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ABSTRACT ARTICLE HISTORY
People are increasingly concerned with understanding their personal environment, including possible Received September 2018
exposure to harmful air pollutants. To make informed decisions on their day-to-day activities, they are inter- Accepted September 2019
ested in real-time information on a localized scale. Publicly available, fine-scale, high-quality air pollution

measurements acquired using mobile monitors represent a paradigm shift in measurement technologies. =~ KEYWORDS

Google Street View Air

A methodological framework utilizing these increasingly fine-scale measurements to provide real-time air Quality Data; Kriging; Mobile

pollution maps and short-term air quality forecasts on a fine-resolution spatial scale could prove to be sensors; Spatiotemporal
instrumental in increasing public awareness and understanding. The Google Street View study provides models,:Vecchia
a unique source of data with spatial and temporal complexities, with the potential to provide information approximation.
about commuter exposure and hot spots within city streets with high traffic. We develop a computationally

efficient spatiotemporal model for these data and use the model to make short-term forecasts and high-

resolution maps of current air pollution levels. We also show via an experiment that mobile networks can

provide more nuanced information than an equally sized fixed-location network. This modeling framework

has important real-world implications in understanding citizens’ personal environments, as data production

and real-time availability continue to be driven by the ongoing development and improvement of mobile

measurement technologies. Supplementary materials for this article, including a standardized description

of the materials available for reproducing the work, are available as an online supplement.

1. Introduction NO, also reacts with water in the atmosphere to produce
ozone and acid rain. The resulting nitrate particles from this
reaction can contribute to particulate matter less than 2.5
microns in diameter (PM,5) (U.S. Environmental Protection

The harmful effects of air pollution on human health have been
well documented (Pope, Dockery, and Schwartz 1995; Laden
et al. 2006; Pope III and Dockery 2006; Katsouyanni et al. ‘ o .
2009; Zanobetti and Schwartz 2009;YChang, Reich, a}rlld Miranda Agency 19?9)’ al.l of which have addljuonal environmental
2011). The World Health Organization classified air pollution as h.eal.th C(.mSIderatlons' .NOZ, can react with water, ozone, and
a major environmental health risk, estimating that 4.2 million nitric oxide (NO) multiple times overa span ofseveral h.ours to
premature deaths in 2016 can be attributed to exposure to out- fOIT m ar'ld 'reform NO; and NO. Emissions of n}trous oxides are
door air pollution (World Health Organization 2016). Nitrogen ~ Primarily in the form of NO, where 92% of NO is anthropogenic
dioxide (NO,), a highly reactive gas monitored by states and the with 56% estimated to be from mobile emissions (U.S. Envi-
EPA, is formed primarily from fuel-burning emissions. Health ~ronmental Protection Agency 2018a). Hence, understanding
effects at elevated levels from short-term exposures include patterns of mobile emissions are paramount to protecting public
cardiovascular effects and premature mortality as well as diffi-  health, particularly for susceptible populations, such as children,
culty breathing and increased occurrence of hospital visits due ~ the elderly, and those with asthma or compromised immune
to decreased lung capacity including asthma exacerbation (US  systems.

Environmental Protection Agency 2016). Long-term effects at The vast majority of health studies to date have focused
elevated levels include cardiovascular effects, premature mor- ~ on the relationship between human health effects and longer
tality, diabetes, poorer birth outcomes, cancer, and asthma in ~ term exposures, such as 1-hour or daily average aggregate
children (US Environmental Protection Agency 2016). effects. Additionally, these studies are based on air-quality
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measurements for which spatial information is often limited
due to the number of stationary monitors measuring air
quality over large regions. It is important to understand these
pollutant patterns on a finer scale, as microenvironment effects
can vary strongly according to meteorology and local traffic
patterns. Very fine-scale measurements are becoming more
relevant as portable and mobile sensors are deployed by local
governments in an effort to assess, evaluate, and manage local
air quality conditions. This includes Chicago’s “Array of Things”
citywide network of air quality sensors and Louisville’s Air
Louisville initiative launched in 2012 to monitor asthma-
inducing conditions (Adler 2015). International efforts include
Air Map Korea Project (Rooney 2018), which aims to install
over 4.5 million monitors on telephone poles, public phone
booths and central offices, and Smart City Barcelonas Lighting
Masterplan (Adler 2016), which equipped lampposts with air
quality sensors to relay information to the city and to the public.
London showed creativity in air quality monitoring with their
Pigeon Patrol (McKenzie 2016), fitting pigeons with mobile
air quality sensors to measure nitrogen dioxide across the
city. Communication of these short-term measurements is a
significant challenge. Methodology utilizing this information
to provide real-time air pollution maps as well as short-term
air quality forecasts on a fine-resolution temporal and spatial
scale may revolutionize people’s understanding of their personal
environment and exposures, having real-world implications and
impacts on citizens.

As the effects of air pollution and the differences in pollutant
microenvironments become more widely studied and under-
stood, people are increasingly concerned with understanding
their immediate personal environment and its effect on their
health. They are interested in real-time information on a very
localized scale to make informed decisions on their day-to-day
activities. This includes their possible exposure to harmful air
pollution. They may routinely consider questions such as: What
is the best time of day to go for a run through a residential
neighborhood? What route should an asthmatic take to work to
avoid high levels of air pollution? Are air pollutant levels at a city
park higher or lower during an afternoon or evening weekday
versus a weekend? EPAs widely used Air Quality Index (AQI)
uses high quality hourly data from stationary Federal Reference
Monitors (FRMs) and Federal Equivalency Monitors (FEMs) to
implement a color-coded air quality scale and public messaging
system. Real-time and forecasted AQIs are provided to the
public via EPAs AirNow website (airnow.gov) and are available
by city, state, or ZIP code. Localized sensor networks, which may
include mobile sensors, may provide additional information
on which to build, refine, and expand air quality information
available to the public. Additionally, as technology continues to
improve, personal wearables are becoming more affordable and
accessible to the general public (MISTI 2017; Schiffman 2017).

