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ABSTRACT

Motion stages are widely used for precision positioning in
manufacturing and metrology applications. However; they suffer
from nonlinear pre-motion (i.e., “static”) friction which
adversely affects their precision and motion speed. EXxisting
[riction compensation methods are not robust enough to handle
the highly nonlinear and variable dynamic behavior of pre-
motion friction. Therefore, the first two authors have proposed
the concept of a friction isolator as a simple and robust solution
to mitigate the undesirable effects of pre-motion friction in
precision motion stages. They experimentally demonstrated that
a motion stage with friction isolator can achieve significantly
improved precision, speed and robustness to variations in pre-
motion friction. However, a theoretical study was not carried out
to fundamentally understand the dynamic phenomena associated
with using a friction isolator on a motion stage. This introductory
paper investigates the dynamics of a PD-controlled motion stage
with friction isolator. The influence of the friction isolator on the
response and stability of the system is examined through
theoretical and numerical analysis. It is shown, using a case
study, that the addition of a friction isolator shrinks the range of
P and D gains that can stabilize the motion stage. Several other
case studies that include the effects of external excitation and
integral controller are carried out to motivate deeper dynamic
analyses of the friction isolator for precision motion control.

Keywords: Friction-induced vibration, Friction oscillator,
LuGre model, Stability

1. BACKGROUND AND INTRODUCTION

Motion stages are used for precision positioning in a wide
range of manufacturing and metrology-related processes, such as
machining, additive manufacturing and semi-conductor
fabrication. Mechanical bearings (i.e., sliding, and, especially
rolling bearings) are commonly used in these precision motion
stages due to their large motion range, high axis stiffness and
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cost-effectiveness [1]. However, mechanical bearings
experience nonlinear pre-motion (i.e., “static”) friction arising
from their inherent rolling elements, end seals and wipers [2]. In
pre-motion regime, friction behaves as a highly nonlinear
hysteretic spring due to adhesive forces from asperities on the
contacting surfaces [2][3].

(a) 40 (b)

quadrant]
glitch

w
(=}

E 10
= luggish settling || ‘g
.g 20 sluggish settling g 0 error X 500
a BN
n? 10 Ly -10
+25 nm window

desired
—actual

0 20 40 60 80 -20 0 20
Time [s] x [mm]
FIGURE 1: (A) POINT-TO-POINT POSITIONING MOVES AND
(B) CIRCLE TESTS USING A CONVENTIONAL MOTION STAGE.

Conventional servo controllers (e.g., PID, P/PI, etc.), which
are widely used in practice, often encounter difficulties when
trying to overcome the highly nonlinear and variable stiffness of
pre-motion friction, causing severely diminished performance
such as large tracking errors, long settling times and stick-slip
phenomena [4]-[7]. For example, during point-to-point
positioning, as shown in Fig. 1 (a), the stage is commanded to
travel to and settle within a pre-specified vicinity (i.e., window)
of a target position as fast as possible. Pre-motion friction
dominates as the stage gets within micrometers of its target
position, leading to very sluggish settling performance [4][7][8].
Similarly, during tracking applications, where the stage is
commanded to follow a given trajectory (e.g., circular tracking
or triangular scanning), large position errors (i.e., glitches) often
occur as the servo controller tries to overcome pre-motion
friction at motion reversals — see Fig. 1 (b) [9].

Compensation methods are often used to mitigate the
undesirable effects of pre-motion friction, including high-gain
feedback [5], model-based feedforward and feedback controllers
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[9]. However, high-gain controllers could easily lead to large
overshoot and limit cycles, and model-based compensation
methods often suffer from robustness and stability problems due
to the rapid and nonlinear changes of pre-motion friction [6].
The friction isolator? (FI). — also known as the compliant
joint method — has recently been proposed as an effective and
robust method for mitigating pre-motion friction [9][10]. The
idea is to connect the mechanical bearing to the moving table of
a motion stage using a joint that is very compliant in the motion
direction, thus effectively isolating the motion stage from strong
nonlinearities associated with pre-motion friction. As is briefly
shown in Section 2, the FI enables superior performance and
robustness of friction compensation methods, leading to
significantly reduced motion error and settling time in tracking

and point-to-point positioning applications, respectively [9][10].
However, the introduction of a FI to a motion stage leads to

nonlinear interactions between friction, servo controller and FI

dynamics. These interactions can be linked to friction-induced
oscillation, which is a well-studied topic in nonlinear dynamics.

The key contributions of this paper are, therefore, to:

1) In Section 3, review relevant works on friction-induced
oscillation and highlight ways in which they do not address
the dynamics of a servo-controlled motion stage with FI;

2) In Section 4, use theoretical and numerical analyses carried
out on a model of a servo-controlled stage with FI to
demonstrate interesting phenomena associated with it;

3) In Section 5, discuss other interesting features of a servo-
controlled stage equipped with FI to motivate further study
of it by the nonlinear dynamics community.

