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Environmental changes have resulted in significant declines in native riparian forests
that are comprised largely of dioecious tree taxa, including boxelder and iconic
cottonwood / willow gallery forests. Dioecious species may be especially vulnerable to
the effects of climate change given that they often exhibit skewed sex ratios that are
reinforced by physiological and morphological specialization of each sex to specific
microhabitats. A comprehensive data synthesis suggests that male individuals of
boxelder and cottonwood taxa have a higher representation on dry microhabitats than
females and are less physiologically sensitive to increased aridity than co-occurring
females. Consequently, extreme male-biased sex ratios are possible under future
climate conditions that could reduce population fitness below a sustainable threshold.
Riparian willows, on the other hand, generally do not express obvious sexual
dimorphism in habitat preference or physiological sensitivity to aridity. Thus, it is
unclear whether climate change will impact population structure of willows in ways that
parallel other dioecious riparian tree taxa. Future riparian tree restoration programs
should aim to maintain future sex ratio balance that maximizes population fitness under
projected hydro-climatological conditions. Recent advances in genomics will likely
provide the critical tools for early sex determination in pre-reproductive trees across
riparian tree species such that sex ratio balance could be targeted during initial stages
of restoration, along with adaptations for drought tolerance and other key traits that are
essential for survival under future conditions.
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and boxelder) especially vulnerable to the effects of climate change given that they often exhibit
skewed sex ratios, reinforced by physiological and morphological specialization of each sex to
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dimorphism of key ecophysiological trait characteristics in response to aridity-induced stress in
these important foundation tree species. Second, the paper merges the reported trait
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differentially respond to the predicted effects of climate change. And finally, we evaluate the
potential cascading consequences skewed sex ratios may have on ecosystem community
structure and stability of highly valued riparian ecosystems.
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Abstract

Environmental changes have resulted in significant declines in native riparian forests that are
comprised largely of dioecious tree taxa, including boxelder and iconic cottonwood / willow
gallery forests. Dioecious species may be especially vulnerable to the effects of climate change
given that they often exhibit skewed sex ratios that are reinforced by physiological and
morphological specialization of each sex to specific microhabitats. A comprehensive data
synthesis suggests that male individuals of boxelder and cottonwood taxa have a higher
representation on dry microhabitats than females and are less physiologically sensitive to
increased aridity than co-occurring females. Consequently, extreme male-biased sex ratios are
possible under future climate conditions that could reduce population fitness below a sustainable
threshold. Riparian willows, on the other hand, generally do not express obvious sexual
dimorphism in habitat preference or physiological sensitivity to aridity. Thus, it is unclear
whether climate change will impact population structure of willows in ways that parallel other
dioecious riparian tree taxa. Future riparian tree restoration programs should aim to maintain
future sex ratio balance that maximizes population fitness under projected hydro-climatological
conditions. Recent advances in genomics will likely provide the critical tools for early sex
determination in pre-reproductive trees across riparian tree species such that sex ratio balance
could be targeted during initial stages of restoration, along with adaptations for drought tolerance

and other key traits that are essential for survival under future conditions.

Keywords: riparian cottonwoods, riparian willows, boxelder, leaf gas exchange, sex ratio bias
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Introduction.

Native riparian tree species in the western United States are among the most charismatic, widely
distributed and important foundation species throughout their range. These iconic species,
including Populus spp. (cottonwoods), Salix spp. (willows) and Acer negundo Sarg (boxelder)
are highly valued for providing habitat for rare and threatened taxa, recreation and aesthetics,
among many other services. However, native riparian forests are among the most threatened of
all forest types in North America (Stromberg 1993). Over the last century, riparian gallery forests
in the arid and semiarid regions of North America (primarily comprised of cottonwoods and
willows) have been in decline due to a combination of intensive land development and grazing,
alterations to fluvial hydrology and non-native species invasions (Stromberg et al. 2007; Hultine
et al. 2010; Merritt and Poff 2010; Nippert et al. 2010; Stella et al. 2010). These ongoing impacts
to native riparian vegetation are being amplified by the effects of climate change that are
bringing warmer temperatures, higher evaporative demand, earlier snow melt, and subsequently
reduced stream discharge in a region where net primary productivity and biodiversity are already
limited by seasonal aridity (Leung et al. 2004; Stewart et al. 2004; Barnett et al. 2008).

