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Abstract— This paper proposes a bandwidth tunable tech-
nique for real-time probabilistic scene modeling and mapping
to enable co-robotic exploration in communication constrained
environments such as the deep sea. The parameters of the
system enable the user to characterize the scene complexity
represented by the map, which in turn determines the band-
width requirements. The approach is demonstrated using an
underwater robot that learns an unsupervised scene model of
the environment and then uses this scene model to communicate
the spatial distribution of various high-level semantic scene
constructs to a human operator. Preliminary experiments in an
artificially constructed tank environment as well as simulated
missions over a 10m×10m coral reef using real data show the
tunability of the maps to different bandwidth constraints and
science interests. To our knowledge this is the first paper to
quantify how the free parameters of the unsupervised scene
model impact both the scientific utility of and bandwidth
required to communicate the resulting scene model.

I. INTRODUCTION

The challenges of exploration in remote and extreme

environments such as the deep seas [1], [2], cave systems

[3], outer space [4] and during or after a natural disaster [5],

[6] have much in common. It is expensive and inherently

dangerous for humans to explore such locations directly;

hence, the use of mobile robots is desirable. However, if

communication bottlenecks exist in the environment, pro-

hibiting live streaming of video or other sensor data, then

direct control of the robots is generally not possible. This

paper describes a novel approach to co-robotic exploration in

communication starved environments, and presents a system

implementation of an under-sea exploration robot for co-

robotic exploration of marine environments.

Although physically controlling a robot can be achieved

over relatively low bandwidth, it is difficult to transmit the

scene information necessary for an operator or scientist to

make high level navigational decisions. We propose a spa-

tially correlated Chinese Restaurant Process (CRP)-based [7]

scene understanding model, that can be tuned to operate with
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Fig. 1. The proposed co-robotic exploration system can be used to
adaptively collect data based on visual information, while keeping a scientist
in the loop. Here we show an AUV developed in our lab, exploring an
artificially created underwater environment.

the available bandwidth, for characterizing the environment

in a manner useful for describing the operator’s scientific

interest.

The most common approach to underwater exploration

today is to either use a tethered vehicle or an autonomous

underwater vehicle (AUV) to traverse a pre-planned path

while collecting sensor data, which is reviewed once the

robot returns to a location (the surface or a docking station)

where high speed communication is possible [8]. Such mis-

sions are useful for collecting population statistics for dense

and stationary phenomena, but have limited utility when

collecting data on spatially patchy or transient phenomena,

especially in new or poorly mapped locations.

II. BACKGROUND

Scientific robots have been deployed to study a variety

of extreme environments, necessitating flexible models that

represent scientifically relevant detail and structure in the en-

vironment. Simultaneous localization and mapping (SLAM)

techniques have been used to address the challenge of

robot localization and to construct occupancy and geometric

maps of terrestrial caves and mines [9], [10], as well as

in marine environments [11]. However, the occupancy maps

used in SLAM are often not sufficient for modeling complex

scientific phenomenon.

Gaussian processes (GPs) [12] and Gaussian mixture mod-

els have seen widespread application for modeling smooth,

continuous environmental phenomena, such as chemical



plumes [13] and plankton concentrations [14], in autonomous

science applications. Other work has sought to explicitly

model discrete, causal structure in scientific environments

using Bayesian Networks (BN). Bayesian network models

are suitable when generative model of the phenomena to be

explored is known, but has its own set of challenges. Exact

inference in BN can be difficult in all but very small prob-

lems. Arora et al. [15] have used BN’s to model geological

phenomena; their formulation relies on a significant amount

of prior domain knowledge specified by scientific experts in

the form of conditional probability tables. Other works have

used fixed thresholds on scalar sensor data set manually by

domain scientists to dictate autonomous behavior [16] or rely

on coarse prior maps of the environment, which are avail-

able when planning a mission [17]. While relying on prior

scientific expertise or survey data is sometimes realistic, in

environments such as the deep sea or space domain scientists

may not have enough a priori knowledge to formulate a

scientific model and hypotheses. The unsupervised terrain

model used in this work does not require prior scientific

expertise, training data, or environmental maps; instead, a

terrain model is learned directly from discrete visual word

observations in a camera stream.