Real-time information on a very localized scale are also
valuable for being able to consider possible health effects of
very short-term exposures. It is important to first be able to
describe the behavior of pollutants on the corresponding spatial
and temporal scales to consider possible health effects at such a
fine scale.

In this article, we analyze data collected from Google Street
View vehicles in Oakland, CA (Apte et al. 2017). The cars

drive through the city on spatiotemporal tracks and measure
ambient NO; each second. This study provides a unique source
of highly detailed data with spatial and temporal complexities.
It can provide information about commuter exposure, hot spots
within high-trafficked city streets, as well as complex patterns
due to meteorological effects and microenvironments. This fine-
scale spatial and temporal information could also lead to the
methodology and information needed to start to character-
ize acute exposure. It is particularly important to understand
near-road and city-street environments. The U.S. Environmen-
tal Protection Agency reports that over 45 million people live
in close proximity to major roadway (US Environmental Pro-
tection Agency 2018b). The novel dataset provides information
about air quality surrounding roadways and commonly traf-
ficked areas that is not available from the limited number of
stationary monitors across an area or region.

Fine-scale air quality measurement and analysis have been
powered by recent advances in sensor technologies, which allow
for the use of mobile network platform with low-cost sensors
for the purpose of general monitoring (Morawska et al. 2013;
Snyder et al. 2013; Castellini, Moroni, and Cappelletti 2014;
Sarto etal. 2016) and personal exposure assessment (Kim, Jeong,
and Lee 2012; White et al. 2012; Holstius et al. 2014). There is
a significant difference in temporal resolution between mobile
measurements and fixed point networks. As a complement to
fixed point networks, mobile air quality monitoring can also
improve spatial coverage and be used to map air pollution
with improved spatial and temporal resolution. In particular,
fine-scale air quality monitoring is essential in urban settings,
because the measurements vary dramatically over space and
time and closely relate to several factors, such as land use,
traffic, and meteorology. Several mobile platforms have been
developed, such as wearable device, smart-phone (Dutta et al.
2009; Hasenfratz et al. 2012; Bartonova 2015; Brienza et al.
2015), bicycle (Thai, McKendry, and Brauer 2008; Boogaard
et al. 2009), and vehicle (Gulliver and Briggs 2007; Larson
et al. 2007; Briggs et al. 2008; Boogaard et al. 2009). Recently,
Apte et al. (2017) demonstrated fine-scale spatial (though not
spatiotemporal) air pollution mapping with the largest urban air
quality data collected by Google Street View vehicles.

In this article, we perform a novel spatiotemporal analysis
of Google Street View data. Our objectives are to develop a
statistical approach to use these data to produce fine-scale maps
of the current air pollution level and to make short-term local
forecasts. These data are streaming (i.e., collected every second)
and collected along spatiotemporal paths (cars traversing the
city), providing new insights into air quality via a mobile mea-
surement framework. We tailor our computational approach
to these unique features using local-likelihood approximations.
We explore different forms of temporal aggregation to compare
stability by aggregation level and address the practical problem
of selecting the neighborhood scheme for the local approxima-
tion to optimize short-term prediction. We show that our final
approach has forecast skill and outperforms competing meth-
ods. Finally, we conduct a simulated experiment to determine
the relative effectiveness of a fleet of mobile monitors compared
to a network of fixed-location monitors. We find that mobile
monitors provide improved estimation and prediction at un-
monitored locations compared to estimation and prediction



based solely on limited fixed-location monitors. Therefore, our
article contributes to the emerging field of mobile air pollution
monitoring by providing a template for processing and mod-
eling data with these types of complex measurement and scale
considerations, as well as guidance for future sampling efforts.

2. Data Sources and Exploratory Analysis

One-second NO, data were collected via routine mobile mon-
itoring in Oakland, California as part of an on-going multi-
institutional collaboration between the Environmental Defense
Fund, University of Texas at Austin, and Google, among others.
Details of the sampling protocol are available in Apte et al.
(2017). Briefly, the data were collected with two Google Street
View mapping vehicles (henceforth referred to as Car A and Car
B) equipped with Aclima-Ei fast-response pollution data inte-
gration platform (see Apte et al. (2017) Supporting Information
for details; Aclima Inc., San Francisco, CA). The measurement
instrument is mounted on the top of the vehicle to alleviate the
effect of high emission due to self-emission from the vehicles.
Post-installation tests indicated self-sampling was a rare occur-
rence during routine operation, including idles and stops (Apte
etal. 2017). Data were collected during weekdays and daytimes,
in which the drivers were instructed to drive every road segment
at least once in an assigned polygon with area between 1 and
10 km?. In this study, pollutant data were obtained directly
and used with permission from Google. Data included samples
from June 30, 2015 to May 13, 2016. Following Apte et al.
(2017), we employed the following data reduction algorithm
to convert raw spatial coordinates into consistently defined
spatial locations. First, a street centerline file (obtained from
OpenStreetMaps.com) was converted to roughly equal interval
30-meter road segments. Next, a nearest-neighbor algorithm
assigned the raw geographical coordinates to the nearest 30-
meter segment resulting in consistently defined locations to
evaluate spatial and temporal trends.