This is followed by conclusions and future work in Section 6.

2. FRICTION ISOLATOR FOR MITIGATING PRE-
MOTION FRICTION
2.1.Concept
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FIGURE 2: SCHEMATICS OF A PRECISION MOTION STAGE
WITH MECHANICAL BEARING ATTACHED TO THE TABLE (A)
RIGIDLY AND (B) USING FI.

Fig. 2 (a) illustrates a conventional precision motion stage
equipped with a mechanical bearing that is rigidly attached to the
moving table. As is common practice, pre-motion friction is

2 The term “friction isolator” is, on rare occasions, used as shorthand
for “friction-pendulum isolator” in the literature, e.g., [11]. However,
the friction-pendulum isolator is a vibration isolator that uses Coulomb

modeled as an equivalent spring of nonlinear stiffness k¢
connecting the table to ground [2]. At the start of motion or
motion reversals, ks is very large; but as more servo force is
applied to counteract friction, ks rapidly reduces and eventually
becomes zero, allowing gross motion of the stage. The highly
nonlinear dynamics of pre-motion friction causes large position
errors and sluggish settling behavior because the servo errors
accumulate as the controller tries to overcome large value of &y
when starting from rest (or after motion reversals).

Fig. 2 (b) shows the concept of the friction isolator (FI) for
mitigating undesirable effects of pre-motion friction in precision
motion stage, as presented in prior works by the first two authors
(and their collaborators) [9][10]. Rather than being rigidly
attached to the moving table of the stage, the mechanical bearing
is attached using a joint of stiffness &; in the motion direction.
Accordingly, the stage with FI can be modeled, statically, as a
series combination of & and k;, with combined stiffness k. =
i/ (ks + kj). Note that the bearing mass and damping of FI are
intentionally ignored here, for the sake of simplicity; they are
considered starting from Section 3. Using the simple static
model, the sensitivity of the combined stiffness k. to variations
in kris given by

2
%:(Lj ; where y/:ﬂ (1
oky \l+y ks

Note that if k; << ks v — 0 and the sensitivity of k. to errors in kr
becomes very small. In other words, a very small k; dominates
the combined stiffness felt by the servo controller when kris very
large in the pre-motion regime, that is, k. — k; even when kr —
oo. Therefore, if k; << k; and £; is precisely known, accurate
model-based compensation of pre-motion friction can be
achieved even when a significant amount of error exists in &y (due
to low-fidelity friction modeling or variations of friction).

2.2.Experimental Validation

Model-based feedforward (FF) compensation of pre-motion
friction is carried out on a motion stage with and without FI,
whose design is presented in [9]. A popular pre-motion friction
model is implemented in the FF compensator, namely the Dahl
model [5]. Details about the friction model and parameter
identification are described in [9]. Circular motions with 20 mm
radius and tangential velocities ranging from 6 mm/s to 125
mm/s are used as reference commands to the precision motion
stage. Since it is a single-axis stage, x-axis reference trajectories
for the circular motions are utilized to test the following cases:

e Baseline: motion stage without FI nor FF compensation;
e FF w/o FI: FF compensation on the stage without FI;
e FF w/ FI; FF compensation on the stage with FI.

The robustness of FF compensation in the presence of model
parameter errors due to changing frictional stiffness is tested by
introducing deviations of 0, 10, £20 and £50% into the
identified frictional stiffness (k). Fig. 3 (a) shows the mean

friction for damping, not a device that isolates a system from deleterious
effects of friction, as is the case with the friction isolator discussed here.
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percentage reductions of peak errors (relative to the baseline
case) together with the corresponding +1¢ (standard deviation)
bands based on all deviation cases. The peak errors correspond
to the quadrant glitches shown in Fig. 1 (b). It is observed that
the FF w/o FI case performs even worse than the baseline case
for low velocity circular tests, due to its low accuracy [9].
Amazingly, the FF w/ FI case achieves significantly better level
of performance than the case without FI. Moreover, FF w/o FI
case suffers from large performance variations due to the errors
in their pre-motion frictional parameters. However, the FF w/ FI
case provides very accurate and robust tracking performance
because of its reduced sensitivity to errors in pre-motion
frictional stiffness brought about by the proposed FI. FF
compensations with other more advanced friction models have
been tested in which the FF w/ FI case demonstrated superior
performance as well [9]. Similar experiments have also been
performed for several other circle radiuses (namely, 5 mm, 500
um, 50 ym and 5 ym) and speeds. The results, which are reported
in [12], show similar excellent performance of FI in terms of the
accuracy and robustness.

m

—
(=3
(=}

(=1

N

W
(=}

425 nm window

+10 band

Position [mm]
(=]
[\

Peak error reduction [%]

0 Mean Reference
—==FF w/o FI| | & 01 —DOB wio FI
=e=FF w/ FI ---DOB w/ FI
-50 0
0 50 100 0 20 40 60 80
Velocity [mm/s] Time [s]
(a) (b)

FIGURE 3: (A) PEAK ERRORS DURING CIRCLE TESTS AND
(B) SETTLING TIMES DURING 50 xm P2P MOTIONS.