Despite a considerable phylogenetic separation, riparian cottonwoods and willows share
many ecological, morphological and physiological traits with boxelder. Among these shared
traits is a dioecious reproductive strategy that is relatively rare among plant species. Dioecy
occurs in only 6% of all angiosperm species but is approximately distributed across half of all
angiosperm families (Renner and Ricklefs 1995; Heilbuth 2000). Dioecy is commonly associated
with the evolution of sexual dimorphism in secondary sex characteristics (i.e., differences
between the sexes in characteristics that do not involve sexual organs). Boxelder, in particular,

has served as a model system for understanding the potential causes and consequences of sexual
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dimorphism in secondary sex characteristics in trees. Previous studies have identified sexual
dimorphism in habitat preference, physiology and growth (Dawson and Ehleringer 1993; Ward
et al. 2002; Dawson et al. 2004; Hultine et al. 2008). Results from these studies have yielded
strong evidence that male and female individuals have evolved specific functional traits that
predispose each sex to specialize in habitats varying in resource availability and competition
(Hultine et al. 2016, reviewed in detail in the following section). Conversely, sexual dimorphism
in secondary traits is not as well established in riparian cottonwoods or willows as in boxelder,
but some evidence has emerged showing disparate secondary trait characteristics between the
sexes.

This review explores whether dominant riparian woody species in the western United
States and Canada share similar dimorphic traits in habitat preference, physiology and sensitivity
to stress. We evaluate whether the effects of climate change and resource limitations related to
human caused alterations to the water cycle differentially impact male and female individuals in
similar (or non-similar) ways across species. We begin by reviewing known patterns of sexual
dimorphism in model boxelder that shares similar dimorphic patterns with other dioecious
species, including those occurring outside of riparian zones (namely with males occurring in
higher frequencies in more stressful habitats). We focus on the influence of photosynthetic gas
exchange and growth patterns on the overall population sex ratios of woody riparian species. We
then explore potential impacts of climate change on sex-specific patterns of gas exchange and
growth and evaluate the extent to which population sex ratios may be altered under future
climate conditions. Finally, we review the potential impacts of skewed sex ratios on population
fitness and the capacity of these tree species to provide the foundation for riparian community

structure and ecosystem function. We present two inter-related hypotheses related to sexual
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dimorphism in riparian cottonwood / willow taxa as follows: 1) as with boxelder, male
individuals express a higher physiological stress tolerance to water limitations and aridity than
co-occurring females, and 2) forecasted increases in aridity (i.e., increased vapor pressure deficit,
reduced stream discharge and subsequent water availability) over the next century will
differentially impact male and female individuals, such that some populations may develop

highly biased male sex ratios.

Sexual dimorphism in boxelder
Perhaps no plant organism presents a better example of sexual dimorphism in habitat preference,
physiology and growth than boxelder, which occurs in the intermountain west of the United
States. Boxelder displays strong female-biased sex ratios in habitats with high water availability,
such as along perennial streams, whereas sex ratios tend to be inverted in continuously drier
margins of boxelder’s habitat with increasing male bias (Dawson and Ehleringer 1993; Ward et
al., 2002). How these sex ratio patterns develop is not well understood. However, there is no
known sex switching in boxelder and it does appear that male-biased sex ratios in dryer habitats
may evolve from greater incidence of drought induced mortality in female trees than in males
(Dawson and Ehleringer 1993). Therefore, male-biased sex ratios in dry sites can be attributed at
least partially to post-germination physiological processes such as intersexual differences in
sensitivity to soil water deficits.

Patterns of spatial segregation of the sexes in boxelder tend to mirror physiological
differences between sexes such that females express traits that maximize resource uptake in
high-resource environments at the expense of lower resource-use efficiency in stressful

environments (Dawson and Ehleringer 1993; Dawson and Geber 1999; Dawson et al. 2004;
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Hultine et al. 2007; 2008). For example, female boxelder trees in high water locations display
higher rates of leaf gas exchange, higher intercellular CO; concentrations (ci), higher leaf
nitrogen concentrations, and higher rates of above ground growth than males (Dawson and
Ehleringer 1993; Ward et al. 2002; Dawson et al. 2004; Hultine et al. 2008). However, where
(and when) water is less available, the patterns of gas exchange and growth converge between
genders (Ward et al. 2002; Dawson et al. 2004), or becomes male biased (Dawson et al. 2004).
Likewise, female boxelder trees are apparently more sensitive to the effects of warm temperature
anomalies, even under well-watered conditions (Hultine et al., 20013, 2016). The higher heat-
induced stress in females relative to males suggests that the effects of climate change may yield
higher rates of mortality in females, resulting in extreme male-biased sex ratios even if

hydrological conditions remain constant (Hultine et al. 2013; 2016).