For each segment we also extracted the 28 geographic covari-
ates. We include binary indicators for nonresidential road types

Roads Driven on August 6, 2015
Y, <3
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(highway, major road, truck route, and major truck route) and
land-use zones (commercial, industrial, and residential). Con-
tinuous variables include distance to point sources (railway,
port, airport, EPA superfund National Priority Listing sites, and
EPA Toxic Release Inventory sites) and the average value of
several variables with in a 50 m buffer around the segment:
elevation, population, normalized difference vegetation index
to measure greenness, several land cover types (water, open
developed, low developed, medium developed, high developed,
evergreen, shrub, herbaceous, and impervious), and lengths of
types of roads (total, highway, major, and residential).

Car routes driven on August 6th, 2015 and May 5th, 2016 for
the two Google Street View vehicles are shown in Figure 1. On
August 6th, both cars drove mainly in the residential areas of the
southeast region of Oakland between 9:00 and 15:00. On May
5th, Car A drove mainly highways throughout Oakland while
Car B covered two mostly residential areas, both cars driving
between 10:00 and 15:00. The two days illustrate that while air
pollution data can be obtained from the Google Street View
vehicles locally at very high spatiotemporal resolution, the over-
all space-time coverage of the data on a given day is quite limited.
In addition, both cars were driven simultaneously on only 41%
of the drive days, with only one car driving on the remaining
days. It is also important to note NO,’s diurnal pattern, with
elevated levels due to emissions in the later morning (Pancholi
etal. 2018).

Exploration of the one-second samples shows that the NO,
data are heavily right-skewed, even after a log transformation.
We hypothesize that the extremely large values are caused by
very local and unpredictable phenomena such as the car being
stuck behind a heavy-polluting vehicle. Therefore, in addition to
modeling the one-second data we also consider using medians
of the samples over 15-second and one-minute intervals to
lessen the influence of these extreme values. Figure 2 plots a
sample of the data along with corresponding block medians. The
spatial location assigned to these block medians is the location
of the sample nearest to the center of the block’s time interval.
Therefore, a trade-off for using the more stable block median
data is loss of spatial fidelity.

Roads Driven on May 5, 2016
S N :

e Car_A = Car_B

Figure 1. Example drive coverage: driving routes of two Google Street View vehicles for two days. The gray lines represent all the road segments covered by the two
vehicles within the data collection period. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 2. Temporal aggregation: illustration of data reduction via block medians for 1 hr of data.

3. Statistical Model

Let Y/(s) be the observed log-transformed NO, from a car
measured at time f and location s € R2. Yy(s) is regressed
onto X¢(s), a p-dimensional vector of covariates at location s
and time t. We assume the observed log-transformed NO; is
a noisy realization of the true NO; process, u(s), such that

ind
Yi(s)| e (s) P Normal(u(s), 72). The true process 1(s)
is decomposed using the spatiotemporal land-use regression
model

1e(s) = Xe(s)T B + ne(s). (1)

The model allows X;(s) T B to capture the large-scale spatiotem-
poral variations in NO, while the remaining variability is cap-
tured by the small-scale process 7:(s).

The small-scale process follows a Gaussian process with
mean zero and spatiotemporal covariance function C(s,t,§/,
t) = cov[ni(s),ny(s)], denoted n ~ GP(0,C). We assume
a nonseparable, nonstationary covariance function where
distance is a function of space, time, and (standardized) spatial
covariates x(s) (that need not be the same covariates as in X;(s)),

C(s, t,s,t)

2 lls—s'> =) |1x(s) — x(s)]|[?
= o exp <—\/ PP + 9t2 + 9’% .

()

The covariance has four parameters: o2 is the variance, and 6;,
0:, and 6, control the range of correlation in space, time, and
covariate space, respectively. The covariance is an anisotropic
exponential covariance function defined using Euclidean dis-
tance on the (p 4 3)-dimensional domain spanned by [s, £, x(s)].

The covariance is a function of both spatial distance ||s —§'||
and similarity between the covariates, x(s), at sites s and §/, as
well as how close observations are in time. Including covariates
in covariance (e.g., Reich et al. 2011; Schmidt, Guttorp, and
O’Hagan 2011; Ingebrigtsen, Lindgren, and Steinsland 2014;
Risser and Calder 2015) allows for the model to extrapolate
to areas far from the observations but with similar geographic
profiles. For example, it may be that all locations near a highway

are high due to heavy traffic that day, and using distance to
highway as a covariate in the covariance captures this complex
dependence structure. Allowing for this rich dependence struc-
ture is potentially useful for the Google Street View application
where the spatiotemporal coverage is often sparse.

4. Computational Details

The Google Street View data are large and we intend to refit
the model periodically to update parameter estimates using
the most recent data, therefore a fully Bayesian or maximum
likelihood analysis is infeasible. In this section, we describe a
computationally efficient approximation of the likelihood func-
tion that can be applied to large spatiotemporal data. A two-
step procedure is adapted for parameter estimation. We first
estimate the regression coefficients, 8, from a multiple linear
regression model assuming independent errors. The residuals
€+(s) = Yi(s) — Xy(s) B are then used to estimate the remaining
parameters ® = (2,026, 0s, x) using composite maximum
likelihood estimation.

