]. Parallel Distrib. Comput. 118 (2018) 118-119

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

AND

PARALLEL A
DISTRIBUTED
COMPUTING

Editorial

VSI: Edu*-2016 - Keeping up with technology: Teaching parallel, )

Check for

distributed and high-performance computing

Editorial Introduction

This special issue is devoted to progress in one of the most
important challenges facing computing education. The work pub-
lished here is of relevance to those who teach computing related
topics at all levels, with greatest implications for undergraduate
education, Parallel and distributed computing (PDC) has become
ubiquitous to the extent that even casual users feel their impact.
This necessitates that every programmer understands how paral-
lelism and a distributed environment affect problem solving. Thus,
teaching only traditional, sequential programming is no longer
adequate. For this reason, it is essential to impart a range of PDC
and high performance computing (HPC) knowledge and skills at
various levels within the educational fabric woven by Computer
Science (CS), Computer Engineering (CE), and related computa-
tional science and engineering curricula. However, rapid changes
in hardware platforms, languages, programming environments,
and advances in research increasingly challenge educators in de-
ciding what to teach and how to teach it, in order to prepare
students for their careers in computing.

In recognition of the importance of these issues and the un-
derlying challenges, a curriculum working group from the IEEE
Technical Committee on Parallel Processing (TCPP), the National
Science Foundation (NSF), and sister communities such as the ACM,
has taken up proposing and refining a curriculum for computer
science (CS) and computer engineering (CE) undergraduates on
PDC. The goal of this working group has been to propose a core
curriculum for CS/CE undergraduates, with the premise that every
such undergraduate should achieve a specified skill level regarding
PDC-related topics as a result of their required coursework. This
effort has resulted in a preliminary curriculum in 2010 and its
formal version in 2012. Since 2011, this curriculum initiative has
been coordinated by the NSF-supported Center for Parallel and
Distributed Computing Curriculum Development and Educational
Resources (CDER), with both the initiative and the center receiving
additional support from Intel, nVIDIA, and IBM. The NSF/TCPP
curriculum has over 100 early adopter institutions worldwide and
the ACM/IEEE CS2013 Computer Science Curricula explicitly refers
to this for comprehensive coverage of parallelism (and provides a
direct hyperlink to it). In 2011, to facilitate sharing of findings and
experiences and for fostering the community, the EduPar work-
shop series was established at TCPP’s flagship IPDPS conference. In-
augurated in 2013, the EduHPC workshop series at SC conference,
with greater emphasis on HPC, followed the success of EduPar.
Reflecting the truly global nature of the community, in 2015 the

https://doi.org/10.1016/].jpdc.2018.03.007
0743-7315/© 2018 Published by Elsevier Inc.

workshops were expanded with the first Euro-EduPar at the Eu-
roPar conference. In summary, there are now three workshops per
year devoted to PDC and HPC Education. The workshops are very
successful, which indicates the community’s interest in Parallel
and Distributed Computing, in accordance with the necessity of
initiating today’s students to a technology they will work with in
their professional life.

This special issue sought high quality contributions in the fields
of PDC and HPC education. Submissions were on the topics of
EduPar 2016, Euro-EduPar 2016 and EduHPC 2016 workshops, but
the submission was open to all. We received 23 submissions from
all over the world. The submissions were rigorously reviewed by
at least three expert external reviewers, and further evaluated
by the guest editors. Of the manuscripts that advanced to the
second round for revision and review, 12 were finally accepted
for publication, Unlike regular journal papers, timeline and size
were additional constraints because of the nature of special is-
sue. We thank all the reviewers for their critical and expert help.
Special thanks are due to our CDER center colleagues, Anshul
Gupta, Arnold Rosenberg, Alan Sussman, and Chip Weems, for their
guidance and help throughout.

Below, we provide an overview of the papers appearing in this
volume. We have organized these papers as those most relevant to
(i) pedagogy, (ii) experience, or (iii) tools, frameworks, and envi-
ronments. These could also serve as sources of useful exemplars to
illustrate and teach PDC/HPC concepts.

We begin with the papers most relevant to pedagogy.

In “Teaching Distributed Memory Programming from Mental
Models”, Victor Eijkhout argues that the mental model of the be-
ginning parallel programmer (master-worker hierarchy) is coun-
terintuitive to MPI model. Typically, the progression of topics in
teaching parallel programming using MPI is point-to-point com-
munication first, followed by collective communication, and other
advanced topics. In this interesting paper, the author argues that
this is dictated by the level of complexity in the implementa-
tion, rather than by conceptual considerations. In his opinion, MPI
should be taught by sequencing of topics and use of examples
that explicitly target the required mental model of the parallelism
model underlying MPI. The author describes his experience of
teaching MPI with collective communication first.

In “Designing Lab Sessions Focusing on Real Processors for
Computer Architecture Courses: A Practical Perspective”, Josue
Feliu et al. propose a new approach that complements the use of
simulation frameworks in lab sessions of computer architecture



Editorial / ]. Parallel Distrib. Comput. 118 (2018) 118-119 119

courses. This approach is based on performing experiments on
current commercial processors, where multiple hardware events
related to the performance of the computer components under
study are monitored, and students analyze the measured events
and explore how they impact the overall performance. The paper
also describes experiences from teaching a computer architecture
class with accompanying lab exercises on real multicore hardware.
The difficulty level of the labs ranging from basic to intermediate to
advanced levels can be adopted for different levels of Architecture
classes. The authors discussed the learning goals and development
for each lab. The labs presented in this paper covered wide range
of topics such as Cache Hierarchy Performance and System Per-
formance, Prefetching and Issue Stalls, Inter-thread Interferences,
Memory Bandwidth-Aware Scheduling, and Core Allocation in SMT
Processors.