Sex ratio patterns in riparian cottonwoods and willows

The plant family Salicaceae is ubiquitous in riparian ecosystems of western North America, but
contains only two genera: Populus (i.e. cottonwoods, poplars, aspens) and Salix (i.e. willows)
(Landis et al. 2003). There are 36 recognized species in the genus Populus, and perhaps as many
as 500 species in the genus Salix, with diversity hot spots in the north temperate and subarctic
regions of the world. Individual plants in both genera are almost always dioecious with only rare
exceptions where plants are monoecious (Rowland et al. 2002). As with many dioecious species,
sex ratio biases often occur in populations of both Populus and Salix species. Dioecious plants
that display skewed sex ratios tend to have male individuals that outnumber females in a given
population (Field et al. 2012; Sinclair et al. 2012), and species in the genus Populus generally

follow this pattern, at least in populations where sex ratio biases are present (Letts et al. 2008;
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Xu et al. 2008; Petzold et al. 2013; Lei et al. 2017). However, sex ratios in the genus Salix are
more often skewed towards females than males, and these female biased sex ratios are consistent
across a broad range of habitats and geographic locations (Alliende and Harper 1989; Ueno et al.
2007; Myers-Smith and Hik 2012; Che-Castaldo et al. 2015; Lei et al. 2017). The factors that
drive these reverse sex ratio patterns in Salix are potentially wide ranging and likely include
some combination of genetic and environmental factors

Riparian cottonwood and willow species in arid and semi-arid regions make up only a
small fraction of the total number of species in the Salicaceae family. However, cottonwood /
willow gallery forests are still the most common, and arguably ecologically most relevant, forest
type in riparian zones of the western United States and Canada. Sex ratio patterns are not as
pronounced in riparian cottonwoods and willows as they are in boxelder populations that
dominate semi-arid riparian areas of the western US, but some patterns have emerged. Skewed
sex ratio biases have been reported for some riparian cottonwood species, hybrids and
populations (Braatne et al. 1996; 2007; Rowland and Johnson 2001), but not others (Kaul and
Kaul 1984; Stanton and Villar 1996; Gom and Rood 1999a; b). As with boxelder, where sex
ratios are more highly skewed, there tends to be male bias in areas where water resources are less
favorable, such as greater distances from stream microhabitats in Utah (Dawson and Ehleringer
1993; Ward et al. 2002), locations where irrigation withdrawals have depleted groundwater
availability along the Yakima River in central Washington (Braatne et al. 2007) and in the driest
riparian environments studied along the Rio Grande River in New Mexico (Rowland and
Johnson 2001). Conversely, to our knowledge there are no obvious examples of female biases
sex ratio in riparian cottonwoods, although female individuals of clonal cottonwood species,

such as P. angustifolia, P. balsamifera and P. deltoides have been shown to produce a higher
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number of clonal trunks than co-occurring males, particularly in low elevation, streamside
habitats (Gom and Rood 1999a; b).

Information on sex ratio biases in riparian willows is fairly limited compared to riparian
cottonwoods. Strong sex ratio biases have been reported for “non’ riparian species of willows in
North America such as S. arctica (Dawson and Bliss 1989), and S. glauca (Dudley 2006), and
for riparian willows in Sweden (Hughes et al. 2010) and Japan (Ueno et al. 2007), with female
plants occurring at higher frequencies than males in high resource locations (less stressful), and
at lower frequencies in low-resource locations (more stressful). Conversely, S. amygdaloides had
equal numbers of male and female individuals in wetland areas in Nebraska (Kaul and Kaul
1984), while a 1.7:1.0 male biased sex ratio was reported for S. exigua plants occurring along the
Assinboine River in Manitoba, Canada (Ottenbreit and Staniforth 1992). Unfortunately, to our
knowledge there are no sex ratio data for riparian willows occurring in the arid regions of the
southwestern US. Thus, it is currently an open question as to what extent this biologically
important taxa expresses spatial segregation of the sexes across local aridity gradients.