The n residuals are ordered in time with €; denoting the ith
residual for the observation at location s; and time ¢;, that is,
€ = €,(si). We use the Vecchia composite likelihood (Vecchia
1988; Stein, Chi, and Welty 2004; Katzfuss and Guinness 2017;
Guinness 2018)

e =[]r (@l 0), (3)
i=1

where &; is the vector of ¢; for j € N;, Ni € {1,...,i — 1} is
the conditioning set for observation i, and f is the conditional
distribution of €; given e;. Specifically, f (€;|e;, ®) is the Gaussian
density function with mean X,15(©)X 5, (@) !¢; and variance
211(0) — Ti2(0)X2(0)712;1,(0)T, where X;11(0) =
var(€;), Xi12(®) = cov(€;, €;) and L (®) = cov(e;) are
determined by the spatiotemporal covariance function C with
parameters ©. This approximation is computationally conve-
nient, because the largest matrix (X;3,) is the dimension of the
conditioning set N, which is taken to be much smaller than
n. In addition, the conditional distributions in the product can
be computed in parallel using multiple processors. Our current



implementation uses the parallel (R Core Team 2018) R package
for parallel computing.

The key to effectively applying the Vecchia approximation
is to select appropriate conditioning sets. If the conditioning
sets include all previous observations, N; = {1,...,i — 1},
then the composite likelihood is the exact likelihood. While this
may be optimal from the statistical perspective, it is infeasible
from the computational perspective. The composite likelihood
is a close approximation to the full likelihood if the observa-
tions in the conditioning set explain most of the variability in
the observations, and so a common approach is to take the
conditioning set to be the closest neighbors to observation i.
However, recent work (Gramacy and Apley 2015) suggests that
other conditioning sets that include distant points may lead to
more precise estimation and prediction.

We consider conditioning sets of the form

MZU:fi—tjE(l,l+m)}, (4)

that is, the set of observations taken between [ and | + m
minutes before observation i. A natural choice is to set I = 0 so
that the conditioning set includes the most recent observations.
Given that the Google Street View data are collected along
spatiotemporal paths, this conditioning set will include mostly
observations taken close to s;, and conditioning on these close
spatiotemporal neighbors will provide a good approximation to
the full likelihood.

While setting | = 0 provides a better approximation to the
full likelihood, we find that conditioning sets with [ > 0 lead to
better temporal predictions. We hypothesize that this is because
when | = 0 the conditional distributions are dominated by a
few neighbors that are very close to observation 7, and when
forecasting for moderate or large time lags no such neighbors
are available. Of course, if the parametric form of the covariance
function is correct, then the covariance-parameter estimates
derived from close neighbors can still give good distant pre-
dictions. However, if | = 0 and the parametric form of the
covariance function is misspecified, then covariance estimates
for long distances are extrapolations based on parameters esti-
mated from short distances, and may be suboptimal. Therefore,
taking I > 0 and thus excluding the closest points from the
conditioning sets may give better estimates of the covariance
function at the range needed for prediction; see Appendix A.1
for a small simulation study exploring this hypothesis for time
series data.

5. Analysis of Oakland Google Street View Data

We treat block medians with different time blocks as separate
datasets and analyze them in parallel. For our study period from
June 30, 2015 to May 13, 2016, there are 901,215 measurements
collected by two vehicles. The sizes of datasets with different
time blocks are different; there are 132,347 block medians based
on 15-second intervals, and 39,113 block medians based on 1-
minute intervals. We first conduct extensive model comparisons
using data from 10/29/2015 to 12/18/2015 for training and the
data from 12/21/2015 to 02/05/2016 for testing in Section 5.1.
Considering potential changes in the relationship between the
land-use covariates and NO; and spatiotemporal dependence,
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due to evolving environmental, traffic and emissions patterns,
we present the results of refitting the model periodically using
a sliding window of training data in Section 5.2. Finally, in
Section 5.3 we compare the efficiency of mobile versus fixed-
location monitoring networks.

5.1. Results for 10/29/2015 to 02/05/2016

Here we compare land-use regression models with different
dependence structures. The mean components in the regression
models use the same covariates derived from the geographic
covariates given in Section 2. Because some of them are highly
correlated, we standardize the covariates and compute their
principal components (PCs) to alleviate collinearity concerns.
We then select a subset of these PCs in our analysis to reduce
the dimension of the covariates. The first 13 PCs account for
approximately 80% of the variation in land-use covariates, and
they capture important spatial features of the geographic covari-
ates. As an example, four PCs are presented in Figure 3, the
first PC is high for the downtown area and the fifth PC shows
the contrast for major/nonmajor freeways. To further reduce
the number of covariates, we perform a least-squares analysis
by regressing the 13 PCs onto log NO; and retain only the first
seven PCs. These seven PCs comprise the covariance covariate
vector, x(s). In the mean term X;(s), we use the selected PCs,
four diurnal covariates (cosine and sine terms with periods 12
and 24 hr) and their interactions, giving p = 40 spatiotemporal
covariates including the intercept. This allows the covariate
effects to vary within day, for example, highway may have higher
NO; concentration in the morning and evening due to rush
hour traffic.
The following models are compared:

. . indep
1. X-only: The nonspatial land-use regression model Y;(s) ~
Normal (Xt(s) Tg, 1:2).

ind
2. S: The spatial land-use regression model Y(s)|n(s) lp

Normal(X;(s)” B + 1(s), t2) where n ~ GP(0,C) with

C(Si) s]) = o‘zexp {_M} . (5)
bs
3. ST: The spatiotemporal land-use regression model Y;(s)|
ind
mi(s) "~ Normal(X,(s)T8 + ni(s),7%) where () ~

GP(0,C) with

2 2
) llsi — sl (ti —t)
C(sis tissj, tj) = o“exp —\/ e + th . (6)

ind
4. STx: The full model with Y;(s)|n:(s) =P Normal(X;(s)T B+
n:(s), T2), where n:(s) ~ GP(0,C) with

C(Si, ti sja t])

2 2 2
_ 2 llsi—sll” (i —1)"  [Ix(si) —x(s))l|
= o“exp —\/ 62 + 9t2 + P

7)
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Figure 3. Principal components: spatial maps of principal components 1, 3, 4, and 5. Note that the color scale for each plot is different due to the large variation of values
across PCs. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

The first two models are static over days (although their means
vary by hour of the day) to represent the spatial-only modeling
approach of Messier et al. (2018). Predictions from the final two
models change by day based on data collected just prior to time
the prediction is made.