Experiments are also carried out to test the settling
performance of the stage with and without FI during point-to-
point (P2P) positioning motions; note that a disturbance observer
(DOB) is implemented in both cases as an example of model-
based feedback friction compensation. Fig. 3 (b) shows the
results from the P2P staircase commands with the 50 um steps.
The stage with FI settles much faster than the stage without it for
all steps of the 50 um cases, achieving 72% reduction in mean
settling time. The same experiments are repeated with various
step sizes, ranging from 50 nm to 5 mm, and similar benefits of
FI are observed [10]. Moreover, the stage with FI is also shown
to be much more robust to variations in friction compared to the
conventional precision motion stage, as reported in [10]. Given
the remarkable improvements in positioning precision and speed
brought by the FI, it is of interest to understand beneficial and
harmful effects of its dynamics on precision motion stages.

3. REVIEW OF RELATED LITERATURE

Fig. 4 (a) shows a rudimentary dynamic model of a servo-
controlled motion stage with FI. The moving table of mass m; is
connected to the ground by stiffness & and damping ¢, which
respectively represent the proportional (P) and derivative (D)
gains of the servo controller regulating the table’s position (i.e.,
x). Force fervo 1s added to account for any additional servo forces

that may be applied to the table (e.g., integral action). The FI is
modeled as a mass m; connected to m; via stiffness &; and ¢;; note
that mass my accounts for the combined mass of the FI and
mechanical bearing attached to it, whose position is defined by
xp. Friction force fris applied to m; via a moving platform whose
motion is prescribed by x,.
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FIGURE 4: MATHEMATICAL MODELS OF A SERVO-
CONTROLLED STAGE (A) WITH AND (B) WITHOUT FL

Fig. 4 (b) shows a servo-controlled stage without FI. Notice
that the PD-controlled stage (i.e., fsevo = 0) without FI represents
a one degree-of-freedom (DOF) friction oscillator, which has
been studied extensively in the literature in the context of
friction-induced vibration with self and/or external excitations
[13][14]. Studies on friction oscillators have usually been
performed using static friction models (e.g., dry friction).
However, dynamic models that include the nonlinear stiffness
characteristics of pre-motion friction have been adopted in some
studies to capture the smooth transitions between stick and slip
that are commonly observed in experiments [15].

The 1-DOF oscillator has also been extended to multiple
DOF for investigating the effects of mode coupling or obtaining
generalized characteristics of the system [15]-[17]. However,
these multi-DOF models either include an orthogonal DOF or
simply connect several oscillators in series, with friction acting
on each oscillator. This is unlike the FI (e.g., Fig. 4 (a)) where
friction only acts on the bearing (m;) not on the main stage ().

The closest work that adopts a similar configuration as that
in Fig. 4 (a) is [17], in which a 2-DOF model is used to study the
stick-slip characteristics of the friction oscillator with tangential
contact compliance. However, a Coulomb model that only
captures dry friction is used for analysis in [17]; the highly
nonlinear behavior of pre-motion friction is ignored. Moreover,
the model in [17], and those typically used in studying friction
oscillators, does not include the effects of other important servo
controllers that are widely implemented on precision motion
stages, e.g., the integral controller. Therefore, the rest of this
paper is intended as a first step in addressing the deficiencies of
prior work on friction oscillators in the context of servo-
controlled motion stages with one or more FIs.

4. DYNAMICS OF FRICTION ISOLATOR

In this section, the stability of a PD-controlled motion stage
with FI is studied using analytical and numerical methods;
LuGre model, [18] which includes the pre-motion frictional
dynamics, is used in the analysis. It is observed in simulation that
the addition of FI shrinks the range of P and D servo gains that
can stabilize the motion stage. Theoretical analyses of linear
stability around equilibrium support these numerical findings,
which help highlight the dynamics of a servo-controlled motion
stage with FI needs further study.

Copyright © 2019 ASME

6102 18qwadsQ 9| U0 Jasn AJIsISAUN SJelS pue sinjsu| dluyoalkjod elulbiin Aq jpd #G£86-6102010P-L9080 LIBO0A/VLE YS9/ L90V0 L LBO0A/S8265/6102310-0.13a1/4pd-sbulpasoo.d/319-0 13QI/B10 swse uonos||oo|elbipawse/:sdpy woly papeojumoq



