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Key Points:

Tide-surge-river interaction was shown to be largest in the 6™ and 8" diurnal bands.

High frequency tide-surge-river interaction can have amplitudes more than double that of
low frequency surge.

Enhanced bottom friction and resonance were the primary mechanisms causing tide-
surge-river interaction at the D¢ and Dg bands.
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Abstract

Tide-surge interaction creates perturbations to storm surge at tidal frequencies and can affect the
timing and magnitude of surge in tidally energetic regions. To date, limited research has
identified high frequency tide-surge interaction (> 4 cycles per day) in coastal areas, and its
significance in fluvial estuaries (where we consider it tide-surge-river interaction) is not well
documented. Water level and current velocity observations were used to analyze tide-surge-river
interaction at multiple tidal and overtide frequencies inside of a shallow estuary. Near the head
of the estuary, higher frequency harmonics dominate tide-surge-river interaction and produce
amplitudes more than double that of wind and pressure-driven surge. Bottom friction enhanced
by storm-induced currents is the primary mechanism behind the interaction, which is further
amplified by within-estuary resonance. High frequency tide-surge-river interactions in estuaries
present a significant threat to human life, as the onset of flooding (in < 1.5 hrs.) is more rapid
than coastal storm surge flooding. Commonly used storm surge forecasting models neglect high
frequency tide-surge-river interaction and thus can markedly underestimate the magnitude and

timing of inland storm surge flooding.

Plain Language Summary

Storm surges are a threat to life and property on the coast. How storm surges interact with tides
varies by region and is not well understood, particularly in estuaries. This tide-surge interaction,
which we identify as tide-surge-river interaction in estuaries with a strong river influence, can
affect the timing and magnitude of storm surges, and so is important to understand. This study
calculated storm surge and tide-surge-river interaction in a large estuary with strong tides after

collecting water levels in the system for one Fall / Winter season. Results show that tide-surge-
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river interaction can more than double storm surges relative to the non-tide influenced surge and
create rapid oscillations to water level that are hard to predict. Enhanced current velocities during
storms from wind and surge propagation can cause tide-surge-river interaction, which can be
further amplified by estuary geometry. Common surge models do not accurately resolve these

high frequency tide-surge-river interactions.

1 Introduction

Storm surges present a risk to life and property in coastal communities (von Storch &
Woth, 2008). Recent studies predict that climate change can regionally increase storminess,
storm surge heights (Lowe & Gregory, 2005), and tidal ranges (Devlin et al., 2017; Holleman &
Stacey, 2014), collectively enhancing the threat of flooding from storm surge. Furthermore,
nonlinear components of the tide are expected to increase with sea level rise (Holleman &
Stacey, 2014), thereby enhancing the complexity of coastal flood forecasting. The
socioeconomic loss associated with coastal flooding can be substantial (e.g., 80,000 businesses
negatively affected by Hurricane Katrina in 2005) (Petterson et al., 2006), demonstrating the
need to advance the current understanding of storm surge behavior to mitigate damage on the

coast.

Storm surge is quantified as the difference between the predicted tide and the observed water
level during a storm event. Low-frequency surge is the component to surge which modifies the
non-tidal water level (water level assuming no tidal influence) during storm events and includes
contributions from wind set-up, atmospheric pressure, and river discharge (Pond & Pickard,

1983). Low frequency surge can be externally generated in the coastal ocean and propagate into
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an estuary, or internally generated within the estuary. Tide-surge interaction, which is how the
tide interacts with the low frequency surge, manifests as an oscillation to surge at tidal
frequencies, and can be created one of two ways: (1) the tide can modify an externally generated
surge; and/or (2) a locally generated surge can modify the tide, with each case dependent on how
surge propagates relative to the tide (Horsburgh & Wilson, 2007; Rossiter, 1961). Many coastal
flood and storm surge models consider only low-frequency surge for simplicity (e.g. Fanjul et al.,
2001; Glahn et al., 2009) which neglects more computationally expensive and complicated
nonlinear tide-surge interactions. This straightforward approach may sacrifice accuracy, as some
studies have reported root mean square errors of observed water levels at 70% of predicted water
levels (Qin et al., 1994). Fig. 1 illustrates how tide-surge interaction can enhance coastal flooding
by increasing the total water level above the contribution of wind and pressure-driven surge.
Tide-surge interaction has been identified at varying levels of significance in localized regions,

generally on the coast.

Recent storm surge studies emphasize the development of tide-surge interaction over the
shelf regions on the coast. Atmospheric pressure (Mercer, 2002) and wind (Rego & Li, 2010;
Feng et al., 2016) often play an important role in the creation of the interaction, but other factors
like steepness of the continental shelf and wave set-up (Nayak et al., 2012) can also contribute.
Nonlinear bottom friction is often considered the dominant mechanism causing the interactions
(Rego & Li, 2010; Feng et al., 2016; Wolf, 1978; Valle-Levinson et al., 2013; Jones & Davies,
2008), but tide-surge interaction can also be influenced by shallow water and advection (Rego &
Li, 2010; Wolf, 1978; Wolf, 1981). Observed tide-surge interaction on the coast has reached
magnitudes of up to 80% of principal tidal amplitudes (Rego & Li, 2010), but tide-surge

interaction is not usually larger than the contribution from low-frequency surge. However, recent
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studies have shown that tide-surge interaction in estuaries produces larger amplitudes than those

found on the immediate coast (Horsburgh & Wilson, 2007; Thomas et al., 2019).

