = 3.23. The green dashed line represents
the Gaussian description of the population of strain-amplified network strands
predicted by the occluded rubber hypothesis. The fraction of deforming strands
rdef = 0.067 and the standard deviation of the distribution of deforming strands
is sdef = 17.9. (B) The black solid line is the total 3-population fit (sum of all
population fits from (A)) relative to the actual data, shown as blue circles.

Fig. 8 Poisson ratio as a function of strain for the nanocomposites with
filler loadings ff of (A) 0.125, (B) 0.261, and (C) 0.415. Symbols represent
varying degrees of structure Np and retain their meaning from Fig. 4. Straight
lines between symbols are a guide to the eye. The horizontal black dotted
line corresponds to the limit of volume conservation during deformation.
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where Ree,x is the x-component of the end-to-end vector of a
network strand at some non-zero global strain (i.e. after mecha-
nical deformation has started), Ree,x,0 is the x-component of the
end-to-end vector of a network strand at time t = 0 (before
stretching), and angle brackets indicate an ensemble average.
For each filled system, a strain amplification factor f is computed
by taking the ratio of the molecular strain in the composite (at a
particular global strain) to the molecular strain in the neat
rubber (at the same global strain):

f ¼
gRee;x

gRee;x;neat

(24)

Representative strain-amplification factors as a function of
global strain are shown in Fig. 10A. For a given composite,
f is roughly constant in strain, which is to be expected within
the linear regime. To capture the general behavior throughout
this regime, we employ a strain averaged value of f, in which an
average of f over the range gx = 4–18% is used to compute a mean
amplification factor. Representative strain-averaged f values are
shown Fig. 10B for composites with varying filler structure Np at
constant loading. Again contrary to the occluded rubber hypothesis,

Fig. 9 Poisson ratios of the same systems shown in Fig. 5 as a function of
ff. The Poisson ratios are taken at a strain of (A) gx = 0.049; (B) gx = 0.068;
(C) gx = 0.086. The horizontal black line in each plot represents the ideal
limit of volume conservation (n = 0.5).

Fig. 10 (A) Strain amplification factor as a function of global strain for
composites with loading ff = 0.415 over a range of structures (Np = 1–13)
Symbols retain their meaning from Fig. 5, and straight lines between
symbols are a guide to the eye. (B) Strain-averaged strain amplification
factors for the same composites in (A). (C) Strain-averaged strain ampli-
fication factors for unstructured fillers (Np = 1) at every simulated loading.
Error bars indicate �1 standard deviation from the mean. Horizontal
dashed black lines represent the limit of no strain amplification.
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there is not a clear trend in increasing strain-amplification with
structure, at least within the range of structures probed in these
simulations. As shown in Fig. 10C, however, there is a weak
trend towards greater strain amplification with increasing
nanoparticle loading.

Employing these measured values of f, we now replot the
data in Fig. 5 and 9 in the manner suggested by eqn (12).
Specifically, if the hypothesis of a Poisson-ratio-mediated,
jamming-driven reinforcement effect is correct, these data
should exhibit a linear relationship between the quotient En/f
and the quantity 2(n0 � n), with intercept equal to the native
extensional modulus of the neat rubber E0 and slope given by the
bulk modulus of rubber K. As shown by Fig. 11, the data indeed
conform to this relationship, using the (strain-dependent) native
extensional modulus measured from direct simulation of the
neat rubber. Here, the neat rubber bulk modulus K is employed
as an adjustable parameter (the only adjustable parameter in
the model). Are the resulting fit values consistent with the bulk
modulus of the neat rubber?