4.1.Modeling
For simplicity, it is assumed that the platform in Fig. 4
experiences constant velocity motion with zero initial
displacement, i.e., x,(0) = 0 and X, = 0. The dynamics of the PD-
controlled stage (i.e., fservw = 0) with FI is then described by
myE +cx 4o+ (X =% ) +k; (x —x,) = 0;
myty+ £+ (5 —5)+ & (3 —x) =0 @
Similarly, the dynamics of the PD-controlled motion stage
without FI — see Fig 4 (b) — is given by
(my +mpy) 3+ fr+cx+ke=0 (3)
The friction force is calculated through the LuGre model
[18] which captures the nonlinear stiffness characteristics of pre-
motion friction. To realize this, the LuGre model introduces an
internal state z that is used to represent the average deflection of
the contact bristles between two surfaces at the friction interface.
Its dynamics is given by

e )

where v is the relative velocity between two moving surfaces
(i.e., v=1xp — Xp and v = X — X, for the cases with and without FI)
and g(v) is parameterized to describe the Stribeck effect

008 = fe +(fs ~ fe)e )
where fc is the Coulomb friction, fs is the static friction, vy is the
Stribeck velocity threshold and oy is the initial contact stiffness
of the bristle (i.e., initial pre-motion frictional stiffness). The
modeled friction force is then obtained as

fr=0¢z+01Z+05v (6)
where o1 is the micro-damping of the bristle and ¢> accounts for
macroscopic viscous friction.

By settling Z = 0, equilibriums of the internal friction state z
are obtained as

v=0 or z=sgn(v)g(v) (7)

The sticking equilibrium is obtained when v = 0, while the
slipping equilibrium is obtained when z = sgn(v)g(v). Note that
the fix points of any dynamic system that involves LuGre friction
model have to satisfy either of these two conditions. In some rare
cases, the two equilibriums may overlap. Substituting Egs. (4)-
(6) into (3), the state equations of the PD-controlled stage
without FI can be written as

v+5cp
X .
s=lvls o _c(v+xp)+kx+ff 'h(v): |v| )
e moem, [ e ©
v—h(v)z

where J; contains the states of the system. Similarly, the state
equations of the stage with FI can be written as

S=[x x x v z]T;

_cithet fi S )

T
5, =|x T v+x, . v—h(v)z}

where 0, is the state variable and f; is defined as,

fr=c;(v+i,—%)+k;(x, —x) (10)

4.2. Numerical Simulation

The PD-controlled motion stage with and without FI is
numerically simulated using state equations described in Egs. (8)
and (9). Note that parameters obtained from the motion stage are
used in the simulation — see Table 1; details of LuGre model
identification are discussed in the appendix.

TABLE 1: PARAMETERS USED FOR SIMULATION BASED ON
MEASURED VALUES FROM THE MOTION STAGE.

mi [kg] 1 fs[N] 6.5

mp [kg] 0.5 oo [N/m] 2.2 x10°
kj [N/m] 40,000 o1 [Ns/m] 237

¢ [Ns/m] 2 02 [Ns/m] 14.2
Jc[N] 5.1 Vs [mm/s] 16.7

d 0.2 0.4 0.6 0.8 1
t [s]
FIGURE 5: SIMULATED TABLE POSITION OF THE STAGE W/
AND W/O FI USING x, =20 mm/s, k= 6 x 10* N/m AND (A) ¢ = 10
Ns/m; (B) ¢ = 100 Ns/m.

Fig. 5 compares the response of the PD-controlled stage
with and without FI, when the platform is moving at a constant
velocity of X, = 20 mm/s. When c is relatively small, both stages
with and without FI suffer from stick-slip oscillations at steady-
state, but the stage with FI exhibits smaller oscillation amplitude
than that without FI. This may be due to the isolation effects of
FI, as it low-pass filters part of the oscillation that is injected to
the system through bearing motion. As c increases to 100 Ns/m,
the friction-induced vibration of the stage without FI is
effectively attenuated. This is expected since an increase in the
overall damping of the system is well-known to be able to
mitigate stick-slip vibration [14]. However, the stage with FI still
suffers from persistent oscillations even with a relatively large
value of c.

Fig. 6 compares the stability charts of the PD-controlled
stage with and without FI when the platform is moving at
different constant velocities. Stability here is defined as the
absence of persistent friction-induced oscillations during the
motion. Observe that the stability characteristics of the system
without FI is very predictable; regardless of the platform
velocity, friction-induced instability can be mitigated by
increasing the servo controller gains, especially the damping c.
With the addition of the FI, stabilizing the motion stage becomes
less straightforward, and the range of servo parameters that
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stabilize the stage becomes smaller than the corresponding case
without FL.

