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We investigate the possible effect of cascade transitions from the (4s5p) 3P0,1,2 states to the (4s5s) 3S1 state
of Zn. The polarization of the light emitted in the subsequent decay to the (4s4p) 3P0,1,2 states has been the
subject of recent controversy, with significant disagreement between the experimental data reported by Pravica
et al. [Phys. Rev. A 83, 040701 (2011)] and by Clayburn and Gay [Phys. Rev. Lett. 119, 093401 (2017)] in the
cascade-free region below ≈7.6 eV incident energy and relatively good agreement above. The cross sections
for excitation of the (4s5p) 3P0,1,2 states, as well as higher-lying triplet states, and the linear polarization of
the cascade radiation seem too small to produce a significant alignment of the (4s5s) 3S1 state, thereby raising
additional questions regarding the origin of the relatively large linear polarizations measured above the cascade
threshold.
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I. INTRODUCTION

In a recent paper, Clayburn and Gay [1] reported their
measurements of the angle-integrated relative Stokes param-
eters (P1, P2, P3) in the (4s5s) 3S1 → (4s4p) 3P0 transition
in Zn. These light polarizations completely characterize the
polarization state of the emitted radiation. Specifically, with
the light detector placed at a right angle to the incident beam
direction, P1 and P2 are the linear polarizations for (0◦, 90◦)
and (45◦, 135◦) transmissions, respectively, while P3 is the
circular polarization [2].

Of particular interest in this case is the linear polarization
P2. Clayburn and Gay found significant disagreement of their
data with the measurements reported by Pravica et al. [3] in
the cascade-free region of incident electron energies below
≈7.6 eV, where the (4s5s) 3S1 state can only be excited directly
(no cascades) via an electron exchange transition. Being an
S state that is classified to be essentially 100% pure [4], a
spin polarization of the incident beam can be transferred to
the excited Zn state and lead to circularly polarized radiation.
A measurement of this circular polarization may, in fact, be
used to optically determine the transversal spin polarization
Pe of the incident beam [5], since P3 is directly proportional to
this parameter. A further consequence of this result is the fact
that both P1 and P2 must vanish. By symmetry, P2 is generally
also proportional to Pe, but in this case the dynamics require
the proportionality factor to vanish.
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The above situation is a special case of a more general re-
sult derived a long time ago by Bartschat and Blum [6]: If the
excited state is purely LS-coupled, explicitly spin-dependent
effects during the collision can be neglected, and there is no
cascade population to account for, then P2 should vanish. This
prediction was confirmed in several experiments on heavy
noble gases [7,8] and held up well until the report by Pravica
et al. [3]. In a subsequent paper, Williams et al. [9] proposed
an explanation for their result. Their claim of a missing
“geometrical phase” in the ab initio quantum-mechanical nu-
merical treatments drew several dissenting comments [10,11].
In one of those comments [11], it was demonstrated that for
a very heavy target such a Hg the total electronic angular
momentum J in the (6s7s) 3S1 state can indeed be aligned to a
small extent, due to a combination of relativistic effects in the
target description and some explicitly spin-dependent forces
during the collision. However, even for Hg the magnitude of
the near-threshold P2/Pe value was far less than the ≈10%
found in Zn [3].

While the “zero” results of Clayburn and Gay for P2/Pe

below the cascade threshold in Zn, and hence the strong
disagreement with the Pravica et al. data in that energy region,
may not be surprising in light of the states involved and
the Bartschat-Blum theory, the two sets of experimental data
agree (within the specified uncertainties) above the cascade
threshold. Good agreement between the two experimental
datasets also exists for both P1 and P3/Pe.