In “Teaching High-Performance Service in a Cluster Computing
Course”, Pedro Lopez and Elvira Baydal propose several teaching
strategies for a course on cluster computing showing how to con-
figure, test and evaluate a high-availability/load-balanced Internet
server. They present an outline of an upper-level undergraduate
or graduate course on cluster computing with emphasis on high-
performance service and availability, and consider a practical and
hands-on approach where students build, configure, test and eval-
uate their own cluster-based web server. The authors aim to fill
the gap observed in many cluster computing courses, and improve
students’ skills in this important application of computer clusters
technology.'

The second set of papers is most relevant to experience and
content of PDC/HPC courses.

In “An Approach to Task-based Parallel Programming for Under-
graduate Students”, Eduard Ayguade and Daniel Jiménez-Gonzalez
present a parallel programming course for undergraduate stu-
dents, where the focus is on the shared-memory programming
paradigm which facilitates the presentation of fundamental as-
pects and notions of parallel computing. The course follows a task-
based approach, and uses OpenMP to express task decomposition
strategies and simple performance models to understand the po-
tential of task decomposition strategies.

In “Computational Science and HPC Education for Graduate
Students: Paving the Way to Exascale”, Alexander Antonov et al.
summarize their experience of teaching a graduate course on su-
percomputer disciplines in a class of more than 250 students. The
authors report on their approach of assigning specific practical
projects to the students, with an emphasis on important properties
of parallel algorithms which are critical for developing efficient
applications for any parallel computing platform,

In “A Course on Big Data Analytics”, Joshua Eckroth describes
experience from a course designed for undergraduate junior and
senior computer science students. Some of the projects used in the
course are discussed, which open the door to several PDC topics
including MapReduce, GPU computing, and performance analysis.
The projects also provide exposure to tools and environments such
as Hadoop, Apache Hive, SQL, R, and ggplot.

Our final set of papers is focused on tools and environments that
address various aspects of PDC/HPC.

In “Building Web-Based Services for Practical Exercises in Par-
allel and Distributed Computing”, Oleg Sukhoroslov describes an
approach for the design and implementation of web-based envi-
ronments to support development and testing of practical exer-
cises in parallel and distributed computing courses. The approach
relies on Everest, a general-purpose platform for building compu-
tational web services and the author shows how it can be exploited

1 This article appears in a separate volume due to production issues but is a part
of this collection: http://dx.doi.org/10.1016/j.jpdc.2018.02.027.

for the purpose of developing assignments by students and testing
of the assignments by lecturers.

In “A Visual Programming Environment for Introducing Dis-
tributed Computing to Secondary Education”, Brian Broll et al.
introduce a Snap!-like development environment, “NetsBlox”. Key
to the work are blocks for message passing and remote procedure
calls that can be used to explore several distributed computing
concepts and environments. A cloud-based infrastructure with
access to NetsBlox through a web interface is also discussed.

In “Unifying Computing Resources and Access Interface to Sup-
port Parallel and Distributed Computing Education”, Linh Bao Ngo
et al. present a web-based Python interface, “JupyterHub”, that
facilitates the teaching of PDC concepts. Several sample mod-
ules are presented in support; these include scaling, distributed
locks, parallel programming, communication patterns (broadcast,
reduce, scatter and gather), scheduling, and MapReduce.

In “Let’'s HPC: A Web-Based Platform to aid Parallel, Distributed
and High Performance Computing Education”, Bhaskar Chaudhury
et al. propose a web-based supplement to traditional HPC and
PDC courses. The platform centers around an archive of perfor-
mance characteristics of parallel programs running on different
environments and architectures. It serves as a handy tool for both
instructors and students to experiment with factors impacting
performance.

In “TSGL: A Tool for Visualizing Multithreaded Behavior”, Joel C.
Adams et al. present the “Thread-safe Graphics Library (TSGL)” that
allows the user to add graphics calls to a multithreaded program to
visualize the parallel behavior. The paper also includes examples of
programs’ use of the tool and directions in which student compre-
hension can be enhanced.

In “Preparing the Software Engineer for a Modern Multi-Core
World”, Nasser Giacaman and Oliver Sinnen describe the “Mod-
ern Parallel Programming Framework (MPPF)" that addresses a
range of PDC concepts, including GUI concurrency and object-
oriented parallelism. Experiences of integrating this framework
into a course have also been reported, with the recognition that
successful software engineering in this domain involves a combi-
nation of hard and soft skills.

We end with sincere thanks to all the authors for their high-
quality contributions. We hope that you will find this volume
rich and exciting and a valuable resource for your future teaching
endeavors.

Sushil K. Prasad

Georgia State University, United States
National Science Foundation, United States
E-mail address: sprasad@gsu.edu,

Sheikh Ghafoor
Tennessee Tech University, United States
E-mail address: sghafoor@tntech.edu.

Christos Kaklamanis

University of Patras, Greece

CTI “Diophantus”, Greece

E-mail address: kakl@ceid.upatras.gr.

Ramachandran Vaidyanathan
Louisiana State University, United States
E-mail address: vaidy@Isu.edu.

Available online 31 March 2018