Bayesian nonparametric models have been used exten-

sively for unsupervised scene understanding due to their

ability to characterize complex scenes with unknown com-

plexity in terms of number of objects. Furthermore, strong

Bayesian priors on the scene structure can enable realtime

in-situ learning, even with high dimensional sensor data

streams [18]. Sudderth et al. [19] have proposed the use of

thresholded global positioning system (GPS) for modeling

spatial distribution of scene constructs. Joho et al. [20] have

used a Dirichlet Process in combination with a Beta process

to represent indoor scene structure in terms of objects and

their spatial configuration. Steinberg et al. [21] employ a

Dirichlet process clustering technique to learning underwater

terrain models. In our prior work [22] we proposed heirar-

chical Dirichlet process realtime online spatiotemporal topics

(HDP-ROST), which uses a spatially coupled CRP to model

the spatial distribution of observed substrate types. This

unsupervised model allows for structure learning directly

from visual observations, without the need for prior scientific

knowledge about an environment or smoothness constraints.

This paper combines HDP-ROST based scene understanding

approach with a physical platform for bandwidth-limited

robot autonomy to present a cohesive system for human-

robot co-robotic exploration of marine environments.

From a hardware perspective, platforms for co-robotic

exploration often seek to overcome the challenges of ex-

treme environments using innovative physical designs. Ocean

exploration using a tethered Remotely Operated Vehicles

(ROV) is perhaps the most common approach to co-robotic

scientific exploration [23], [24], [25], as it enables high

speed real-time relay of all sensor data to a remote scientist,

and enable low-level control of the vehicle. However some

ocean environments such as under the Arctic ice have unique

challenges that prevent the deployment of a regular ROV. The
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Fig. 2. Scientist in the loop, co-robotic exploration. The robot or
autonomous agent starts with a set of scientific interest characterizations
(lower right), and plans an initial path to maximize mission utility with
respect to these interests. After collecting sensor observations and refining
a model of the scientific phenomenon, the robot communicates this model
to a scientist in-the-loop, who can dictate a set of updated scientific interest
characterizations.

moving ice can make it difficult for a ship to keep station and

deploy ROVs. The Nereid Under Ice [26] vehicle uses a novel

approach to co-robotic exploration under-ice by maintaining

a high-speed communication link through a hair-thin fiber-

topic cable. This cable is unspooled from both the ship and

the robot, and the robot maintains the capability to return to

the open ocean to be recovered in case the tether breaks.

Conversely, long duration ocean observing platforms such

as underwater gliders relay subsets of water column data

over low speed satellite links when at the surface to direct

future sampling efforts [27], [28]. Remotely gathered data is

also fed back into increasingly sophisticated environmental

models which are both used to understand the environment

and to plan future trajectories of in-situ assets [29], [30].

Such approaches, however, are only suitable for co-robotic

operation when the quantity of interest is a slowly varying

low-dimensional field.

Our proposed approach to co-robotic exploration is as fol-

lows. The robot, unsupervised and equipped with a multitude

of sensors, constructs a scene model to describe its environ-

ment in a concise but meaningful way. This scene model can

be tuned to fit the available bandwidth budget, and describe

the world at the level of abstraction suitable for describing

the phenomena of interest. This scene model is constantly

updated with new observation data, and transmitted regularly

to the scientist. Given the scene model, the scientist then

defines a utility function over various types of scene labels

and other high level constraints, which is then broadcast to

one or more underwater robots. In the case of multiple robots,

it is possible to learn a shared representation through regular

message passing between them [31].

The underwater robots can then use the utility function to

plan an informative path plan, using either a greedy approach

[32] or more spatially aware planning [33], [34], collecting

more information that is then used to update the scene model.

This entire process continues in a loop (Fig. 2), enabling

scientists to continually define high level goals for the robots,

even in unknown environments, while letting robots perform

low level path planning and sensing autonomously.

The focus of this paper is on 1) demonstrating a

bandwidth-tunable scene understanding technique that can



operate in unknown environments and be made to describe

the scene at different levels of abstraction by changing only

a handful of parameters; and 2) developing the hardware

and software infrastructure to enable such an underwater co-

robotic exploration mission.

