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MSS problem to be encoded. We define the MSS POMDP in

which the partially observable state represents the continuous

environmental phenomenon and a sparse reward function

encodes the MSS scientific objective by giving reward only

to samples sufficiently close to the global maximum. Solving

a POMDP exactly is generally intractable, and the MSS

POMDP is additionally complicated by both continuous state

and observation spaces, and the sparse MSS reward function.

This presents the two core challenges that PLUMES addresses:

performing online search in a belief-space over continuous

functions, and overcoming reward function sparsity.

Planning over Continuous Domains: In the MSS problem,

the state of the environment can be modeled as a continuous

function. PLUMES uses a Gaussian Process (GP) model to

represent the belief over this continuous function, and must

plan over the uncountable set of possible GP beliefs that arise

from future continuous observations. To address planning in

continuous spaces, state-of-the-art online POMDP solvers use

deterministic discretization [8] or a combination of sampling

techniques and particle filter belief representations [9]–[12].

Efficiently discretizing or maintaining a sufficiently rich parti-

cle set to represent the underlying continuous function in MSS

applications is itself a challenging problem, and can lead to

inaccurate inference of the maximum [13]. Other approaches

have considered using the maximum-likelihood observation

to make search tractable [14]. However, this assumption can

compromise search and has optimality guarantees only in

linear-Gaussian systems [15]. Instead, PLUMES uses Monte

Carlo Tree Search (MCTS) with progressive widening to limit

planning tree growth [16] and retains optimality guarantees

[17] in continuous environments.

Rewards and Heuristics: In the MSS POMDP, the reward

function is sparse and does not explicitly encode the value

of exploration. Planning with sparse rewards requires long-

horizon information gathering and is an open problem in

robotics [18]. To alleviate this difficulty, less sparse heuristic

reward functions can be optimized in place of the true reward,

but these heuristics need to be selected carefully to ensure

the planner performs well with respect to the true objective.

In IPP, heuristics based on the value of information have

been applied successfully [7], [14], [19], [20], primarily using

the GP-UCB criteria [1], [21]. We demonstrate that within

practical mission constraints, using UCB as the heuristic

reward function for the MSS POMDP can lead to suboptimal

convergence to local maxima due to a mismatch between the

UCB heuristic and the true MSS reward. Instead, PLUMES

takes advantage of a heuristic function from the Bayesian

optimization (BO) community for state-of-the-art black-box

optimization [22] which we call maximum-value information

(MVI). MVI overcomes sparsity and encourages long-term

information gathering, while still converging to the true reward

of the MSS POMDP.

The contribution of this paper is the MSS POMDP formal-

ism and the corresponding PLUMES planner, which by virtue

of its belief model, information-theoretic reward heuristic, and

search framework, enables efficient maximum sampling with

asymptotic optimality guarantees for continuous environments.

PLUMES extends the state-of-the-art in MSS planners by

applying a BO heuristic reward function to MSS that alle-

viates the challenges of the true sparse MSS reward function,

and integrating GP belief representations within continuous-

observation MCTS. The utility of PLUMES for MSS applica-

tions is demonstrated in extensive simulation and field trials,

showing a statistically significant performance improvement

over state-of-the-art baselines.

II. MAXIMUM SEEK-AND-SAMPLE POMDP

We formalize the MSS problem by considering a target envi-

ronmental domain as a d-dimensional compact set Xw ⊂ R
d.

We allow Xw to contain obstacles with arbitrary geometry

and let X ⊂ Xw be the set of reachable points with respect

to the robot’s initial pose. We assume there is an unknown

underlying continuous function f : Xw → R representing the

value of a continuous phenomenon of interest. The objective

is to find the unique global maximizer x∗ = argmax
x∈X

f(x)
by safely navigating while receiving noisy observations of this

function f . Because f is unknown, we cannot access derivative

information or any analytic form.

We model the process of navigating and generating

observations as the MSS POMDP: an 8-tuple

(S,A,Z, T, O,R, γ, b0):

• S: continuous state space of the robot and environment

• A: discrete set of action primitives

• Z: continuous space of possible observations

• T : S ×A → P(S), the transition function, i.e.,

Pr(St+1 = s′ | St = s,At = a)
• O: S ×A → P(Z), the observation model, i.e.,

Pr(Zt+1 = z | St+1 = s,At = a)
• R: S × A → R, the reward of taking action a when

robot’s state is s, i.e., R(s, a)
• γ: discount factor, 0 ≤ γ ≤ 1
• b0: initial belief state of the robot, b0 ∈ P(S0)

where P(·) denotes the space of probability distributions over

the argument.

The Bellman equation is used to recursively quantify the

value of belief bt = P(St) over a finite horizon h under policy

π : bt → at as:

V π
h (bt) =E[R(st, π(bt))]+

γ

∫
z∈Z

V π
h−1(b

π(bt),z
t+1 ) Pr(z | bt, π(bt)) dz,

(1)

where the expectation is taken over the current belief and

b
π(bt),z
t+1 is the updated belief after taking action π(bt) and

observing z ∈ Z . The optimal policy π∗
h over horizon-h is the

maximizer of the value function over the space of possible

policies Π: π∗
h = argmaxπ∈Π V π

h (bt). However, Eq. 1 is

intractable to compute in continuous state and observation

spaces; the optimal policy must be approximated. PLUMES

uses a receding-horizon, online POMDP planner and heuristic

reward function to approximately solve the MSS POMDP in

real-time on robotic systems.

III. THE PLUMES ALGORITHM

PLUMES is an online planning algorithm with a sequential

decision-making structure:
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mission termination. Finally, the performance of PLUMES in

non-convex environments is impacted by the discrete action set

encoded. Extending PLUMES to continuous actions spaces,

following the approach of Morere et al. [34], would allow

flexibility in these environments.

VI. CONCLUSION

This paper formalizes the maximum-seek-and-sample

POMDP and presents PLUMES, an adaptive planning al-

gorithm that employs continuous observation MCTS and

maximum-value information reward to perform efficient

maximum-seeking in partially observable, continuous environ-

ments. PLUMES outperforms canonical coverage and UCB-

based state-of-the-art methods with statistical significance in

challenging simulated and real-world conditions (e.g. multiple

local maxima, unknown obstacles, sensor noise). Maximum

seek-and-sample is a critical task in environmental monitoring

for which PLUMES, with theoretical convergence guarantees,

strong empirical performance, and robustness under real-world

conditions, is well-suited.
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[16] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard,

“Continuous upper confidence trees,” in International Conference on

Learning and Intelligent Optimization. Springer, 2011, pp. 433–445.
[17] D. Auger, A. Couetoux, and O. Teytaud, “Continuous upper confidence

trees with polynomial exploration–consistency,” in Joint European Con-

ference on Machine Learning and Knowledge Discovery in Databases.
Springer, 2013, pp. 194–209.

[18] W. D. Smart and L. P. Kaelbling, “Effective reinforcement learning for
mobile robots,” in Proceedings 2002 IEEE International Conference on

Robotics and Automation (Cat. No. 02CH37292), vol. 4. IEEE, 2002,
pp. 3404–3410.

[19] W. Sun, N. Sood, D. Dey, G. Ranade, S. Prakash, and A. Kapoor, “No-
regret replanning under uncertainty,” in ICRA, 2017.
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