Data from both cars in the training period are ordered in time
for parameter estimation. The spatial-only model (S) is fitted
using the Vecchia approximation with 30 nearest neighbors in
time in the conditioning set. For the ST and STx models, we
repeat the proposed two-step procedure for different condition-
ing sets, that is, different time lags (/) and neighborhood sizes
(m). For one-second data, the conditioning sets are large even
for small m. For instance, when m = 10 min the conditioning
set can have up to 600 observations. To reduce computation
time, we reduce the size of the conditioning set by subsampling
100 observations for computing the composite likelihood. The
results are similar for values of m from 10 to 60 min for all
different block medians, therefore, we present results only for
m = 60 min. In this case, the number of observations in

the conditioning set is about 60 for one-minute block median,
which is an appropriate size for computing the composite like-
lihood. For all methods, the parameters are estimated using
only training data and never updated using test-set data. For
the spatial-only model we make Kriging predictions based only
on the 800 nearest spatial neighbors in the training set. For
the spatiotemporal methods (ST and STx) we make Kriging
predictions based on the observations from the test-set data
I + m minutes prior to the time of the prediction.

We perform two types of cross-validation predictions on the
test set: (1) forecast for h = {5,15,60} min ahead given the
past 1 hr observations and (2) predict one car conditioning on
the data from the other car on the given day (denoted “Car
AB” prediction). Forecast performance relies more on temporal
dependence, because in our data the cars cover only a small
region in any given day, and so the forecast ability is limited to a
small region near the latest available data. In Car AB prediction,
the spatial dependence plays a larger role because the cars are
often in different parts of the city.



Table 1. Cross-validation results.
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Block size Model / h = 5min h = 15min h = 60 min Car AB
RMSPE Cor RMSPE Cor RMSPE Cor RMSPE Cor
1sec X - 10.79 0.18 10.79 0.18 10.79 0.18 55.29 0.08
S - 11.22 0.27 11.22 0.27 11.22 0.27 109.80 0.09
ST 0 9.06 0.45 10.41 0.25 10.79 0.18 55.03 0.09
ST 5 8.22 0.58 10.98 0.36 10.78 0.28 55.01 0.10
ST 15 8.24 0.57 10.74 0.36 10.39 0.31 55.09 0.10
ST 60 8.47 0.55 9.99 0.38 10.33 0.28 55.00 0.09
STX h 8.26 0.58 10.46 0.37 10.71 0.25 55.12 0.10
15 sec X - 10.81 0.24 10.81 0.24 10.81 0.24 30.10 0.14
S - 11.49 0.28 11.49 0.28 11.49 0.28 46.85 0.14
ST 0 9.90 0.44 10.68 0.28 10.81 0.24 29.94 0.17
ST 5 9.04 0.57 9.75 0.48 10.25 0.40 30.18 0.19
ST 15 9.04 0.57 9.75 0.48 10.28 0.40 30.16 0.19
ST 60 9.06 0.56 9.65 0.48 10.23 0.38 30.03 0.17
STX h 9.09 0.56 9.67 0.48 13.01 0.11 30.02 0.19
1 min X - 9.61 0.28 9.61 0.28 9.61 0.28 20.99 0.19
S - 10.36 0.34 10.36 0.34 10.36 0.34 23.40 0.21
ST 0 8.01 0.59 8.92 0.44 9.59 0.29 20.88 0.26
ST 5 7.66 0.64 8.31 0.56 9.01 0.46 21.33 0.26
ST 15 7.65 0.64 8.32 0.56 9.08 0.45 2133 0.26
ST 60 7.71 0.63 8.32 0.55 8.97 0.45 21.18 0.26
STX h 7.76 0.63 8.32 0.56 9.17 0.44 21.10 0.26

NOTE: Root mean squared prediction error (ppb) and prediction correlation for h minutes ahead prediction and Car AB prediction using the mean-only (“X"), spatial-only
(“S"), spatiotemporal (“ST") and covariates in covariance (“STx") model. The spatiotemporal models are fit using the observations from the previous [/,/ + 60] minutes
in the conditioning set. The STx model is fit with /| = 60 for Car AB prediction. The results are presented separately for data representing medians over one-second,

15-second, and one-minute block medians.

Table 1 gives the prediction performance for each model and
prediction lag. For comparison with the raw data measured in
parts per billion (ppb), we exponentiate our model predictions
(which were made based on the log-transformed data) and
compute root mean square prediction errors (RMSPEs). As
expected, the Car AB predictions are less accurate for all models,
because they are usually made at longer spatial distances. The
static models (X and S) have lower correlation between pre-
dicted and observed than the spatiotemporal models, although
the difference is less extreme for Car AB predictions. For these
data the ST and STx models are similar for forecasting, although
for small block sizes there are slight improvements in correlation
by including the covariates in the covariance in the Car AB pre-
dictions, where exploiting long-range relationships explained by
covariates may be useful.

For the spatiotemporal models the correlations are consid-
erably lower for the conditioning set that includes the nearest
neighbors with I = 0 versus conditioning sets with lag [ > 0.
The results are fairly similar for ] = {5, 15, 60} (and hence only
shown for I = h for STx) and so there does not seem to be
sensitivity to the choice of lag apart from using a nonzero value.
It is somewhat surprising that predictions are only slightly more
accurate for larger block sizes than the raw one-second data. For
example, the model’s highest one-hour ahead correlation is 0.31
for one-second data compared to 0.46 for one-minute data. This
is encouraging because it suggests that producing very high-
resolution maps is feasible using these data.