Estuaries often feature complex characteristics that can modify the tidal signal and may
cause tide-surge interaction to behave differently than the coast (Lyddon et al., 2018). Pioneering
work in the 1950s used a 1-dimensional analytical model to understand how the principal tide
and an externally generated storm surge interact in a simple basin (Proudman, 1955a, 1955b)
suggesting that larger water levels from the presence of surge allowed for faster tidal propagation
and vice versa. The model compared well with observations near the mouth of the Thames River,
but discrepancies were evident upstream. Since then, many studies have used numerical models
(e.g. Rossiter, 1961; Prandle & Wolf, 1978; Horsburgh & Wilson, 2007; Thomas et al., 2019) to
examine the tide-surge interaction in more complex systems, though they focus on modification
to/from the principal tide. Higher frequency tides (overtides) can be influential in frictional and
fluvial estuaries and arise through indirect interactions between the principal tide and shallow
water, between harmonics, and between river discharge and harmonics (Parker, 1991). Higher
frequency tide-surge interactions (4th diurnal and larger) are not captured in the previously
mentioned model frameworks and have only been identified observationally (Horsburgh &
Wilson, 2007; Prandle & Wolf, 1978). The importance of these high frequency interactions in
estuaries has been largely ignored, as have the mechanisms that create them. Considering the
importance of both geometry and river discharge in creating nonlinear tidal interactions, the
authors will refer to high frequency storm surge in fluvial estuaries as tide-surge-river
interaction. The susceptibility of inland estuarine communities to storm surge flooding,
particularly through higher frequency tide-surge-river interaction, therefore remains to be

understood.
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In following, the present study will: (1) determine the spatiotemporal variability of higher
frequency tide-surge-river interactions in estuaries; (2) assess the relative contributions of higher
frequency tide-surge-river interaction to overall surge levels; and (3) investigate the mechanisms
creating higher frequency tide-surge-river interactions. This research is the first work to identify

tide-surge-river interaction from enhanced storm-induced currents and resonance.

2 Materials and Methods

2.1 Study Site

Data for this research were collected in the Penobscot River estuary located on the central
coast of Maine in the United States (Fig.2). The Penobscot estuary, comprised of bay and river
sections, is a long, converging, and deep estuary extending approximately 100 km from the
Atlantic Ocean near Rockland to the head at Eddington, 6 km north of Bangor. The width of the
estuary varies from nearly 30 km in the lower bay to 0.24 km at Bangor. Maximum average
depths range from 120 m near the mouth to 30 m at the confluence with the river (boxed area in
Fig. 2b). Average depths in the riverine portion of the system then decrease to 5.5 m at Bangor.
The primary sources of freshwater are the Penobscot River and Kenduskeag Stream at Bangor.
The mean annual discharge at the confluence of these rivers is 396 m?/s and the 100-year peak
flood is 3370 m*/s (Hodgkins, 1999). High runoff periods generally occur during the spring
freshet (April to May) with a mean monthly discharge of 1105 m>/s, while the lowest runoff
period is typically September with a mean monthly discharge of 140 m?/s (Dudley, 2004). The
tidal range in the estuary ranges from about 2.9 m during neap tides to 4.9 m during spring tides

and tidal velocity amplitudes range from 0.7 m/s on neap tides to 1.3 m/s on springs (Geyer &
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Ralston, 2018). Most major coastal storms in the region occur in the winter, usually as “Nor’

Easters”, characterized by strong winds blowing from the northeast.

2.2 Data Collection and Processing

2.2.1 Water Level and Currents

Three HOBO water level loggers were deployed in Penobscot Bay for part of the Fall and
Winter of 2017/2018 (October 1st through January 31st) to measure water levels at Rockport
(44.1855 N, 69.0737 W), Belfast (not shown) (44.4291 N, 69.0030 W), and Castine (44.38625
N, 68.79652 W) (Fig. 2b). Each sensor sampled at 2-minute intervals and featured a 0.1%
measurement accuracy. The sensors measured absolute pressure, which was converted to water
level using barometric pressure data. Water level measurements from a USGS river gage (Station
#01037050 at 44.7961 N, 68.7679 W) in Bangor sampling at 6-minute intervals were also used
to supplement these data. These water level data were part of the Sensing Storm Surge citizen
science project initiated by an interdisciplinary team of University of Maine researchers

(http://sensingstormsurge.acg.maine.edu/), with the Rockport, Belfast, and Castine sensors

monitored by trained local volunteers. The most compelling data collected during the study
period occurred during one storm event, which is explained further in Section 3. The Belfast
sensor was not deployed during the time of that event, and so data from Belfast was not usable in

this paper.