The principal motivation for the present study was the
somewhat unexpected good agreement of P2/Pe between the
two sets of experimental data above the cascade threshold,
where significant nonzero values (about −10%) were reported
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from both experiments. This is particularly relevant a few
eV above the excitation threshold. For the first 0.2 eV, only
the (4s5p) 3P0,1,2 states can be excited and subsequently
emit radiation that may populate and hence align the
(4s5s) 3S1 state. Given that these states are also well LS
coupled (about 95% [4]), one would not expect a significant
polarization P2/Pe either. The largest effect might come from
the (4s5p) 3P1 state, due to a small mixing with (4s5p)1P1,
which violates the conditions outlined by Bartschat and Blum
[6]. The (4s5p) 3P0,2 states, on the other hand, should be
nearly pure LS states, and a J = 0 state cannot be aligned
by any means. Consequently, one would expect P2/Pe for
(4s5p) 3P2 → (4s5s) 3S1 to also be small.

While the (4s4d ) 3DJ states open up around 7.78 eV,
followed by other states with configurations (4s6s), (4s6p),
(4s5d ), and (4s4 f ), the combined excitation cross sections
of the triplet states from these configurations is relatively
small (see Fig. 1 below). Furthermore, it seems highly un-
likely that one- or multistep cascades from these states to
the (4s5s) 3S1 state would collaborate in such a way that the
latter state would become significantly polarized. Experience
with cascades in general, in fact, suggests that depolarization
effects would be the more probable outcome. Consequently,
below we limit the treatment of cascade effects to those
originating from the (4s5p) 3PJ manifold. This is relatively
straightforward and algebraically exact for the first 0.2 eV
above threshold. It can also be expected to be very appropriate
for the next few eV.

II. GENERAL THEORY

As shown in [6] and [13], all the light polarizations can be
expressed in terms of so-called “angle-integrated state multi-
poles” (or “statistical tensors” [14]), which are a combination
of the density-matrix elements describing an excited state.
Specifically, only relative state multipoles enter, since every-
thing can be normalized to the monopole 〈T (J )+00〉, which is
proportional to the absolute cross section for excitation of the
state with total electronic angular momentum J according to
〈T (J )+00〉 = Q(J )/

√
2J + 1.

A. Basic formulas

We are specifically interested in electron impact excita-
tion by a transversally spin-polarized electron beam without
observation of the scattered electrons. Hence we define our
coordinate system as follows: The z axis is chosen along the
incident-beam direction, while the spin polarization defines
the y axis. This is also the direction along which the photon
detector is placed. Due to the axial character of the spin-
polarization vector, this problem has planar symmetry similar
to an electron-photon coincidence setup with unpolarized
electrons [12]. However, additional restrictions apply. Specifi-
cally, Bartschat et al. [13] showed that the monopole 〈T (J )+00〉
as well as the alignment component 〈T (J )+20〉 are independent
of the electron spin polarization, the state multipole 〈T (J )+22〉
vanishes, and 〈T (J )+21〉 as well as the orientation 〈T (J )+11〉
are directly proportional to the transversal spin polarization
Py. Furthermore, 〈T (J )+21〉 is real while 〈T (J )+11〉 is purely
imaginary.

We now define the reduced state multipoles

Akq(J ) = 〈T (J )+kq〉/〈T (J )+00〉. (1)

The second-rank multipoles (k = 2) describe the alignment
of the angular momentum J , the first-rank multipoles (k = 1)
describe its orientation. With these definitions, we can express
the relative Stokes parameters for a transition to a final state
with total electronic angular momentum Jf as

P1 = − α2
√

3/8A20(J )

1 − α2A20(J )/
√

24
, (2a)

P2 = α2A21(J )

1 − α2A20(J )/
√

24
, (2b)

P3 = − α1Im{A11(J )}
1 − α2A20(J )/

√
24

, (2c)

where Im{X } denotes the imaginary part of the quantity X and

αk = (−1)J+Jf +k+13
√

2J + 1

{
1 1 k
J J Jf

}
. (3)

Here { j1 j2 j3
j4 j5 j6

} is a standard 6 j symbol. For the

(4s5s) 3S1 → (4s4p) 3P0 transition we have J = 1 and Jf = 0.
After evaluating the 6 j symbols, this leads to αk = √

3 for
this case.