(a) i, = 2.5 mm/s &, = 5 mm/s
10 _.10°
g Stable g Stable
Z.10° Z. 10
10* 10° 10 ‘ 10°
k [N/m] k [N/m]
i, = 10 mm/s &, = 20 mm/s
10’ _.10°
M:H Stable »?_ Stable
Z.10° Z. 10%
10* 10° 10 10
k [N/m] k [N/m]|
(b) &, = 2.5 mm/s T, = 5 mm/s
3
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g Stable
Z.10°
(8]
10* 10° 10* 10°
k [N/m]| k [N/m]
&, = 10 mm/s &, = 20 mm/s
_.10°
»g Stable
Z. 10%
(5]

10° 10* 10°
k [N/m]

k [N/m]
FIGURE 6: STABILITY CHARTS OF THE STAGE (A) W/O AND
(B) W/ FL

4.3.Linear Stability Analysis

The stability charts in Fig. 6 above are generated by
numerically simulating the responses of the stage using zero
initial condition (i.e., x = x, = X = X = 0); there is no guarantee
that the system will remain stable under other initial conditions.
Therefore, linear stability analysis is carried out to obtain a
general understanding of the system stability in the vicinity of
equilibrium points. The state equations can be written in non-
dimensional form by defining natural frequency ®, and
dimensionless time 7 as

k

, = L T=aml 11
" A m, +my, = (n

This leads to the following dimensionless variables

X . X z
i XP=—P;X=£=L- P
& dr  wo,L L
. 12
_dX-dX, §-%, . & . dZ_ i (12)
dr oLl @l dr ol
and dimensionless parameters
o B B Oy B,
2mo,’ ST L (13)

Fo=ds, py=LL

¥ I ;
KL’ G(vy

V,=—: Fr==—;
T

L (v sy
K’zG(V) =Fc+ (Fs - F(_-)e

where L is an arbitrary length. Substituting Egs. (11)-(13) into
(8), the dimensionless state equations of the PD-controlled
motion stage without FI are given by

a=[x v z];
14
A=[V+X, —(F+Fy) V—H{V)Z]T Y
where
F=%X+X=%(V+X,)+X

Fp=(ry-2%3H(V))Z+2% (2 +m)V
The equilibriums can then be derived as
[Vdr+X,+Cx
Ay = 0 :
(Ivdr+x,+Cy +2%X,)
*2 (16)

—K,SgN (—XP)G(—X,,) + 2(;"72Xﬂ
A= -X

(15)

P

sen(-X,)G(-X,)
where Cy is the initial displacement of the table, A, represents
the sticking equilibrium (i.e., v = 0) and A, represents the
slipping equilibrium (i.e., z = sgn(v)g(v)). Note that A} ; and A, »
overlap when x, = 0, as discussed in Section 4.1. The Jacobian
matrices at these equilibriums are denoted as ./, ; and J, »

0 | 0
Jiu=|-1 20-26m -2y, K|

0 | 0

0 1 0 (17
Jia=-1 204 —"’2+2§?’2H(Xp)

0 I(X,) —H(Xp)

where
2

G'(V)=E=_{FS_FC)e{%]_[i].

a3 |

" ) o (18)
. _XG(X,) :
F(X”)_ic[i’p} s =(1+m +70(X)))

Observe that J ) is independent of x,, and J, > is unaffected by
the direction of x,. Focusing on the stability of the slipping
equilibrium (A, 2), we can obtain the characteristic equation as

ALy = J1 | =02 ap2® + @ A? +ayA+a3 =0 (19)

where
ag =La =2 + H(X,)+2n,¢ +27,¢T (X, );

o2 =T+ 2671 (X,) 20611, oy = (1) 7
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dp = 2.5 mm/s &, = 5 mm/s

.10 .10
14 Stable g Stable
Z. 10 Z.10°
10* 10° 10* 10°
k [N/m] k [N/m]
&, = 10 mm/s &, = 20 mm/s
—.10° g 10P
g Stable g Stable
Z.10° Z.10°
10" 10° 10* 10°
k [N/m] k [N/m]

FIGURE 7: STABILITY CHARTS OF THE PD-CONTROLLED
STAGE WITHOUT FI AT SLIPPING EQUILIBRIUM (LE., Ai2).

Using Routh-Hurwitz criterion [19], it can be shown that the
system is stable if apa; > 0 and (a1a2 — apas)/a: > 0. Fig. 7 shows
the linear stability charts of the PD-controlled stage without FI
using different parameters of k& and c. Note that measured
parameters from the stage of Fig. 3 are used — see Table I.
Although the region of stability varies for different platform
velocities X, it is quite adequate for a wide range of k and ¢
combinations. In particular, the equilibrium is stable if & and ¢
are large enough.

Similarly, the state equations of the PD-controlled stage
with F1 can be written in dimensionless form using

X : _de .Ib k Cj

i ey - e Y
Xp==%14X, =g = =

& dr  w,L’ k c

. 3 N

SR S k) N . R

— s, = 3 LA 3
my my @, L dr w, L

together with the previously defined dimensionless parameters
(see Egs. (11)-(13)). The non-dimensional state equations are
then given by

a=[x X x, v z];

(21)

. . . F;-F T @2
Ay=|X ~F+F) v+X, —= V-H(V)Z
p

where
Fy=20m(X -V -X,)+x (X - X,) (23)

The sticking equilibrium A ; and slipping equilibrium A of the

system are obtained as

“2 X, + KDy

1+K|

Ayy= Dy, : (24)
0

Ki(1+ K1) Dy +(x X, -xD,)