Current velocities were measured at 20-minute intervals at a depth of 2 m with an

Aanderaa current meter from a buoy in eastern Penobscot Bay near Castine (44.3775 N, 68.8296
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W). North-south (N-S) and east-west (E-W) components were recorded, with the N-S taken as

the along-channel component given the north-south orientation of the Penobscot estuary.

2.2.2 Environmental Conditions

Barometric pressure and wind data were collected in Castine and Bangor (Fig. 2b). The
Maine Maritime Academy weather station at Castine is approximately 45 km from Bangor and
30 km from Rockport on the eastern side of Penobscot Bay. Wind and barometric pressure were
sampled at 1-minute intervals at this location, with the barometric pressure used to calculate
water levels at Rockport and Castine. Wind was also recorded at Bangor International Airport,
approximately 5 km from the Bangor tide gauge, in 4-minute intervals. All wind data were
converted to oceanographic convention. River discharge was measured once daily at a USGS
river gauge (Station #01034500) on the Penobscot River in West Enfield, approximately 54 km

upstream of Bangor.

2.3 Harmonic Analysis and Surge Decomposition

The results of this study focus on one storm event, the October 30th, 2017 Windstorm.
This event featured a storm path and wind field that created the largest amplitude tide-surge-river
interaction over the monitoring period. Water level data were analyzed in a two-month period
covering October to November. Significant ice cover on the river in Bangor during December
and January created inconsistencies in water level data, and so that period was not used in

harmonic analysis. Data at Rockport and Castine were collected in monthly segments, thus
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segments were concatenated and interpolated onto a uniform grid to create a continuous two-

month time series.

A harmonic analysis and data filtering process following Feng et al. (2016) was
conducted to extract components of surge from water level measurements. Water levels in the
two-month segments at each location were demeaned and spikes were removed and interpolated
with surrounding data. Predicted tides were then computed using the 7' Tide MATLAB toolbox
(Pawlowicz et al., 2002). At each station, the total surge (7S) was computed by subtracting the
predicted tide (PT) from the demeaned observed total water levels (TWL). The total surge is
comprised of a tidal component and non-tidal component. The non-tidal surge, called low
frequency surge (LFS) was extracted from the residual using a Fourier low-pass filter with a cut-

off period of 30 hours (Walters & Heston, 1982), thus excluding all tidal frequencies that are

diurnal and higher. An average form factor (F = %) of 0.11 in the estuary shows the tides are
2 2

mixed, mainly semidiurnal, justifying this cut-off period. Low-frequency surge represents the
demeaned non-tidal water level and includes influences from river discharge, as well as wind and
pressure-driven storm surge. The tide-surge-river interaction term (/), was calculated by
subtracting LF'S from TS. The interaction term physically represents either how the tide changes
an externally generated, propagating wave (i.e. storm surge) or how water level residuals modify
the tides. Fig. 3, scaled with the actual results of the October Windstorm in Bangor (elaborated
on in Section 3), conceptually shows these components to 7WL relative to mean sea level and
how the summation of PT, LFS and [ can produce water levels larger than PT+LFS when

nonlinear surge (/) amplifies. The harmonic analysis was also applied to the current velocities to
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distinguish tidal current velocities from non-tidal current velocities influenced by other

mechanisms, such as wind, storm surge and river discharge.

2.4 Wavelet Transforms and Reconstruction of Tides and Tide-Surge-River Interaction

To understand the mechanisms creating tide-surge-river interaction, the specific tidal and
overtide frequencies in / need to be identified. To do so, a wavelet analysis (Torrence & Compo,
1998) was performed on each time series of /. Wavelets were also created for PT at each location
to highlight how the tide-surge-river interaction manifested in water levels. The wavelet
transform is used in this study as a tool to analyze time series that contain non-constant power to
see how harmonics, or harmonic ranges (bands), within the series change with time. From the
wavelets (PT and /), signals were re-created at the D2, D4, Ds, and Dg bands to identify exact
variations in amplitude and phase of each band around storm events. All data at each location
were interpolated onto grids with a 15 second time interval prior to wavelet analysis to ensure
equal comparison. The time interval chosen provided filter lengths and bands small enough to
capture the dominant harmonics of interest within each band, without losing time resolution
(Kukulka & Jay, 2003). The D> band includes all signals with periods between 11 and 14.5
hours, the D4 covers 5.5 to 7 hours, the D¢ covers 4 to 4.5 hours, and the Dg includes 2.7 to 3.2
hours. Bands, rather than specific harmonics, were resolved because the signal reconstruction

analysis described next does not always allow for specific harmonics to be re-created.