Sex ratio biases, if present in riparian cottonwoods and willows are often difficult to
detect due to various biotic constraints. One problem in sex ratio studies is that determining the
sex of cottonwood and willow individuals is often challenging since neither sex typically retains
reproductive structures for more than a few weeks per year. Compounding this challenge is that
flower and seed phenology can vary dramatically over short distances since mature trees release
seeds to match periods of high stream flows and high residual soil moisture. This phenological
pattern, in turn, maximizes the odds for successful germination in a given fluvial system (Braatne
et al. 1996; Stella et al. 2006), but makes biogeographical studies of reproductive phenology and

sex ratios difficult without sophisticated phenocam systems. A potentially greater challenge is
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determining the sex of individuals that become non-reproductive under stress. For example,
mature cottonwood trees exposed to water deficits along the middle Rio Grande River in New
Mexico often failed to produce reproductive structures (Rowland and Johnson 2001), making it
impossible to determine the sex of these individuals and evaluate population sex ratios under
conditions of great interest. Another challenge with determining population sex ratios revolves
around the clonal habit of most cottonwood and willow species. For example, non-native
willows occurring along high-elevation streams in Colorado were almost 100% female due to a
complete lack of sexual reproduction (Shafroth et al. 1994). Likewise, clonal reproduction was
attributed to a near 2:1 female-biased sex ratio of individual ramets of three riparian cottonwood
species in Alberta, Canada, although a 1:1 sex ratio was observed among individual genets (i.e.
clones) (Gom and Rood 1999a). Therefore, a key component of sex ratio studies requires the
identification of genets (i.e. clones) via molecular approaches when possible (Vandepitte et al.
2009; Dering et al. 2016).

It 1s also possible that sex ratios and spatial segregation of the sexes rarely emerge in
riparian cottonwood and willow populations due to a limited habitat niche, or because of
Fisherian sex ratio balance mechanisms that arise when the mean fitness of the rare sex exceeds
that of the common sex (Fisher 1930; Bull and Charnov 1988; Wade et al. 2003). Unlike box
elders, riparian cottonwoods, and especially willows rarely occur in upper terraces of riparian
areas and are instead confined to the immediate stream margins (Snyder and Williams 2000).
These obligate phreatophytes, therefore, are typically found within narrow resource gradients,
reducing opportunities for spatial segregation of the sexes and potentially limiting population sex

ratio biases along stream reaches (Hultine et al. 2007). Likewise, non-uniform sex ratios — where



194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

10

they do arise - may eventually be balanced by Fisherian forces (Bull and Charnov 1988; Wade et

al. 2003).

Sexual dimorphism in Salicaceae

One way to evaluate potential sex ratio patterns and to predict whether extreme sex ratio biases
are likely under future climate conditions, one must identify the potential tradeoffs between
secondary sex characteristics related to physiology and growth. To examine whether
physiological tradeoffs exist between such traits, we reviewed 27 published studies addressing
intersexual differences in instantaneous leaf-level gas exchange and growth among Populus and
Salix species (Appendix Table 1). Two clear patterns emerged with respect to leaf gas exchange.
The first was that under well-watered, ambient temperature conditions (labeled Control in Figure
1), neither gender expressed an advantage over the other in leaf stomatal conductance
[gmale:Zfemate = 1.07, P =0.43, n = 18, (paired #-test), Figure 1a] or carbon assimilation
[Amate:Afemale = 1.03, P =0.87, n = 19, paired ¢-test Figure 1b). Alternatively, when a drought and
/ or temperature warming treatment was added to the experiment, males significantly
outperformed females in leaf stomatal conductance [gmale:@femate = 2.51, P = 0.0074, n =12,
(paired #-test), Figure 1a] and carbon assimilation [Amate:4female = 2.31, P=0.0017,n =11,
paired t-test Figure 1b). Intersexual differences in growth mirrored intersexual patterns in leaf
gas exchange (Figure 1¢). Under control conditions, growth—evaluated from either radial
increment, height growth or increases in dry weight mass—was equal between sexes [P = 0.99, n
= 16, (paired ¢-test) Figure 1c], but on average was 59% higher in males under drought /