K2{|+K'|)

_KEB] (_Xp) - 2";’?2/‘-,;)
0
(] +K )(_KEBI [_Xp)_x!h)‘(p]
K
_Xp
B'(_XP)

Ayp=|-

where
Dy =[Vdr+X,+Cy;
B(X,)=sn(X,)G(¥,)
and Cj is the initial displacement of mj;. The Jacobian matrices
of these two equilibriums are obtained as

(25)

0 1 0 0 0 ]
-k =1 =2(m+1) 2%y 0
P 0 0 0 1 0
21= H
K 20m K264, K
P P p P P
L0 0 0 1 0 |
[0 I 0 0 o 1 (20
-k =1 2 (m+1) K 20 0
0 0 0 1 0
P P P P P
0 0 0 F[Xp) —H()'{P)
where
Ay =+ +yaih =['?|+’I-’z +}’2F(Xp))§ 27)
Ay =1 -2(7,H(X )
&, = 2.5 mm/s i, = b mm/s
s 10° —10°
= Stable {; Stable
Z.10° Z10°
10" 10° 10* 10°
k [N/m] k [N/m]
&, = 10 mm/s i, = 20 mm/s
g Stable
=

4

6

10 10 10

k [N/m] k [N/m]
FIGURE 8: STABILITY CHARTS OF THE PD-CONTROLLED
STAGE WITH FI AT SLIPPING EQUILIBRIUM (LE., A22).

Again, it can be observed that /2 is independent of x;,, and
Jr2 1s unaffected by the direction of x,. The closed-form
expressions of Routh-Hurwitz for the case of the stage with FI
are not presented here for brevity. They are evaluated using
Matlab and the obtained stability charts in the vicinity of Az are
shown in Fig. 8 using different k& and ¢ values. The stability of
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the PD-controlled stage with FI is jeopardized when large values
of ¢ and k are employed. This finding agrees with the numerical
stability analysis, indicating that the linear analysis about the
slipping equilibrium is reliable.

Fig. 9 depicts the influence of some design parameters on
the stability of the stage with FI. These parameters include — the
stiffness parameter x;, damping parameter 77, and mass ratio p.
The coefficient a and f are multipliers for the redefinition of «;
= ax1, = ai and p= fip used for the stability region analysis.
As shown in Fig. 10, the stability of the system improves as a
increases. A large a, however, can diminish the effect of the FI
since the link between the two bodies becomes more rigid, thus
potentially affecting the isolation performance. Increasing f,
particularly to £ = 0.5, improves the stability of the system. These
observations can be crucial for the design optimization of the

system for balancing stability and performance criteria.
&, = 2.5 mm/s i, = 5 mm/s

Stable
Stable 10
.

[a a
FIGURE 9: STABILITY CHARTS OF THE STAGE WITH FI AT
SLIPPING EQUILIBRIUM WITH RESPECT TO a AND f (k=1 %
10° N/m AND ¢ = 250 Ns/m).

5. DISCUSSION
5.1.Nonlinear Stability Analysis

_w!u Fl_ - __‘_’_‘”f_FI

(%]

=20+

& [mm/s|
& [mm/s|

30|

-40 |

'
[

\ —U.I(.)Z U 0,62 0.64 U U.GUS UUI 0.6]5
z [mm)] z [mm]
FIGURE 10: PHASE PORTRAITS OF THE STAGE WITH AND
WITHOUT FI USING £ = 6.5 % 10° N/m, ¢ = 250 Ns/m AND ¥, =20
mm/s (DASH: PHASE TRAJECTORIES; SOLID: LIMIT CYCLES).

In the presence of LuGre friction, analytical models of the
PD-controlled stage with and without FI are highly nonlinear,
which leads to some interesting observations. For example, as
shown in Fig. 10, while the systems are not able to converge to
the fixed points, the phase trajectories of x and v show
convergences at stable limit cycles. Figure 10 also shows the

beneficial effect of FI, as the system with FI exhibits
approximately a tenfold smaller limit cycle amplitude. While the
presence of FI decreases the linear stability region of the system,
the nonlinear analysis shows that the effect of the friction-
induced vibration is reduced significantly by the FI. This is
especially beneficial to positioning performance in practice
where model uncertainties exist.

Jump 1 — 2 Jump 2 —3
Guard:6V /6t >0 &V >0 Guard: F, > F
Reset: p=0; V=0 Reset: p =1

Jump 2 — 1 Jump 3 — 2
Guard: F,<-F; Guard: év/6r<0&V <0.
Reset: ¢ =1 Reset: p=0; =0

FIGURE 11: THE HYBRID DYNAMIC FLOWCHART OF THE
STICK-SLIP MODELS.