Following Torrence & Compo (1998), the base wavelet function, ¥,(n), should be
chosen based on the data set being analyzed. In this analysis, a Morlet base function is used; a
nonorthogonal, complex function. Nonorthogonal transforms are best for time series where

smooth and continuous variations in wavelet amplitude are expected, while complex functions
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return information on both amplitude and phase, allowing for better depictions of oscillatory
behavior in the time series. Given the base function, a continuous wavelet transform at each

scale, s, is calculated as:
W (s) = TRZ3 R * (swy)e @rndt (D

where k = 0...N-1 is the frequency index with N being the number of points in the series, X, is
the discrete Fourier transform of the time series, 1 * (swy,) is the complex Fourier transform of
the wavelet function, wyis the angular frequency, i is the scale index, » is the localized time
index, and &t is the equal time spacing which the transform follows. Calculating W, (s) at each
scale then allows for the tidal and overtide signals in both P7 and / to be reconstructed, as the
sum of the real part of the wavelet transform over the scales of each frequency:

5istz I RWR(s)}

Xn = Cso(0) Zi=0 5_1/2 @)

14

where Cg is the unitless reconstruction factor, taken as 0.776 and 1, (0) is the unitless energy

scaling factor, taken as n Y/ 4, both of which are constant for a Morlet base (Torrence & Compo,
1998). oi determines the resolution of scales and is taken as 0.25, ot is the sampling interval of
the time series, i and / are the lower and upper scale indices, respectively, of the band being
reconstructed, R{W,,(s;)} is the real part of the wavelet transform at each scale, and s; is the scale

itself:
s; =502 i=0,1,....1 (3)

The reconstruction analysis elucidates how various components to the tide and surge change with

time, which can be compared with environmental conditions to identify the forcing mechanisms
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contributing to each harmonic. This harmonic analysis, decomposition, and reconstruction

analysis was repeated on along-channel (north-south) currents to investigate how quadratic

.. Cc . .
friction (%lu' ) was modified during each event.
0

3 Results

3.1 October 30™ “Windstorm”

The October 30, 2017 storm, locally referred to as the “October Windstorm”, was a
hybrid storm created from the remnants of a tropical storm over the southeast United States
merging with a low-pressure system moving over the Great Lakes. This storm was a bomb
cyclone, identified by a drop of over 24 mb in barometric pressure at the center in 24 hours,
producing rapid intensification. The center of the storm passed to the west of Maine from New
York City into Canada (Fig. 4). Penobscot Bay was located on the eastern side of the storm,
which promoted onshore 20 m/s sustained winds and a barometric pressure minimum of 982 mb.
River discharge was elevated (~750 m*/s) during the October Windstorm, compared to the mean
annual discharge of 396 m>/s. Results show storms of this size and characteristics can produce
significant high-frequency tide-surge-river interaction, and so provided an opportunity to study

the phenomenon and how it evolves along an estuary. The ramifications of events such as this on
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estuarine flooding is important, particularly during the fall / winter seasons when windstorms are

known to impact the region.

3.2 Tide-Surge-River Interaction

The October Windstorm featured LF'S over 1.5 days in the Penobscot River (day 29.6 to
31.1 in Fig. 5a[1,2,3]). The LFS exhibited properties of an externally generated solitary wave,
evidenced by an amplification between peak values at Rockport (0.35 m) to Castine (0.49 m),
then Bangor (0.71 m); phase lag of 2.1 hours between the mouth (Rockport) and head (Bangor);
and a crest to no-trough profile indicative of solitary waves (Fig. 5a [1,3]). The funnel-like shape
of the estuary likely influenced the amplification, enhancing the externally generated surge in a
similar manner to the tides (Friedrichs, 2010). At all locations, maximum values of LF'S occurred
at or just after high water at the beginning of the ebb tide (Fig. 5b [1,2,3]). Tide-surge-river
interaction was identified in D2, D4, D¢, and Dg bands during the storm. The interaction increased

both upstream and with each higher order harmonic (excluding Rockport) (Fig. 5).

At the head of the estuary in Bangor, the tide-surge-river interaction contributed to a total
surge (2 m) that was almost three times larger than LF'S alone (Fig. 5a [1]). The amplitude of the
D> component of 7 began increasing at the start of the LF'S, peaked on the ebb tide following the
maximum LFS (0.25 m at day 30.5 in Fig. 5b [1]), and was phase shifted by 0.2 hrs. relative to
the mouth. The amplitude of the D4 interaction peaked at day 30.4 (0.38 m), which was nearly
double that of the predicted D4 tide (0.17 m) (Fig. 5b [1]). Both the D¢ and Dg 7 began amplifying
around day 30.3 at slack water and were maintained until days 31 and 31.3, respectively (Fig. 5d
[1], e [1]). The maximum amplitude of the D¢ band of 7 (0.73 m) occurred at day 30.6 on slack

tide, as did the Ds (0.96 m), both of which were significantly larger than the predicted tidal
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amplitudes at the time (0.05 m and 0.04 m, respectively, in Fig. 5d [1], e [1]). With LFS near 0.7
m, the Ds and Dg bands together produced ~1.7 m of surge, making them the most significant

contributors to /, and subsequently 7.