B. Inclusion of cascades

We now consider cascades from an upper level with a
total electronic angular momentum Ju down to a level with
J . According to [15] (Sec. 3.4.2), the state multipoles “seen”
experimentally (labeled by the superscript “e”) are given by

〈T e(J )+kq〉 = 〈T (J )+kq〉 +
∑

Ju

g(J, Ju, k)
〈
T u(Ju)+kq

〉
, (4)

where the sum has to be performed over all upper levels that
can cascade into the level of interest.

Equation (4) shows that only state multipoles of the same
rank k and component q will contribute to a given state
multipole of the state of interest, i.e., the state from which
the radiation is ultimately observed. The factor g(J, Ju, k)
contains the relevant dipole matrix elements for the radiative
transition, as well as several other terms that depend on the
angular momenta of the various states involved. In principle,
additional quantum numbers summarized by αu and α could
be introduced to further specify the states of interest. However,
we do not need them for the few states considered here and
hence omit them for simplicity of notation.

To apply the above equations to our specific case, we now
make a few important, though very appropriate assumptions.
To begin with, we limit ourselves to cascade effects involving
only the (4s5p) 3P0,1,2 states. Note that these states practically
decay only to the (4s5s) 3S1 state. We therefore neglect the
small decay probabilities from the (4s5p) 3P1 state to both the
(4s5s)1S0 excited state and the (4s2)1S0 ground state, which
can be nonzero due to the intermediate-coupling nature of the
(4s5p) 3P1 state. Based on our own structure calculations, as
well as the very small relative intensity of the (4s5p) 3P1 →
(4s2)1S0 line and the absence of a (4s5p) 3P1 → (4s5s)1S0
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line in the NIST Atomic Spectra database [4], we estimate
the branching ratio to be less than 0.01%. Finally, we assume
that the observed radiation from the (4s5p) 3P0,1,2 states is
coming from incoherently excited fine-structure levels. Note
that there is no time resolution in the experiment under
consideration. The above assumption is valid, since the line
width of the emitted cascade radiation is much smaller than
the fine-structure splitting of the energy levels.

With these assumptions the general expression (3.78) of
[15] simplifies considerably, giving the factor g(J, Ju, k) in
Eq. (4) as

g(J, Ju, k) = (−1)J+Ju+k+1 (2Ju + 1)

{
Ju J 1

J Ju k

}
. (5)

Note that all dipole matrix elements for the (4s5p) 3P0,1,2 →
(4s5s) 3S1 transitions cancel as these radiative decay channels
are either the only possible ones or at least by far dominant.
Using the values J = 1 and Ju = 0, 1, 2 in Eq. (5) and collect-
ing all the factors, we obtain

〈T e(1)+00〉 = 〈T (1)+00〉 + [〈T u(0)+00〉
+

√
3〈T u(1)+00〉 +

√
5〈T u(2)+00〉]/

√
3, (6a)

〈T e(1)+11〉 = 〈T (1)+11〉
+[〈T u(1)+11〉 +

√
5〈T u(2)+11〉]/2, (6b)

〈T e(1)+20〉 = 〈T (1)+20〉
− [〈T u(1)+20〉 −

√
7〈T u(2)+20〉]/2, (6c)

〈T e(1)+21〉 = 〈T (1)+21〉
− [〈T u(1)+21〉 −

√
7〈T u(2)+21〉]/2. (6d)

Equation (6a) expresses the fact that the apparent (i.e.,
observed) absolute cross section in this case is the sum of the
direct cross section for the (4s5s) 3S1 state plus the excitation
cross sections for the (4s5p) 3P0,1,2 states that decay into it.

As a final step, we use the state multipoles 〈T e(1)+kq〉 to
calculate the corresponding reduced state multipoles of Eq. (1)
and finally the light polarizations according to Eqs. (2).