To answer this question, the fit values of K must be
compared to the zero-strain (i.e. equilibrium) bulk modulus
K0 of the neat rubber. To make this comparison, we compute
the equilibrium bulk modulus in another set of simulations
from the fluctuation–dissipation theorem for isothermal com-
pressibility, which relates the compressibility (and therefore
the bulk modulus) to fluctuations in system volume at fixed
particle number:58

K ¼ Vh i
V2h i � Vh i2 kT (25)

where V is the volume, k and T are the Boltzmann constant and
temperature, respectively, and brackets indicate an ensemble
or long-time average. This determination is made from quies-
cent simulations held at constant pressure employing a Nose–
Hoover thermostat and barostat, which yields fluctuations
consistent with the canonical ensemble.59 The temperature T
and pressure P are damped every 2t, and the instantaneous
volume is measured every 25t. The comparison between the
zero-strain bulk modulus K0 and the fit values of K is shown
over a range of strains in Fig. 12. This comparison is compli-
cated by the fact that K0 is computed in an unperturbed system,
whereas the fit values of the bulk moduli describe the resis-
tance of the system to volume deformation after some nonzero
combination of both elongational and volume strain. Never-
theless, the resulting strain-dependent fit values of K recover
the zero-strain neat rubber bulk modulus at all strains below
B8%. Beyond 8%, an observed strain-softening in the fit values
of K can be understood from the expected reduction in the
density of van der Waals interactions as the rubber’s density
drops in filled elastomers with Poisson ratio less than 0.5 and
its molecular packing is perturbed from its equilibrium state.

These findings support a scenario wherein a jammed filler
network forces a reduction in the composite Poisson ratio from
its rubber-preferred value of nearly 1/2. The resulting growth in
rubber volume with strain leads to an enhancement of the
composite elongational modulus by a portion of the rubber

bulk modulus, with some strain-softening of the bulk modulus
modestly weakening this effect at higher strains.

Direct evidence of reinforcement driven by a Poisson ratio
mismatch between the rubber and jammed filler is provided in
Fig. 13. In the y-direction (normal to the stretching direction),
an internal stress balance develops between the polymer and
jammed filler in which the partial stresses within the two
phases offset one another in order to maintain constant zero

Fig. 11 Collapse to eqn (12) of data from elastomer composites over all
nanofillers loadings and structures simulated (blue circles), at representa-
tive strains (A) gx = 0.049, (B) gx = 0.068, and (C) gx = 0.086. A linear best fit
line (solid red) is constrained at the y-intercept to equal the native neat
rubber extensional modulus E0. Dashed red lines reflect a 95% confidence
interval for the fit value of K. Insets in (A) indicate the location of the
systems pictured in Fig. 1 within these data.
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normal stress. The partial pressure of the filler Dpyy,filler increases
monotonically with elongational strain, while the partial
pressure of the polymer Dpyy,poly is opposite in sign and
roughly equal in magnitude to Dpyy,filler. In other words, during
uniaxial extension, the jammed filler network pushes outward
against contractile tension emerging from the rubber matrix’s
bulk modulus. The reason for this behavior can be explained
from the perspective of the Poisson ratio: jammed filler
deforms with a Poisson ratio of about one-third, and there-
fore does not contract laterally at the same rate preferred by
the rubber (Poisson ratio of about 1/2). This ultimately leads to
a composite Poisson ratio that is less than that of the neat
rubber because the jammed filler phase does not allow the
rubber to contract as it would in its native state. As the struc-
ture of the filler increases, the magnitude of the filler and
polymer partial pressures also increases for a given elonga-
tional strain.

Discussion and conclusions

The precise mechanism of low-strain reinforcement in nano-
filled elastomers has remained an unsettled question with
considerable fundamental and practical implications for the
better part of a century. Here we show that this phenomenon
cannot be understood as emerging from a reduction in the
fraction of deforming rubber due to geometric occlusion – a
major extant hypothesis in the field. Instead, our results are
consistent with a scenario wherein jamming or network for-
mation of the filler particles causes the reinforced elastomer to
reflect an amalgam of two solids – an elastomeric matrix with a
jammed interpenetrating nanoparticulate network. The key
feature of this coexistence of two solids at low strains is the
mismatch in their preferred Poisson ratio. Since the Poisson
ratio ultimately governs the normal strain boundary conditions
of the material during extensional deformation, the composite
must reflect a compromise between these two preferred values.
This forces the volume of the rubber to grow beyond its pre-
ferred value during elongational deformation, supplementing
its extensional modulus with a fraction of its (much higher)
bulk modulus.