In Rockport at the mouth of the estuary, tide-surge-river interaction was evident but much
less pronounced. Total surge levels were 0.8 m, which were more than double LFS alone (Fig. 5a
[3]). At this location, amplitudes of / in the D2, D4, D¢, and Dg bands peaked at 0.11 m, 0.17 m,
0.16 m, and 0.15 m, respectively during the storm (Fig. 5b [3], c [3], d [3], e [3]), and showed the
contribution from D4 surpassed that of D¢ and Ds. The amplification upstream was smallest in
the D4 band (2.4 times larger at the head of the estuary than the mouth) relative to De and Ds (5
and 6 times larger, respectively). Amplitudes of / in the D¢ and Dg bands peaked earlier in
Rockport (ebb tide at day 30.4 in Fig. 5d [3], e [3]) than in Bangor (slack tide at day 30.6 in Fig.
4d [1], e [1]), another indication that the surge was externally generated and propagated into the

estuary.

Tide-surge-river interaction and total surge amplitudes in Castine generally fell between
those observed at Rockport and Bangor. Total surge peaked at 1 m, which, like the other
locations, was approximately double that of LFS (Fig. 5a [2]). Amplitudes of / in the D2, D4, D,
and Dg peaked at 0.07 m, 0.18 m, 0.27 m, and 0.36 m, respectively (Fig. 4b [2], ¢ [2], d [2], e
[2]), showing Castine is near the point along-estuary where the D and Dg surpass the amplitude
of D4 tide-surge-river interaction. Peak interaction in both the D¢ and Dg occur slightly after the

corresponding peaks in Rockport (day 30.4-30.5 in Fig. 5d [2], e [2]), but before Bangor.

These results showed that high-frequency harmonics (D4, Ds, and Dg) that contribute to

tide-surge-river interaction more than doubled total surge levels in the Penobscot River. The
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largest contributions (from the D¢ and Dg bands) are tied to quadratic friction, %Iul (where Cp is
0

the drag coefficient, u is the current velocity, and hy is average depth). The Dg band is formed
from the interaction of the D¢ and D> bands and quadratic friction is the only mechanism driving

sixth-diurnal oscillations if the M2 harmonic is the principal tide (Parker, 1991).
3.3 Frictional mechanism

During the October Windstorm, non-tidal currents were likely influenced by wind, storm
surge, density-induced flow, and river discharge. The non-tidal flow featured maximum
landward velocity of ~0.37 m/s just prior to the maximum LFS (day 30.3 in Fig. 6a, b), after
which it reversed direction to a maximum seaward velocity of -0.33 m/s (day 30.9 in Fig. 6a, b).
When storm surge propagates as a solitary wave in the presence of an opposing current (i.e.,
river discharge), the velocity field under the wave tends to be upward on the foreside of the crest,
horizontal in the direction of wave propagation under the crest of the wave and directed
downward on the aft side of the crest (Zhang et al., 2015). Based on conditions occurring at the
time, it is possible the landward velocity under the LFS crest combined with currents driven by a
strong onshore wind (10 m/s N-S and -8.7 m/s E-W in Fig. 6a) overcame seaward directed river
discharge and density-driven flows. On the aft side of the crest, density-driven flow and river
discharge presumably combined to create the seaward non-tidal current peak of similar
magnitude to the prior landward flow. To investigate if the non-tidal flows could enhance the
higher frequency tide surge interactions, the quadratic friction was quantified. Assuming a Cp of
0.003 (Geyer, 1993) and /¢ of 25 m (depth at Castine buoy), the quadratic friction terms were
calculated for both the PT and [ at the D> band (Fig. 6¢). The amplitude of the quadratic friction

from the interaction term increased from 0 to about 0.5 m/s? during peak landward and seaward
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non-tidal currents (days 30 to 31.2 in Fig. 6). Quadratic friction from P7 was in phase with
quadratic friction from / during that time, during which / increased both in water level and

currents (Fig. 6c¢, d).

4 Discussion

During the observed storm event, high frequency tide-surge-river interaction amplified
upstream and more than doubled total surge levels. Contributions from sixth and eighth diurnal
oscillations in storm surge accounted for the majority of the tide-surge-river interaction that
enhanced overall surge. To understand why the D¢ and Ds oscillations of tide-surge-river
interaction were enhanced during storm events, the physical mechanisms that contribute to each
must be determined. Tide-surge-river interaction in the principal D> band is required for the

overtide frequencies to be present, and so is first discussed.

4.1 D2 and D4 Tide-Surge-River Interaction

Tide-surge-river interaction in the D> band at each location featured a positive interaction
on each ebb tide and a negative on flood (Fig. 5b [1]), indicating that the tidal wave amplitude is
augmented during ebb tide and opposed during flood tide. Previous tide-surge-river interaction
studies observe storm surge peaks during flood tide because P7T+/ precede PT as the shallow
water wave speed increases in deeper water (e.g. Horsburgh & Wilson, 2007; Rossiter, 1961;
Proudman, 1955a, 1955b), however the phase shift in the tide can also be produced by river
discharge (Parker, 1991). The October Windstorm occurred near the maximum river discharge

during the study period, making this a likely explanation for the phase shift in the principal tide