III. COMPUTATIONS

To generate explicit values for the Stokes parameters,
both characterizing the radiation from the directly excited
(4s5s) 3S1 and the (4s5p) 3P0,1,2 states that can radiatively
decay into the former state, we performed semirelativis-
tic Breit-Pauli collision calculations using the B-spline R-
matrix (BP-BSR) method [16] and the associated computer
code [17], as well as the fully relativistic convergent close-
coupling (RCCC) approach [18,19]. Specifically, the BP-
BSR-43 model [20] coupled the lowest 29 discrete states of
Zn up to (3d104s4 f )1F3, together with the 14 states built from
the configurations (3d104p2) and (3d94s24p), respectively.
The latter states lie above the first ionization threshold of Zn
and, to some extent, account for coupling to the ionization
continuum. As a convergence check, we also carried out cal-
culations with just the lowest 15 discrete levels (BP-BSR-15).
As expected for the low projectile energies considered here,
the results from the two models did not differ significantly
enough to alter the conclusions drawn below.

The RCCC calculations were also performed in a variety of
approximations. We again started by coupling just the lowest
15 discrete levels (the RCCC-15 model) before increasing the
total number of states to 94. All states had an inert 3d10 Zn2+

core, but exchange with the inner electrons was included. The
actual target states were then obtained by diagonalizing the
quasi-two-electron Hamiltonian of the valence electrons in
a large Laguerre basis. The Hamiltonian was supplemented
by semiempirical polarization potentials to account for the
dipole polarizability of the doubly ionized core. As in the BP-
BSR case, the RCCC-15 predictions were very similar to the
RCCC-94 results, which can safely be considered converged
with the number of states included in the close-coupling
expansion. For the physical states, the RCCC structure results
were similar to those of BP-BSR-43 published in [20] and
are regarded as sufficiently accurate for the problem at hand.
Occasionally, the collision results at individual energy points
can become very sensitive to tiny differences (e.g., in reso-
nance positions or very close to a threshold), but the overall
conclusions of the present work are not affected. In fact, the
principal result, namely, a nearly vanishing P2/Pe, is very
stable against changes in the structure and collision models.

To obtain the angle-integrated state multipoles, we used
two different methods. The energy- and angle-dependent scat-
tering amplitudes can be constructed from the output of the
BSR code by using Eq. (2) of Bartschat and Scott [21]. Since
the BSR program yields energy- and angular-momentum-
dependent transition (T ) matrix elements, it is convenient to
carry out the angular integration over the spherical harmon-
ics analytically as suggested in [13], perform the sum over
the unobserved spin components of the projectile, and then
express the bilinear products of angle-integrated scattering
amplitudes directly in terms of the above T -matrix elements.
A general computer code for this task was published by Grum-
Grzhimailo [22]. The RCCC program, on the other hand,
evaluates angle-dependent scattering amplitudes. Hence we
performed the integration over the polar angle numerically
while the integration over the azimuthal angle is just a mul-
tiplication by 2π , which cancels out in all relative parameters.
Having completely independent computer programs and ways
to obtain the final light polarizations gives us further confi-
dence in the results presented below.

IV. RESULTS AND DISCUSSION

Figure 1 shows the absolute cross sections for electron-
impact excitation of the (4s5s) 3S1 and (4s5p) 3P0,1,2 states in
Zn from the (4s2)1S0 ground state. The BP-BSR-43 calcula-
tions in particular were performed on a narrow energy grid,
which reveals a large number of resonance features, the most
important ones of which are also visible in the RCCC-94
predictions. As will be seen below, however, these are largely
irrelevant for the light polarizations that are the principal focus
of the present paper. We also note that the relative excitation
strengths of the fine-structure levels of the (4s5p) 3P0,1,2 man-
ifold agree well with the expected statistical ratio, i.e., being
proportional to 2Ju + 1, and that the excitation cross section
of the (4s5s) 3S1 state is comparable to that of the combined
(4s5p) 3P manifold. The RCCC-94 predictions are generally
larger than those obtained with BP-BSR-43. Since for these
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FIG. 1. Cross section for electron-impact excitation of the
(4s5s) 3S1 and (4s5p) 3P0,1,2 states in Zn. The solid lines are the BP-
BSR-43 results, while the small solid circles represent the RCCC-94
predictions. The dashed line represents the sum of the excitation
cross sections to all the triplet states with configurations (4s4d ),
(4s6s), (4s6p), (4s5d ), and (4s4 f ), as obtained in the BP-BSR-43
model.

low energies the results are essentially converged with the
number of states included in the close-coupling expansion,
these differences are due to the different structure descriptions
used in the two approaches. As will be seen below, the predic-
tions for the relative light polarizations are far less sensitive to
details in the target structure than the absolute cross sections.