Parameter estimates for the ST model are shown in Table 2.
The spatial and temporal range estimates for the 15-second
and one-minute block medians are generally longer than the
estimates for the original one-second data. Therefore, it appears
NO, is more stable after smoothing via block medians. The
range estimates vary considerably by the conditioning set lag
I. For I = 0, and thus the closest neighbors included in the

Table 2. Correlation parameter estimates.

Block size i Varianceratio  Spatial range (km)  Temporal range (hr)

1sec 0 1.00 0.95 0.19
5 0.63 4.82 3.83

15 0.54 3.95 9.53

60 0.77 138 2.32

15 sec 0 1.00 1.51 0.09
5 0.56 8.01 20.64

15 0.48 7.24 32.14

60 0.52 2.11 430

1 min 0 0.92 3.52 0.23
5 0.64 5.21 9.24

15 0.57 543 28.72

60 0.60 3.62 419

NOTE: Estimated spatial variance ratio (o2 /[t2 + o2]), spatial (6x) and temporal
(6¢) range parameter estimates for one-second, 15-second, and one-minute block
median datasets for the spatiotemporal model fit using the observations from the
previous [/, / + 60] minutes in the conditioning set.

conditioning set, temporal (and spatial) range estimates are
very small, indicating that only observations taken in the few
minutes prior to the prediction are useful. In contrast, the
temporal range estimates are larger for I > 0 and in some
cases observations from the previous day remain correlated with
the current observation. This indicates that it is necessary to
take the conditioning set lag I to be nonzero for estimation and
prediction.

Figure 4 shows that the estimated mean trend X;(s) fi varies
considerably throughout the day. Southeast Oakland’s Business
District shows the largest diurnal fluctuation with high values
during the rush hours of 9:00 and 18:00 and moderate levels
midday. Traffic patterns in Northwest Oakland are likely affected
by Oakland City Center amenities such as the Oakland Con-
vention Center and may be somewhat alleviated by access to
multiple stops of the Bay Area Rapid Transit System. The diurnal
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20 25 3.0 35

o 2 4 6 8

Figure 4. Estimated spatial diurnal pattern: maps of the estimated mean trend Xt(s)[i for several hour of the day for the ST model. Note that because the scales vary so
dramatically by hour the panels have different scales. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

fluctuations and rush-hour traffic patterns are also apparent in
subregions of the NW, although not to as great of an extent.
During midday (12:00 and 15:00) the high mean trends are
along the freeways and the NE.

To illustrate how short-term predictions might look to a user,
Figure 5 shows 15-minute ahead forecasted log(NO,) at 15:00
using the data from 13:45 to 14:45 on May 5, 2016 using the
ST model (b) with associated standard errors (c). The observed
log(NO;) obtained from Cars A and B earlier in the day (up
to 14:45) are also shown in Figure 5(a) for comparison. As
expected, prediction standard errors are lowest where data have
been obtained most recently from the two cars.

Figure 6 compares ST model 15-minute forecasts to S model
forecasts to illustrate the flexibility of ST model to adapt to
real-time observations with large deviations from the mean
trend. Shown are observed log(NO;) data of Oakland from 9:00
to 13:45 on September 11, 2015 (a) and the 15-minute ahead
forecast at 14:00 from the S (b) and ST (c) models. The bottom
row of Figure 6 shows the deviation of the observed data and

the 15 min ahead forecasts from the estimated regression mean
(i.e., yt(s) — x,(s),é or yi(s) — xt(s),é). The nearest observed
data in time to 14:00 is substantially higher than the estimated
mean over the region and this trend is reflected in the ST model
forecasts. However, the S model forecasts do not exploit the real-
time information from nearest neighbors in time and as such
the S model is not able to provide realistic short-term forecasts
of log(NO,). This illustrates the power of the spatiotemporal
dependence structure for real-time forecasting of the proposed
model.

5.2. Sliding Window Analysis

We envision the model being refitted periodically to adapt
to evolving environmental, traffic, and emissions patterns.
We refit the model using 15-second block median data in a
sliding window of training data to study changes in parameter
estimates and relative model performance. For each week



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

Observed Data, 9:00 - 14:45 15:00 Forecast 15:00 Standard Error
[ 7 \ / 3 VAR (|
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Figure 5. Real-time forecasting illustration: (a) 15-second aggregated data from Cars A and B up to 14:45 on May 5, 2016. (b) 15-minute ahead forecasted log(NO5) at 15:00
using the ST model. (c) Associated standard errors of log(NO;) forecasts. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 6. Forecasting model comparison: 15-minute ahead forecast of log(NO,) for the southeast portion of the spatial domain at 14:00 using data up to 13:45 on
September 11,2015 (a) using the S (b) and ST (c) models. Observations (d) and forecasts (e), (f) with the estimated regression mean removed. Map tiles by Stamen Design,
under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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from 12/07/2015 to 05/13/2016, we use the data from the
previous w weeks to train the model and compute 15-minute
ahead prediction mean squared error for that week as in
Section 5.1. For the spatiotemporal models, we use a one-
hour lag in the conditioning set, so that I = 60 in parameter
estimation.