Moreover, the LuGre friction dynamics is non-smooth due
to the existence of sgn(¥) and |V], since the derivatives of both
terms with respect to ¥ do not exist at /= 0. The depiction of the
dynamic flows and jumps of the stick-slip models as hybrid
systems is shown in Fig. 11. Here, for the system without FI, F,
=—F}. For the system with FI, F, =—F}. The state ¢ is introduced
to replace the non-smooth term sgn(¥) such that |V|= @V. The
discrete jumps between the flows occur when the guard
conditions are triggered, while the reset functions assign new
values to the states whenever the jumps occur,

It is not guaranteed that the stability at each smooth dynamic
flow will lead to a stable hybrid system. Therefore, the servo
controller is required to fulfill certain sufficient nonlinear
stability conditions, such as the stability of a common Lyapunov
function or multiple Lyapunov functions [20][21]. Our future
work will include a thorough nonlinear and hybrid dynamical
system analysis, which will be crucial to the improvement of FI
and servo controller design.

5.2.Effects of Servo Force (fservo)

In Section 4.2 simulation analysis is carried out on the PD-
controlled motion stage (i.e., fiero = 0) with and without FI.
However, this neglects another important servo force — integral
action. Integral controller is widely used in precision motion
stages to suppress the steady-state error caused by disturbances
in the system, e.g., friction force [1]. Fig. 12 (a) shows the
response of the motion stage with FI using different gains for the
integral controller (i.e., ;). Based on the stability chart obtained
in Fig. 6 (b), a set of servo gains is selected to stabilize the system
(i.e., k=2 x 10* N/m and ¢ = 100 Ns/m). Although the table is
free from friction-induced oscillation, it stays at 0.3 mm during
steady-state. With the addition of an integral action (k; = 1 x 10°
N/(m-s)), the servo controller is able to bring the table back to
the desired zero location (i.e., x = 0 mm). In general, a larger
integral gain is desired to quickly reject the disturbance force.
However, the stage starts suffering from severe oscillation at
steady-state when an integral gain of 1 x 10° N/(m-s) is used. As
shown from the phase trajectories in Fig 12 (b), further
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increasing it to 5 x 10° N/(m-s) leads to chaotic oscillatory
behavior, making the system response very sensitive to the initial
conditions. To facilitate the controller design, it is necessary to
investigate the effects of /..., on the response and stability of the
servo-controlled stage with FI. Any other servo force that is
commonly used in precision applications (e.g., feedforward
action and DOB) can also be applied in future studies.

SUESEN — - = 0
R ——k; = 1x10° N/(ms)
—emm by = 1% 10% N/(ms)
—k" = EIX].[J'3 Ng’(ms)

-0.2

0 05 1 s 2 25 3
t [s]

— k=10

o —k; = 1x10° N/(m-s) ]
—memf; = 1%x10% N/(m-s)

@ [mm/s|

—_—
o
—

z [mm]
FIGURE 12: (A) SIMULATED TABLE POSITION OF THE

STAGE WITH FI AND (B) PHASE PORTRAIT USING X, =20 mm/s,
k=2 % 10* N/m AND ¢ = 100 Ns/m.

5.3.Effects of External Excitation

In tracking applications, the motion stage is often
commanded to follow a desired trajectory such as the circle tests
shown in Section 2.2. In this case, the moving table of the stage
(i.e., m;) in Fig. 4 (a) is no longer connected to the ground but
connected to areference command (i.e., x,) instead. Accordingly,
the dynamics of the PD-controlled stage with FI is given by

m‘..'\;+c[5r—i,.)+k(x—.\',,)+Cj[.\"—.\'*b)+kj(x—xb)=0;

myiy + fr+c; (% —%)+k;(x—x)=0 )

Fig. 13 shows the simulated system response when a
sinusoidal command is used as the reference trajectory, i.e., x, =
sin(0.2z7)) mm. When the moving platform is stationary (i.e., X,
= (), it is observed that the bearing motion (i.e., x3) suffers from
severe stiction at each velocity reversal of the sinusoidal motion.
Due to the isolation effects of FI, the table position (i.e., x) can
roughly follow the reference command without stiction.
However, it is observed that x still suffers from non-smooth
behavior as the friction transitions from pre-motion to gross
motion regime at velocity reversals. Interestingly, when the
platform is moving at a small speed (i.e., ¥, = | mm/s), the
undesirable effect of stiction on the table and bearing motion is
effectively mitigated. To understand the effects of x, and its
interaction with x,, stability and bifurcation analysis of the stage

with FI in the presence of external excitation (i.e., x, # 0) and
self-excitation (i.e., X, # 0) will be carried out in the future.

— Ty —T;— T

2

E A8 Stiction
(@)1
&
A, \ S
F
=)
®
0 5 10 15 20
t[s]
FIGURE 13: SIMULATED RESPONSE OF THE PD-

CONTROLLED STAGE WITH FI USING k=6 x 10* N/m, ¢ = 100
Ns/m, x, = sin(0.277) mm AND (A) %, = 0 mm/s; (B) X = | mm/s.