Also shown in Fig. 1 is the sum of the excitation cross
sections to higher-lying triplet states. The curve suggests that
these states should have little effect altogether. Furthermore,
as mentioned already, the most probable (small) effect of
multiple cascades would be depolarization of the state under
observation.

Figures 2 and 3 show our results for the light polariza-
tions P1, P2/Pe, and P3/Pe for the two cascade transitions
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FIG. 2. Angle-integrated light polarizations for the (4s5p) 3P1 →
(4s5s) 3S1 transition. The solid lines are the BP-BSR-43 results, while
the small solid circles represent the RCCC-94 predictions. P1 is
generally positive, P3 is always negative, and P2 ≈ 0.
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FIG. 3. Angle-integrated light polarizations for the (4s5p) 3P2 →
(4s5s) 3S1 transition. The solid lines are the BP-BSR-43 results, while
the small solid circles represent the RCCC-94 predictions. P1 is
positive, P3 ≈ −1, and P2 ≈ 0.

(4s5p) 3P1 → (4s5s) 3S1 and (4s5p) 3P2 → (4s5s) 3S1, respec-
tively. Recall that all light polarizations for transitions starting
at the (4s5p) 3P0 state must vanish. Being P states, their
orbital angular momentum can be aligned, and hence it is not
surprising that both of the above transitions show a significant
nonzero linear polarization P1, which also exhibits a substan-
tial energy dependence. While the agreement between the BP-
BSR-43 and RCCC-94 is by no means perfect for P1, there is
definitely good qualitative agreement. Very close to threshold
(approximately 0–0.2 eV above in our case), fractions like
the light polarizations become very sensitive to details, both
in the physics and the numerics, since both the numerator
and the denominator approach zero at threshold. Furthermore,
resonances that lead to different energy dependencies in the
two parts of the fraction may have the largest effect. Hence,
while the theoretical predictions are expected to be least
reliable in this energy region, measurements would also be
very difficult due to the anticipated small signal.

Moving on to the linear polarization P2/Pe, we note that
its magnitude is very small, except perhaps very close to the
threshold in the (4s5p) 3P1 state in the BP-BSR-43 results.
Once again, this is not surprising at all. The (4s5p) 3P2 state
has virtually pure LS character, and the (4s5p)1P1 admixture
to the (4s5p) 3P1 state is also very small. As mentioned above,
we confirmed this by our own structure calculations, but the
conclusion is also supported by the relative line strength of
one and the absence of the other intercombination line in the
NIST tables [4]. Hence, P2/Pe ≈ 0 is in excellent agreement
with the Bartschat-Blum result [6]. We expect essentially zero
for both cases. If there are deviations, they should be larger
for the (4s5p) 3P1 state than for the (4s5p) 3P2 state due to the
small intermediate-coupling character of the former state.

While it is extremely difficult to accurately calculate very
small deviations from zero, we emphasize again that it is
not essential for the conclusions of the present work whether
P2/Pe calculated here for just one of the cascade transitions
(there are more for which the results are similar) is slightly
positive or slightly negative. The important aspect is whether
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its magnitude reaches values that could ultimately lead to
those reported in both experiments above the cascade thresh-
old. Our present calculations, which represent the best we can
do at this time, suggest that this is not the case.