III. SCENE MODELING

In the context of co-robotic exploration, we require a scene

model that can operate in geographic coordinate space, and

produce high-level and concise scene descriptions, which are

transmitted over a low-bandwidth communication channel

such as underwater acoustic communications. In this work

we extend HDP-ROST [22] to operate on a stream of image

observation data with 3D geographic coordinates.

A. Generative Process

The generative model for the observed data is described as

follows. At time t, we consider generating a set of categorical

observations. Every one of these observations w has an

associated 3D observed position (x, y, d) ∈ R
3 that is noisy,

and modeled as a random sample from a Gaussian centered

around the true position (x′, y′, d′) with some measurement

noise Σ:

(x, y, d) ∼ N((x′, y′, d′),Σ),

where d is depth. Additionally, each visual observation is

associated with a latent scene label z, drawn from a location-

specific mixture over scene labels θt:

θt ∼ CRPx,y,d(γ, α),

z ∼ Categorical(θt).

We model the distribution of scene labels z using a spatially

correlated CRP. We discretize the world into cells, where

each cell is represented by one pixel of the transmitted scene

map. Each cell has a Chinese Restaurant (topic model) with

an infinite number of tables, each corresponding to different

topic labels. We assign a new customer (observation) to one

of the K occupied tables with probability proportional to

(n + α), where n is the sum of the number of customers

sitting at the table in that restaurant and at corresponding

tables in the neighboring restaurants, defined using the Von

Neumann neighborhood of the cell. The hyperparameter α

prioritizes labels used elsewhere in the scene. The customer

sits at a new table with probability proportional to γ. Thus,

the scene label z will take a value k ∈ [1,K + 1], where K

is the number of distinct scene labels that we have observed

thus far. The advantage of using a CRP is that we do not

need to explicitly specify the number of scene labels a priori,

and it is allowed to grow automatically with the size and

complexity of the observation data.

Some random samples from the above generative process

are shown in Fig. 3. We see that varying α and γ gives us

random maps with different spatial characteristics in terms of

number of different types of patches, and size of the patches.

Finally, each scene label (topic) is associated with image

descriptors (words), which we model using a categorical

distribution over a set of V features with the symmetric

Dirichlet prior:

φk ∼ Dirichlet(β),

w ∼ Categorical(φk).

The use of Dirichlet priors biases the generative model to-

wards learning sparse distribution of features used to describe

a scene construct.

B. Hyperparameter Selection

The above generative model can be used to characterize

a scene at different levels of abstraction. For example,

for a given set of hyperparameters it is possible that we

learn labels that correspond to different parts of a coral, or

individual coral species, or a colony of different types of

corals that often co-exist. On a scientific exploration mission

we would like the robot to characterize the scene at the

same level of abstraction that is of interest to the scientist.

Our proposed solution to enable this behavior is to use an

annotated dataset from a location similar to what will be

explored, with labels that describe the scene at the desired

level of abstraction. Given these annotations A, we then find

the hyperparameters π = (α, β, γ) for the generative model

that maximizes the mutual information I between the latent

scene labels Z = {zi} and the corresponding annotations

A = {ai} using grid search. Assuming that z = k ∈ [1,K]
and a = j ∈ [1, J ]:

π∗ = (α∗, β∗, γ∗) = argmax
π

I(Zπ, A)

I(Zπ, A) = ΣK
k ΣJ

j P (k, j) log
P (k, j)

P (k)P (j)
.

Note that compared with the standard approach for super-

vised learning, where the annotations are used to learn all the

parameters of the model, we propose to use the annotations

only for identifying 3 hyperparameters, while still learning

the other parameters of the model in an unsupervised manner.

Hence the scene model can still be used to characterize

completely unknown environments.

IV. SYSTEM DESIGN

Our system design is motivated by the vision that a

team of underwater and surface robots with various sensing

payloads would be interactively controlled by a scientist in an

unknown environment to characterize phenomena observable

by the sensing payload. Our current robot system (Fig. 4) is a

step towards this vision, and consists of 1) a surface platform

that is used as an air-to-sea communication and localization

system to link the scientist to the robots; 2) an AUV

equipped with acoustic and optical imaging capabilities, and

sufficient computing power to generate concise scene maps

from complex high dimensional sensor data streams; 3) a

Robot Operating system (ROS) based software architecture

to enable a compute graph that spans multiple computers,

and optionally multiple robots.
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