346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

Confidential manuscript submitted to Journal of Geophysical Research: Oceans

amplitude. Using the shallow water wave speed equation (with mean flow): ¢ = Uy + \/ﬁ,
where c is the wave speed, Uy is a depth-uniform mean current, g is the gravitational constant,
and 4 is a mean depth (Dean & Dalrymple, 1991); the effect of mean river flow on the tide can
be estimated. Using the estuary mean depth of 15 m, a shallow water wave propagating against a
0.75 m/s river current (estimate from river discharge and average river cross sectional area)
would arrive in Bangor 0.2 h later than one without a mean flow, matching the observed phase
difference between P and PT+I (not shown). Furthermore, LFS surge peaks in Bangor 2.1 h after
Rockport for this storm event, matching the expected travel time of a solitary wave (Zhang et al.,
2015) and providing justification for the slower rise to LF'S peak than the fall. A simple
correlation between river discharge and the phase difference between the D, amplitude of PT and
PT+I was determined for a 20-day period surrounding the storm (October 20th to November
9th). The correlation produced a coefficient of 0.74 with 95% CI of [0.59, 0.82], indicating that
the D, interaction was indeed a result of a mean flow interacting with the principal tide.
However, the contribution of the principal tidal harmonic (D>) to tide-surge-river interaction was

small relative to the contributions from higher frequency (overtide) bands.

The D4 component to / is larger than the D>, but the D¢ and Dg bands independently
augment / more than the D4. The Dg interaction term is largest when peak non-tidal current
velocities enhance quadratic friction on both phases of the tide, indicating that storm-induced
currents can have a significant effect on overtide amplitudes. Initial amplification of / in the De
and quadratic friction from / in the D, aligned with the landward non-tidal flow (Fig. 6); when a
flood tide, northward winds, and externally generated LF'S collectively contributed to a net
landward flow (Fig. 7a, quantified using a simple 1-D momentum balance [Geyer, 1993]). The

amplified quadratic friction and Ds oscillation continued until after day 30.9, when an ebb tide,
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decreasing LF'S, density driven flow, and large river flow (relative to average), created a net
seaward flow (Fig. 6, 7b). Therefore, storm induced non-tidal currents enhanced the quadratic
friction creating the amplified Ds oscillation, which maintained until non-tidal currents decreased
back to magnitudes near zero. This is corroborated by a 0.86 correlation coefficient (with 95%
Cl of [0.82, 0.88]) between 5 days (day 28 to 33) of north-south non-tidal flow and the D¢
interaction. It is very likely that enhancement of the D¢ would not have been as notable if the
LFS from this storm did not propagate into the estuary and contribute to non-tidal flows and was
rather generated inside the estuary. The majority of more traditional “Nor’easter” storms
occurring in the winter of 2017-2018 passed along the coast and created internally generated

surge without significant Ds oscillations (not shown).

4.2 Quadratic Friction and Resonance Enhancing Ds and Ds Tide-Surge-River Interaction

The Dg band of PT+1 should only surpass the Dg if near resonance with the estuary,
according to general compound tide theory (Parker, 1991). Results show this happens during the
October Windstorm (day 30.6 thru 30.8 in Fig. 4), indicating the Dg band is near the natural
frequency of the Penobscot estuary. When a harmonic is resonant, incident waves at that
frequency moving into an estuary are constructively reinforced by reflected waves moving out,
amplifying the harmonic. Generally, reflected waves in convergent estuaries dissipate quickly as
they move seaward due to divergence and friction reducing wave energy. The Penobscot estuary
is convergent in shape (mainly in the bay), allowing for the tidal amplitude to increase (~0.5 m,
not shown) from mouth to head (convergence dominates friction). However, far upstream, where

the tidal amplitudes are largest, the estuary is relatively uniform in width (Fig. 2b), creating
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conditions where a reflected wave could be maintained before re-entering the bay. A simple

formula can be used to determine resonant period given a depth and wavelength in a system:

T=7 ©

where T is the resonant period, L is the estuary length, g is the gravitational acceleration, and /4 is
the mean depth of the estuary. Equation (4) outlines that resonance will occur when the natural
period of the estuary is the same as a tidal or overtide period. The Dg PT+I amplitude exceeds Dg
in Bangor and Castine (upstream in the width-uniform portion of the estuary), indicating that
resonance is likely constrained to the shallower reaches of the Penobscot estuary (Fig. 2). The
length, L, used in Equation (4) is taken as the river length from Bangor to the entrance of the bay,
shown as the boxed area in Fig. 2b, where depths vary between 15 m and 5 m. With L = 28,000
m, and the average period of the Dg band, 7= 3 h, the resonant depth, 4, was calculated as 11 m,
which is deeper than the average depth calculated over the river section (8.5 m). Based on this
calculation, an increase in mean water level from LF'S would bring the estuary closer to

resonance.