Finally, the circular polarization P3/Pe, once again shows
nonzero values for the (4s5p) 3P1 → (4s5s) 3S1 transition with
a clearly noticeable energy dependence. Except very close to
threshold, the agreement between the BP-BSR-43 and RCCC-
94 predictions is very satisfactory. On the other hand, both
theories yield a nearly energy-independent P3/Pe ≈ −0.75
for the (4s5p) 3P2 → (4s5s) 3S1 transition. Since this came
originally as a surprise to us, we carried out further analytical
calculations along the lines of Bartschat and Blum [6] and
Balashov et al. [15]. If one neglects the alignment term in the
construction of 〈T (J )+11〉 according to Eq. (3) of [6], and also
the alignment term in the denominator of Eq. (2c), one obtains

〈T (J =2)+00〉 =
√

5/3

3
〈T (L=1)+00〉, (7a)

〈T (J =2)+11〉 = iPe

√
5/3

6
〈T (L=1)+00〉, (7b)

Im {A11(J )} = Pe/2, (7c)

P3/Pe = −0.75. (7d)

Equation (7a) is obtained by using the statistical
factor Q(J =2) = 5

9 Q(L = 1), together with 〈T (J )+00〉 =
Q(J )/

√
2J + 1 mentioned earlier and 〈T (L)+00〉 =

Q(L)/
√

2L + 1. For a more general treatment, we refer
to the Appendix.

Before we discuss our final results, it is worth summarizing
the results for the cascade transitions. To begin with, we find
that the (4s5p) 3P0,1,2 states will essentially all decay to the
(4s5s) 3S1 state during an experiment that is performed in
the way described above, i.e., without the observation of the
scattered projectile and no resolution of the collision time.
Since the (4s5p) 3P0 state cannot be oriented or aligned at
all, its (small) contribution to the observed light polarizations
in transitions starting from the (4s5s) 3S1 state will be a
depolarization of the emitted radiation. The orbital alignment
of the (4s5p) 3P1,2 states leads to nonvanishing values of the
linear polarization P1, which can in turn align the MJ sublevels
of the (4s5s) 3S1 state and hence lead to an observable P1

also for transitions from that state. Due to the very good LS
character of the (4s5p) 3P0,1,2 states, however, the expected
values for P2/Pe remain close to zero, and hence the (4s5s) 3S1

cannot be aligned in a way that a significant P2/Pe would be
seen in its subsequent optical decay. Finally, |P3/Pe| is less
than unity, with a special value of P3/Pe ≈ −0.75 for the
(4s5p) 3P2 → (4s5s) 3S1 transition. As a result, we expect a
reduction in the spin orientation of the (4s5s) 3S1 state and
hence also a reduction of the observed circular polarization
for incident energies above the cascade threshold. Finally,
cascades from higher-lying states should have little effect due
to the smallness of the respective excitation cross sections.
Should there be a small effect, it will likely cause depolariza-
tion of the observed radiation.

In light of the above, our results shown in Fig. 4 for
the three light polarizations in the (4s5s) 3S1 → (4s4p) 3P0
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FIG. 4. Angle-integrated light polarizations for the (4s5s) 3S1 →
(4s4p) 3P0 transition. The dashed lines (almost indistinguishable
from P1 = P2/Pe = 0 and P3/Pe = −1) are the results without cas-
cades, while the solid lines and small circles represent the BP-BSR-
43 and RCCC-94, respectively, with the cascades included. The
experimental data are triangle-up: Clayburn and Gay [1]; triangle-
down: Pravica et al. [3]. The published error bars on the latter are
generally smaller than the symbol size.

transition are exactly what we expected. As for the cascade
transitions, there is some noticeable structure in the energy
dependence. This structure is due to resonances and increased
sensitivity close to threshold, but we reemphasize that these
details are not affecting the main message of this paper. Re-
garding P1, the BP-BSR-43 and RCCC-94 predictions agree
very well. Even though they are larger than the measured
values (probably at least in part due to depolarization from
cascades that we did not account for), there is definitely
qualitative agreement with the experimental data from both
groups, which also agree very well with each other. For
P2/Pe, we continue to predict essentially zero values. Our
results agree with the measurements of Clayburn and Gay
[1] below the cascade threshold, while their data above that
threshold agree, within the error bars, with those of Pravica
et al. [3]. Hence, both experimental datasets above the cascade
threshold contradict general theory [6] as well as the present
numerical calculations. Finally, there is excellent agreement
between both theories and both experiments in the predicted
depolarization of P3/Pe = −1 below the cascade threshold
when that threshold is crossed.