This viewpoint suggests that the filled rubber matrix’s key
property at low strain is its liquid-like character (preference for
volume conservation), rather than its elastomeric nature. In
particular, this model suggests that even a non-crosslinked,
liquid matrix should yield a solid-like extensional response
under high filler loading – a predicted consequence of a
Poisson ratio mismatch with the jammed filler, which effec-
tively converts the liquid matrix’s bulk modulus into a compo-
site extensional modulus. Indeed, prior experimental work has
demonstrated that even low molecular-weight oils exhibit solid-
like reinforcement upon loading with nanoparticulates,23,60

consistent with this proposition. On the other hand, this effect
cannot apply in nearly Poisson-ratio-matched composites such
as concrete and filled glassy polymers; it is unique to reinforce-
ment of elastomers and liquids. In essence, these findings

Fig. 12 Fit values for the rubber bulk modulus K (blue diamonds) as a
function of strain at which the collapse from Fig. 11 is performed, com-
pared to the zero-strain (equilibrium) neat rubber bulk modulus obtained
by direct measurement (red circle). Error bars on all data points indicate
95% confidence intervals for the values of K.

Fig. 13 Partial pressure along the y-dimension of the (A) filler and
(B) polymer in a highly loaded (ff = 0.415) rubbery composite. The
y-dimension is orthogonal to the direction of elongation (x-direction).
Symbols retain their meaning from Fig. 4, and straight lines connecting
symbols are a guide to the eye.
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indicate that elastomers are more naturally amenable to nano-
particulate reinforcement than plastics.

Because this reinforcement mechanism emerges from the
formation of a coexisting ‘nanogranular solid’ within the
elastomer, it is naturally favored by filler structures promoting
percolation and jamming. Objects with structures that are less
compact tend to percolate and jam at lower volume fractions,
suggesting that such structures will tend to favor reinforcement
via this mechanism. Simulation results are consistent with this
expectation, with greater reinforcement observed with more
rarified nanoparticle structures at fixed loading.

Here we have designed our simulations to exclude a role for
bound surface rubber – a proposed phenomenon in which reinfor-
cement is driven by an enhancement in the mechanical properties
of near-particle rubber, typically linked to an interfacial enhance-
ment in the rubber glass transition temperature Tg.

15 At tempera-
tures closer to Tg and/or with stronger polymer/filler interactions
than those probed here, this may play an important complementary
role along with nanoparticulate jamming. In that scenario, polymer/
nanofiller interfacial area would be expected to play an important
role together with particle structure. Exploration of this possibility
should be an emphasis of future work.

We have presented a rigorous theoretical framework for
Poisson-ratio-mismatch-mediated reinforcement in the low
strain limit. This model can be understood as a generalized
form of the Lamé relation in that an extensional modulus can
be predicted – from knowledge of the bulk modulus and native
and imposed Poisson ratios – for a broader class of materials
and/or deformation scenarios in which a non-native Poisson
ratio is enforced/imposed. Eqn (12) thus provides a design rule
for the formulation of highly reinforced elastomeric nanocom-
posites: fillers that drive larger suppressions in composite
Poisson ratio can generally be expected to yield larger enhance-
ments in the composite modulus. This result is consistent with
an experimental study finding larger Poisson ratio suppres-
sions in more highly reinforced composites.39 Ultimately, these
findings support the premise that reinforcement in rubber/
filler composites is primarily driven by a filler jamming effect,
and they point towards the possibility of geometrically engi-
neering nanofillers to maximize elastomer Poisson ratio sup-
pression and the resulting mechanical reinforcement.
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