There are five instances over the study period (between October and January) when the
Dg PT+I is larger than the Dg, and four occur when there is an increase in average depth from
LF'S that coincides with an increase in the Dg component of /. Furthermore, the October
Windstorm created the largest of both LFS and Dg PT+1 amplitudes, respectively, over the study
period. The onset of enhanced Ds oscillations can cause water levels to abruptly rise (within
approximately one-half of the period of the Dg component [1.5 hrs.]) compared to typical LFS

(Fig. 5a [1]), presenting potentially hazardous conditions to life and property. A significant
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account from Bangor in the 1970s presents evidence of these rapid, dangerous oscillations to

storm surge.

4.3 Historical Support

On February 2, 1976, a coastal storm flooded downtown Bangor after producing a 3.2 m
storm surge (Morrill et al., 1979). The storm passed over western Maine following a similar track
to the October Windstorm (Fig. 4a). A central pressure of 964 mb was recorded in western
Maine and maximum sustained winds of 21 m/s toward the northwest were recorded at Bangor.
Observed water levels in Camden, 3 km north of Rockport, were 1 m higher than expected and
3.2 m larger than PT in Bangor. Estimations suggest that the flood reached its maximum water
depth in Bangor over a period of just 15 minutes, which occurred 1 hour before high tide.
Records of the storm in 1976 depict a very similar scenario to the October Windstorm.
Anecdotally, local sources attributed the rapid onset of flooding in Bangor to an ice dam;
however, the results of the present work suggest that perhaps high frequency tide-surge-river

interaction contributed to the abruptly rising flood levels.

4.4 Comparison to Previous Research and Models

Tide-surge-river interaction resulting from the amplification of higher frequency
harmonics is therefore an important part of 7S in some estuaries but has been widely overlooked
by extant research. In particular, previous work on tide-surge-river interaction in estuaries has
generally neglected the contribution at the overtide frequencies, although some studies have
acknowledged their existence in observations (Horsburgh & Wilson, 2007; Prandle & Wolf,
1978). Classic work on the topic utilized models that either linearize terms (analytically (Wolf,

1981; Proudman, 1955a, 1955b) and numerically (Horsburgh & Wilson, 2007; Rossiter, 1961;
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433 Thomas et al., 2019; Prandle & Wolf, 1978)) and/or only allow nonlinear terms to be manifested
434  in surge as a phase shift of tide or surge relative to a non-stormy state. Consequently, the

435  observations associated with these studies focus on the mechanisms their models account for,

436  thus neglecting higher frequency nonlinearities. To the authors’ knowledge, this is the first study
437  to identify and diagnose the development of 6th and 8th diurnal tide-surge-river interaction

438  generated by enhanced storm-induced currents and resonance. This work demonstrates that the
439  manner in which LF'S manifests within an estuary can modify the magnitude of these currents

440  and oscillations, expanding upon the previous work outlining differences between externally and
441  internally generated storm surge (Horsburgh & Wilson, 2007). The previously neglected

442 nonlinear effects from overtide harmonics must be considered to accurately forecast surge in

443 inland systems.

444 Results from NOAA'’s Extratropical Storm Surge (ETSS) model during the October
445  Windstorm (Liu, 2019) reveal large discrepancies between observed and forecasted 7WL when
446  nonlinear effects are significant (Fig. 8). Importantly, the ETSS model only includes tide and
447  LFS in determining 7WL, and therefore does not capture increased water levels from river

448  discharge. By subtracting PT from TWL in Bangor immediately before the event, the

449  contribution to 7WL from elevated river discharge was estimated to be about 0.35 m. With that
450  assumption, the model still underpredicts the 7WL by 1.6 m in Bangor on day 30.4 (Fig. 8a),
451  showing that amplified higher frequency harmonics result in marked discrepancies between
452 observed and forecasted surges. Higher frequency tide-surge-river interaction is expected in
453 other systems that are shallow (< 15 m), quasi-prismatic, dominated by semi-diurnal tides and

454  are at lengths that are susceptible to resonance. Some examples include the upper Thames
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estuary and Solent estuary on the British coast, where higher frequency storm surge has been

observed previously (Prandle & Wolf, 1978; Ozsoy et al., 2016).

4.5 Effect of Climate Change

The compounding effects of resonance are expected to be exacerbated by climate change.
Mean sea level (MSL) has been increasing globally at a rate near 1.7 mm yr™! according to
estimations from coastal and island tide gauge measurements from 1900-2009, and near 3.4 mm
yr'! according to satellite imagery estimates for 1993-2016 (Nerem et al., 2010; Church & White,
2011), with a net increase in MSL from 0.5 m to 1.2 m likely by 2100 (Kopp et al., 2014). These
rates are not constant world-wide, and climate models suggest that they will accelerate in coming
years (Nicholls & Casenave, 2010), making prediction capabilities even more difficult. In the
Penobscot River, considering the ideal depth for resonance of the Ds is about 11 m and the mean
depth is near 8.5 m, any increase in MSL between those points will enhance the resonance
effects. Thus, sea level rise will effectively amplify higher frequency tide-surge-river interaction,

making storm surge flooding more frequent and more severe in some estuaries.