V. SUMMARY AND CONCLUSIONS

We have investigated the possible effect of cascade tran-
sitions from the (4s5p) 3P0,1,2 states to the (4s5s) 3S1 state
of Zn. In our fully ab initio numerical calculations using a
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semirelativistic 43-state Breit-Pauli B-spline R-matrix model
and a fully relativistic 94-state close-coupling model, we
obtained the cross sections for excitation of the (4s5s) 3S1

and (4s5p) 3P0,1,2 states, as well as the light polarizations
for the cascade radiation (4s5p) 3P1,2 → (4s5s) 3S1 and, sub-
sequently, for the (4s5s) 3S1 → (4s4p) 3P0 transition observed
experimentally. Accounting in an ab initio way for cascade
effects shows that cascading only complicates the situation,
but it does not change the underlying basic physics.

Our results are in excellent agreement with the general
theoretical predictions made by Bartschat and Blum [6] many
decades ago. Consequently, they also agree well with the
P2/Pe data of Clayburn and Gay [1] below the cascade
threshold. However, our calculations raise new questions
regarding, in particular, the relatively large magnitude of
P2/Pe reported in both experiments above the cascade thresh-
old, where the agreement between the experimental datasets,
somewhat surprisingly, is very good. Additional experiments,
with increased energy resolution and reduced uncertainties,
seem highly desirable in order to resolve this issue. If our
predictions were indeed incorrect, a shadow might be cast on
essentially all collision calculations, at least for observables
like those discussed in the present paper.

It may also be advisable to (re-)investigate other targets,
in particular Hg. While some data exist for this case [11], we
note that those were never published by the experimentalists
themselves.
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APPENDIX

This Appendix is devoted to the general derivation of
angle-integrated state multipoles of an atomic state excited by
a spin-polarized electron beam in the nonrelativistic approxi-
mation. We start from the general Eq. (2.61) of [15], which
describes (unnormalized) angle-differential state multipoles
for the total electronic angular momentum J of an atomic
state excited by an arbitrarily polarized electron beam. Recall
that we choose the z axis along the incident electron beam,
integrate analytically over the scattering angles, and sum over
the unobserved spin components of the scattered projectile.
Furthermore, we assume an atomic target initially in a closed-
shell (1S0) configuration. Then we transform the scattering
amplitudes from the j j-coupling scheme to the LSJ-coupling
scheme, and we take into account conservation of the total
spin St and the total orbital angular momentum Lt individually
(i.e., St = 1

2 , and Lt equals the orbital momentum of the
incoming electron, Lt = �0). Many of the summations can
then be performed analytically and the integrated reduced
state multipoles can be expressed in terms of vector coupling
coefficients and transition-matrix elements:

Akq(J ) = 〈T (J )+kq〉
〈T (J )+00〉

= (−1)k+L+S+12Ĵ L̂2Ŝ2N−1
∑
kLks

k̂Lk̂s(kL0, ksq | kq)

{ 1
2

1
2 ks

S S 1
2

}⎧⎨
⎩

S S ks

L L kL

J J k

⎫⎬
⎭

× ρksq

∑
Lt L′

t �

(−1)�(Lt 0, L′
t 0 | kL0)

{
Lt L′

t kL

L L �

}
TL�Lt T

∗
L�L′

t
, (A1)

where

N =
∑
Lt �

L̂−2
t {�LLt }

∣∣TL�Lt

∣∣2
. (A2)