The STX model has similar performance to the ST model,
so we only present the results from the ST models. Figure 7
plots the MSPEs of log(NO;) using sliding window with sizes
w = 2,6,12,21 weeks. We compare the sliding-window
results using MSPEs of log(NO;) instead of MSPEs of the
NO;, because the latter results in large spikes that make it
hard to see the differences. The sliding-window predictions
are also compared with the prediction using static parameter
values, which are estimated using the first 21 weeks of training
data from 07/14/2015 to 12/04/2015 and kept constant for the
remaining period. While the magnitude of the errors varies
considerable across weeks, the larger sliding window provides
more stable and smaller MSPEs. The window size for training
data should be large enough so that the cars have driven most

of the area, since the parameters, especially the mean, can only
be estimated reasonably well in this case. For our application, a
sliding window of six weeks seems to be an appropriate size, as
increasing the window size does not seem to improve prediction
for most the weeks; however, caution should be taken when
there are large gaps where we have no data, as this can result in
poor parameter estimates and therefore, unreliable forecast such
as the week of February 15-19, 2016. For the time period of our
application, the sliding window approach performs similarly
to the static approach, indicating stationarity in time; however,
this may not hold for data collected over a longer time period,
under which cases a sliding window approach will be more
appropriate.

Figure 7 plots the estimated spatial and temporal range
parameters over time for the 21-week sliding window. We
assess the uncertainty in estimating the spatial and temporal
range parameters using bootstrap samples. For each week,
we randomly sample days from the previous 21 weeks with
replacement to estimate the ST model parameters 15 times. The
bootstrap estimates are plotted over time in Figure 7. While the
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Figure 7. Sliding-window results: mean square prediction error of log(NO3) (a) for the spatiotemporal (“ST”) model using sliding window with different sizes for training,
and ST static model with parameter estimated from the first 21 weeks. Estimate (triangle) and bootstrap samples (circle) for the spatial (b) and temporal (c) range parameters

assuming a 21-week window.



uncertainties are large, both spatial and temporal dependence
are strong and change over time.

5.3. Experiments With Different Number of Mobile and
Fixed-Location Monitors

If mobile devices are to be used to monitor a city’s air pollution,
natural questions are how many cars are needed to achieve the
desired level of precision with respect to predictions and spatial
estimation, and how does this mobile fleet perform compared
to a network of fixed-location monitors in terms of prediction
and spatial interpolation. Here, we conduct an experiment to
compare the benefits of mobile versus fixed-location monitors.
For different numbers of mobile and fixed-location monitors,
we compute the expected mean square error for both spatial
interpolation and short-term forecasting.

To emulate real Google Street View data, we sample ¢ car
routes from the days when the car is in service from 13:00 to
16:00. This time period is limited in terms of practicality for
fully characterizing air quality trends, but is selected for this
limited demonstration because the majority of drive time on
any given day covers this interval. We treat the ¢ car routes as
if they were observed simultaneously. For each route, we record
the location and the time of the day, collecting data every 15
sec. This is repeated 30 times to assess the uncertainty, due to
randomness in the routes, in prediction performance, which
crucially depends on the amount of area covered by each route.
To create fixed-location monitor data, we randomly select m
locations as monitoring sites; while fixed point monitors usually
evaluate NO; over 1 hr averages, these sites are assumed to have
sampling frequency of 15 sec to match the sampling frequency
of the mobile monitors for comparison. Figure 8 shows the
deployment of mobile and fixed-location monitors.

Let Yr+ = {Yr«(s) : s € §*} be the prediction set, where
T* is the prediction time and S* = {s},...,si} are n =
2000 chosen locations throughout Oakland. Since Kriging is
unbiased, the expected MSE is simply the predictive variance,

Figure 8. Network design: locations of fixed-location monitors (triangle) and a
sample of mobile monitor routes (each route is a different color). Map tiles by
Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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which depends only on the locations of the observations and
the model parameters and is thus available without having to
simulate data. We use the spatiotemporal covariance parameters
estimated from the data analyzed in Section 5.1 (Table 2) to
compute the average prediction variance,

1 n
MSPEY) = - > var[Yre(sf) | YY)
i=1

1
2 2 21\—1lyT
=0"+7 _;ElziT*J(ZJ-’_I I EiT*J’

=

(8)

where X1+ 7 = cov[Yr« (s:‘),Y(J)], Y7 = cov(YV)), and
J € {mobile, stationary} indicates whether the conditioning set
YY) is from mobile or fixed-location monitors.

Two types of prediction are compared: 30-minute-ahead
forecasting and spatial interpolation. The 30-minute-ahead
forecast uses the data from 13:00 to 15:30 to map NO; over
Oakland for T* = 16:00; for spatial interpolation we use data
from 13:00 to 15:30 to map NO; at time T* = 14:15. Results
are shown in Figure 9. The MSPE for forecast and interpolation
is similar because the temporal range estimated from the data
using the two-step procedure indicates a long time dependence
of about 17 hr. As the number of monitors (either mobile
or stationary) increases the MSPE decreases and levels off
around 5 monitors. The 95% confidence interval of MSPE for
uncertainty due to route randomness is wider when the number
of mobile monitors is small; however, as more mobile monitors
are deployed, a larger spatial domain is covered by the routes,
consequently reducing the uncertainty. It appears that using
more than five mobile monitors reduces the MSPE by only a
small margin and therefore are not useful for these settings.
The reduction in prediction variance, as indicated by the slope
in Figure 9, is much faster for mobile monitors than monitors

o
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Figure 9. Evaluation of network design: Mean squared prediction error (MSPE) in
log(NO;) by the number of mobile versus fixed-location monitors for short-term
forecasting and spatial interpolation. The 95% credible intervals of MSPE for mobile
monitors are represented by polygons.
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at fixed locations. Under this specific setting, using only 3-4
mobile monitors gives comparable prediction performance as
15 monitors at fixed but random locations.