4.6 Classic Harmonic Analysis Limitations

It is important to note that the harmonic and wavelet analyses used in this study apply
strictly to linear systems, i.e. harmonics with constant amplitudes and phase. Riverine tides are
known for being strongly nonlinear from interactions between tidal constituents and fluctuating
freshwater discharge (e.g. Kukulka & Jay, 2003; Matte et al., 2013). By using the analysis
outlined in this paper, the tide and tidal species predicted are approximated and assumed to have
no nontidal influence from surge or river, making the tide-surge-river-interaction contain both

tide-surge and tide-river interactions. Using a non-stationary tidal analysis program like NS Tide
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(Matte et al., 2013), would allow for the separation of these terms from 7, but there was
insufficient data to accomplish this for the entire study period. That said, this analysis was
deemed appropriate for the scope of this work, as the authors chose to focus on net nonlinear
interactions through the tide-surge-river-interaction term. It is not possible to distinguish exactly
how nonlinear tide-river interactions vary from tide-surge interaction using the analysis

presented but is likely an important topic of future study.

5 Conclusions

Tide-surge-river interaction amplitudes were found to be more than double of low-
frequency storm surge levels near the head of a macrotidal estuary. The Dg and Ds tidal
frequency bands produced the largest contribution to the tide-surge-river interaction (~1 m). The
enhancement of nonlinear quadratic friction from storm-induced currents was the main
mechanism creating oscillations in the D¢, which were further amplified by resonance of the Dg
harmonic in the upper portion of the estuary. Tidally energetic estuaries near the resonant length
of overtide harmonics (or a multiple of) are particularly at risk for high frequency tide-surge-
river interaction events, which are expected to worsen in some systems with rising sea levels

from climate change.

This research outlines the susceptibility of inland estuarine locations to extreme water
level events, which we suspect will worsen in the future due to sea level rise and enhanced
storminess. Currently, simple storm surge models do not include the nonlinear terms which
explain high frequency tide-surge-river interaction, and so have the potential to under-predict

total storm surges in estuaries. Other estuaries around the world may fit the criteria outlined in
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this study, making them at risk of experiencing dangerous high frequency storm surge. Future
research needs to include assessing the vulnerability of other systems and including tide-surge-
river interaction in storm surge forecasting models, which will allow for public preparedness and

better coastal planning to mitigate risk of inundation.
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634  Figure 1: Conceptual view showing how tide-surge interaction and predicted storm surges can

635  create flooding scenarios in estuaries which would not occur without the interaction.
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Figure 2: Study area in context of the coast of Maine and the Gulf of Maine [a] with data
collection sites in the Penobscot Estuary [b] (National Centers for Environmental Information,
2019). Dots represent water level measurements, stars are barometric pressure and wind
measurement locations, and the diamond is the measurement location of current velocities (water

level measurements were also taken at Castine where the star is located).
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643  Figure 3: Conceptual diagram showing how low-frequency surge (LFS; yellow) and tide-surge-

644  river interaction (I; orange) [b] modify the predicted tide (PT; blue) to create the total water level
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(TWL; green) [a]. The black line in [a] represents the total water level when tide-surge-river

interaction is negligible.

October Windstorm: 12 PM Oct. 30, 2017

5036

Figure 4: Storm tracks (arrows) and barometric pressure isobars for the October 17, 2017
Windstorm (black) (National Weather Service: Weather Prediction Center, 2017) and February

1976 storm (red) (Morrill et al., 1979) relative to the Penobscot estuary, shown as the red marker.
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651 Day from September 30, 2017

652  Figure 5: Low-frequency surge (LFS; solid black) and low frequency surge plus tide-surge-river

653  interaction (LFS+I; magenta) [a]. Predicted tide (PT; blue) and tide-surge-river interaction (Z;
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654  dashed black) for the D> [b], D4 [c], Ds [d], and Dg [e] bands at Bangor [1], Castine [2], and

655  Rockport [3] during the October Windstorm, beginning just prior to Day 30.
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5

657  Figure 6: Low frequency surge (LFS; solid black), north-south component to wind (dashed blue),
658  and east-west component to wind (solid blue) during the October Windstorm [a], compared to
659  13-hour low pass filtered along channel (north south) current residuals [b], the D> quadratic

660  friction from predicted tide (solid blue) and tide-surge-river interaction (dashed black) [c], and
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the Ds tide-surge-river interaction in currents (dashed blue) and water level (solid black) [d]. All

measurement are from Castine except wind, measured in Bangor.
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Figure 7: Conceptual figure of relative contributions to width-averaged, along channel non-tidal
flow from wind-induced (dashed blue), density-driven (dashed black), river (dashed magenta),
and LF'S (dashed red) flows in Castine during the landward [a] and seaward [b] non-tidal flow

maxima during the October Windstorm. Total non-tidal flow is shown in solid black. Velocity
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668  measurements taken at the Castine buoy were at a depth of 2 m — i.e., comparable to near-surface

669 flow
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670

671  Figure 8: Observed total water level (TWL; solid) and NOAA Extra Tropical Storm Surge
672 (ETSS) tide plus surge forecasts (Liu, 2019) (dashed) in Bangor [a], Castine [b], and Rockport

673 [c] during the October Windstorm.

674