Here L and S are the total orbital angular momentum and spin of the excited atomic state, standard notations are used for the
Clebsch-Gordan coefficients and the 6 j and 9 j symbols, â ≡ √

2a + 1, {abc} = 1 if a + b + c is integer and |a − b| � c �
a + b, and {abc} = 0 otherwise. We also introduced a short-hand notation for the reduced transition-matrix elements

TL�Lt ≡ 〈(L, �)Lt || T || (0, �0 = Lt )Lt 〉 , (A3)

where T is a scalar operator in the subspace of the total orbital momentum, � is the orbital angular momentum of the scattered
electron, and L+� = Lt . The statistical tensors describing the spin of the incident electron ρksq (ks = 0, 1) are

ρ00 = 1√
2
, ρ10 = 1√

2
Pz, ρ1 ±1 = ∓1

2
(Px ∓ iPy) . (A4)

It follows from the 9 j symbol with identical columns in Eq. (A1) that kL + ks + k must be even. Another observation is that the
projection q in the integrated state multipole equals the projection of the electron tensor (A4) and thus is restricted by |q| � 1.
For this reason, for example, we did not consider the case q = ±2 in Eq. (6).

The incident electron beam in our derivation is still arbitrarily polarized and the x and y axes of the rectangular coordinate
system need to be chosen. As in the main part of the manuscript, we take the y axis along the transversal electron polarization, i.e.,
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Px = Pz = 0 and Py = Pe. It is practical to split Eq. (A1) into two parts corresponding to ks = 0 (contribution from unpolarized
electrons) and ks = 1 (contribution from the electron beam polarization):

Akq(J ) = N−1Ĵ

⎡
⎣δq0(−1)J+SL̂2

{
J J k
L L S

} ∑
Lt L′

t �

(−1)�(Lt 0, L′
t 0 | k0)

{
Lt L′

t k
L L �

}
TL�Lt T

∗
L�L′

t

+ iPy

√
3L̂2Ŝ2(−1)k+L+S+1

∑
kL=k±1

k̂L(kL0, 1q | kq)

{ 1
2

1
2 1

S S 1
2

}⎧⎨
⎩

S S 1
L L kL

J J k

⎫⎬
⎭

×
∑
Lt L′

t �

(−1)�(Lt 0, L′
t 0 | kL0)

{
Lt L′

t kL

L L �

}
TL�Lt T

∗
L�L′

t

⎤
⎦. (A5)

With these reduced state multipoles we can find the Stokes parameters of the fluorescence radiation according to Eqs. (2a)–(2c).
Let us consider a few special cases of Eq. (A5). For example, for singlet states (S = 0, J = L) only reduced statistical

tensors with zero projection, q = 0, survive. From the first term of (A5), A11(J ) = 0, and therefore P3 = 0. For S states
(L = 0, J = S) the result is independent of the scattering amplitudes:

Akq(J ) = δk0 + δk1iPy(−1)J
√

3

{ 1
2

1
2 1

J J 1
2

}
. (A6)

Since only k = 0 and k = 1 contribute in Eq. (A6), P1 = P2 = 0. For the fluorescence transition 3S1 →3 P0, we obtain P3 = −Py,
in excellent agreement with the cascade-free calculations shown in Fig. 4.

Finally, after substituting the quantum numbers for the 3P2 state (L = 1, S = 1, J = 2) in Eq. (A5), we obtain

A11(3P2) = iPy

⎡
⎣1

2
+

√
3

10
√

2
N−1

∑
Lt L′

t �

(−1)�(Lt 0, L′
t 0 | 20)

{
Lt L′

t 2
L L �

}
TL�Lt T

∗
L�L′

t

⎤
⎦. (A7)

Assuming that the second term is much smaller than the first because of a small algebraic coefficient and mutual cancellations
of the interfering terms in the sum, we have A11(3P2) = i

2 Pe. As mentioned in the main text, after also neglecting the alignment
contribution in the denominator of Eq. (2c), we obtain P3/Pe = − 3

4 for the 3P2 →3S1 fluorescence radiation.
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