5.4.Mode Coupling
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FIGURE 14: SCHEMATIC OF A HIGH ORDER MODEL OF THE
PRECISION MOTION STAGE WITH FOUR FIS.

In the previous analysis, a simplified model of the servo-
controlled motion stage with FI is utilized. The stage is modeled
as a table of mass m, and a bearing of mass mj, both have only
one DOF in the motion direction; note that mj accounts for the
combined mass of bearing and FI. In practice, two or four
mechanical bearings are often implemented on the stage which
may lead to mode coupling instability. As shown in Fig. 14, a
high order model of the precision motion stage with four
bearings (and Fls) is proposed to study the effects of mode
coupling. The moving table of the stage is modeled as a rigid
body with 6-DOF (i.e., 3 translational and 3 rotational) and each
bearing is modeled as a simple mass with 1-DOF in the motion
direction. In the case where friction dynamics and/or FI
parameters of each bearing are different, potentially harmful
phenomena may be observed because of mode coupling.

6. CONCLUSIONS AND FUTURE WORK

This introductory paper has examined the influence of
friction isolator on the performance and stability of a precision
motion stage. The friction isolator is a machine element that is
very compliant in the motion direction of a servo-controlled
stage. It is placed between the mechanical bearings and moving
table of a motion stage, thus effectively isolating the stage from
deleterious effects of friction. It was experimentally shown that
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the undesirable effects of pre-motion friction on the accuracy and
speed of precision motion stage can be effectively mitigated
using a friction isolator. With the addition of friction isolator, the
very stiff and variable pre-motion frictional stiffness is replaced
with a much softer and less variable stiffness, making it easier
for the model-based friction compensators to deliver high
performance and superior robustness. However, numerical
studies on a rudimentary dynamic model of a PD-controlled
motion stage with LuGre friction showed that the addition of
friction isolator shrinks the range of servo gains that can stabilize
the motion stage. Linear stability analysis in the vicinity of
equilibriums confirmed the numerical results.

Future work will focus on nonlinear stability analysis of the
servo-controlled stage with friction isolator by implementing a
hybrid dynamic model of LuGre friction. This will, for instance,
provide general knowledge about the de-stabilizing effects of
friction isolator and facilitate controller designs with guaranteed
global stability. Moreover, the effects of mode coupling will be
investigated using a high order model of the motion stage with
multiple friction isolators. On the practical side, future work will
include other commonly used servo controllers (e.g., integral
controller) and external excitation to obtain a deeper and
generalizable understanding of the influence of friction isolator
on the design and control of precision motion stage.
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APPENDIX

The parameters of LuGre model shown in Table 1 is
identified on the precision motion stage; note that the friction
isolators are deactivated by installing the fixtures. When friction
is in the gross motion regime, the rate of bristle deflection is zero
(i.e., 2=0), that is

zg =g()sgn(v) (29)

Substituting Egs. (5) and (29) into (6), the steady-state friction
force during gross motion is given by [18]

2
—(v/ve
ff,ss:|:fc +(f, = f.)e v/vs) }sgn(v)ﬂrzv (30)
(a) ®) 19
slo* Measured Z ——Measured
= Identified E - - -Identified
o X
S oD
p k
-10
-200  -100 0 100 200 10! 102
v [mm/s] Frequency [Hz]

FIGURE 15: MEASURED AND IDENTIFIED (A) fss VS v CURVE
AND (B) MAGNITUDE PLOTS OF FREQUENCY RESPONSE
FUNCTION (FRF) FROM SERVO FORCE TO TABLE
DISPLACEMENT.

The steady-state friction force f;, is obtained by
commanding the stage to travel at different levels of constant
velocity (CV) and measuring the servo force required to maintain
the CV motion. Fig. 15 (a) shows the measured f;, versus v
curve. The related parameters (i.e., fc, fs, vs and o2) are identified
by using nonlinear least squares to fit the measured data.

The remaining parameters are identified using a simple
model of an open-loop controlled stage with LuGre friction

. [ .|l

(m,+mb)x:— Ogz+ 0y X———

{ g(%)

ZJ+62).C:|+f:yervo (31)

Linearizing the above equation for the pre-motion friction
regime (i.e., at equilibrium x = z = 0), yields [22]

(m, +my)i = opx+(01+02)% |+ fiomo (32)
Using Laplace transformation, the frequency response function
(FRF) from servo force to table displacement is obtained as

G(s)= :
(m, +my)s* +(0y +05)s+0,

(33)

The measured FRF (i.e., G) is obtained by applying a
constant-amplitude sinusoidal force input commands with
varying frequencies to the servo motor and recording the
corresponding output displacement magnitudes of the table’s
position using the linear encoder. The parameters (i.e., oo and g1)
are obtained through least-square-fitting of the measured FRF
with m; + mp = 1.5 kg. Fig. 15 (b) shows an excellent fit between
the measured and identified FRFs.
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