6. Conclusions

Methodology to provide real-time air pollution maps as well as
short-term air quality forecasts on a fine-resolution temporal
and spatial scale can dramatically improve understanding of
local environments. This article contributes to the emerging
field of mobile air pollution monitoring by providing a tem-
plate for processing and modeling data with complex mea-
surement and scale considerations using a unique source of
highly detailed data with spatial and temporal complexities.
We addressed the practical considerations of temporal aggrega-
tion and spatial neighborhood scheme for local approximation
to optimize short-term forecasting. Our approach has fore-
cast skill, outperforming competing methods. The proposed
two-step procedure using the Vecchia likelihood approxima-
tion scales linearly with the sample size and can therefore be
implemented on very large datasets. Increasing the size of the
neighboring set will increase computational burden, but we
found that for the data we considered, taking the neighbor size
to be m = 30 for two mobile sensors gave similar parameter
estimates as m = 60, and therefore a larger m appeared to
be unnecessary. Similarly, the window size also affects com-
putational time, but we found six weeks to be sufficient for
our application. If a larger window size is used, increasing the
number of cores for computing the approximated likelihood in
parallel will also reduce overall computational time. Finally, the
temporal ordering we considered for the Vecchia approximation
is intuitive given the limited spatial coverage at a single time
point, but a more sophisticated space-time ordering scheme
could easily be implemented if necessary for a larger number
of concurrently deployed mobile sensors.

Forecasting air pollution using the data currently available
from the Google Street View experiment does have its limi-
tations. In our analyses, we use solely the data available from
the Google Street View vehicles, which have limited spatial and
temporal coverage. The mobile measurements are also inher-
ently noisy and highly variable due to local and unpredictable
phenomena. Therefore, the forecast air quality maps should be
further calibrated with other data sources, such as near-road
monitors and station monitors. A possible future extension of
the methodology is to jointly model data from mobile and
station monitors, in which case it would be crucial to account
for differences in the bias and variance of each data source.

The experiment conducted to examine the relative efficiency
of a fleet of mobile monitors versus a network of monitors at
fixed locations finds that mobile monitors can provide com-
parable estimation and prediction when resources are limited.
However, distinctions between the network of monitors at fixed
locations and stationary monitors designed and operated by
local governments should be made clear, because the two differ
substantially in measurement technology, sampling frequency,
and data quality. In the experiment we make the critical assump-
tion that the mobile and fixed-location monitors provided data
of the same quality, but this assumption is currently not neces-

Table A.1. Simulation study results.

Model h 2 5 10 20

AR(1) 1 1.000 1.000 1.000 1.001
AR(1) 5 1.000 1.000 1.000 1.002
AR(1) 10 1.000 1.000 1.000 1.002
AR(1) 20 1.000 1.000 1.000 1.001
ARMA(1,2) 1 1.007 1.038 1.053 1.065
ARMA(1,2) 5 0.957 0.940 0.942 0.946
ARMA(1,2) 10 0.924 0.889 0.888 0.890
ARMA(1,2) 20 0.907 0.876 0.874 0.874

NOTE: Lag-h predication mean squared error (MSE) for data generated from either
an AR(1) or ARMA(1,2) model. Parameters are estimated assuming an AR(1) model
using simple linear regression with lag /. MSE is presented relative to the MSE of
the fitwith/ = 1.

sarily true in practice. An experiment to make informed deci-
sions about the future deployment of stationary versus mobile
monitors in practice would need to incorporate the relative
quality of the data associated with each monitoring system.

As data production and real-time availability continue to be
driven by the ongoing development and improvement of mobile
measurement technology, the modeling framework developed
has important real-world implications in better understand-
ing local environments. For example, the number of available
mobile sensors may dramatically increase as data collection
functionality on individuals’ smartwatches improves. Extending
the proposed methodology to account for more mobile sensors
should be conceptually straightforward, but determining the
optimal neighboring and lag structure would require careful
study.

Appendix A: Simulation Results

In this section, we present a short simulation study to investigate the
relationship between the lag used to fit the model and misspecification
of the covariance structure. Time series data are generated as

Y =09Yr—1 +0Zt—1 +0Zt—2 + Zs,

where Z; iid Normal(0, 1). Data are generated using two values of
0: 0 = 0 gives an AR(1) model and & = 0.9 give an ARMA(1,2)
model. We fit the model assuming an AR(1) structure using a simple
linear regression of Y; onto Y;_; for fitting lag I. Denoting by as the
estimated slope, lag-h predictions of Y; given Y;_j are then made as

Y = i);l/ lYt_ 1 Each simulated dataset consists of 10,000 observations
for fitting the model and 10,000 additional observations to evaluate
prediction mean squared error. We repeat this experiment with 6 €
{0,0.9} and h € {1,5,10,20}. For each scenario we generate 1000
datasets and Table A.1 presents the prediction MSE for I € {2,5, 10, 20}
relative to the MSE for [ = 1.

When the model is specified correctly, that is, the data are generated
from an AR(1) process with 6 = 0, then all methods perform similarly
for all prediction lags. However, when the model is misspecified, that
is, the data are generated from an ARMA(1,2) model, then fitting with
lag I = h gives the best predictions. In these most extreme cases, for
lag h = 1 predictions, fitting with lag I = 20 gives 6.5% higher MSE
than fitting with [ = 1; for lag i = 20 predictions, fitting with lag/ =1
gives 12.6% higher MSE than fitting with lag I = 20. Therefore, this
simple simulation study shows that fitting a model that excludes the
most highly correlated observations from model fitting can improve
long-range prediction.
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