warming conditions [P = 0.0068, n = 7 (paired ¢-test) Figure 1c].
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Perhaps a more consequential analysis comes from separating Populus from Salix taxa
when analyzing intersexual differences in gas exchange (Figure 2). Data for Populus,
independent of Salix, again show that neither gender expressed an advantage over the other in
leaf stomatal conductance [gmale:gfematle = 1.12, P = 0.25, n = 14, (paired ¢-test), Figure 2a] or
carbon assimilation [Amale:4Afemale = 1.07, P =0.11, n = 14, (paired ¢-test) Figure 2c] under
ambient conditions. Conversely, when subjected to drought / high temperature conditions, males
significantly outperformed females in leaf stomatal conductance [gmate:gfemate = 3.05, P = 0.0390,
n = 6, (paired #-test), Figure 2a] and carbon assimilation [Amale:4femate = 2.24, P =0.0150,n =7,
(paired ¢-test) Figure 2c]. Alternatively, gas exchange in Salix does not follow the same obvious
sexual dimorphic pattern as Populus. There were no intersexual differences in stomatal
conductance under ambient [P = 0.28, n = 4, (paired ¢-test), Figure 2b], or drought / temperature
warming conditions [P = 0.27, n =5, (paired #-test) Figure 2b] and no differences were detected
in carbon assimilation under ambient [P = 0.51, n =5, (paired #-test) Figure 2d], or drought /
temperature warming conditions [P = 0.35, n = 5, (paired t-test) Figure 2d]. The disparate
patterns in sexual dimorphism between Populus and Salix seem to reflect previously observed
patterns in sex ratio biases that seem to favor males in Populus and females in Salix. However,
the limited number of gas exchange studies in Sal/ix makes it difficult to draw strong conclusions
regarding sexual dimorphism in this genus. Another limitation with this data synthesis is that
none of these studies were conducted on riparian tree species that occur in western North
America, although numerous studies were conducted on similar Populus species in Asia.
Therefore, these studies should provide an important analog for predicting sexual dimorphism in
habitat preference, productivity, and climate sensitivity of cottonwood gallery forests in the arid

western US, and western North America as a whole.
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Taken together, these previous studies suggest that female Populus trees are more
sensitive to resource limitation and stress than males. Likewise, other stress mechanisms besides
drought and high temperature, including high soil salinity and high UV radiation, may have a
more profound impact on females than males. For example, salinity has a greater negative impact
on growth, gas exchange and relatively competitiveness in females of several riparian Populus
species in China compared to males (Chen et al. 2010; Chen et al. 2010; Li et al. 2016). Males
are also more tolerant of the effects of high UV-B radiation than females in P. cathayana trees in
China (Xu et al. 2008; Zhang et al. 2017). On the other hand, females have been reported to be
more tolerant of high UV-B radiation than males in S. myrsinifolia trees occurring in Finland
(Randriamanana et al. 2014), providing further evidence that sexual dimorphic patterns in Salix

often do not parallel those of Populus.

Evidence for sexual dimorphism in riparian cottonwoods and willows

The synthesized gas exchange data in Figures 1 and 2 indicate that unlike the patterns seen in
boxelder, female individuals in the genus Populus generally do not express a higher resource
uptake capacity that would convey an advantage over males in optimal conditions or habitats.
However, the data are congruent with the results seen when boxelder genotypes were
transplanted to a warmer environment in that females expressed a much larger decline in gas
exchange and growth relative to males under heat stress (Hultine et al. 2013). These results
therefore invite the question, why are females less tolerant of stress given that, in general, they
have no apparent advantage over males when conditions are optimal? One explanation is that our
literature review of leaf-level gas exchange is limited in scale because the surveyed studies did

not address whole-canopy gas exchange, or potential differences in total photosynthetic area or
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total leaf area ratio (photosynthetic surface area per unit plant biomass) between male and female
plants. Alternatively, it may be that females only express higher rates of resource uptake when
sink strength is maximized during periods of flowering and fruit set (Hultine et al 2008). If so,
many studies — particularly those in greenhouse settings - may miss periods when sink strength
in females outweighs that of males.

One approach to capture seasonal patterns in resource acquisition, including possible
shifts in sink strength among the sexes, is to continuously monitor whole-plant water use using
stem sap flux techniques. For example, a previous sap flux study on mature Fremont cottonwood
trees (P. fremontii Wats.) indicates that females maintain higher water use rates than males. In
this study, conducted over a three-week period from mid-June to early July of 2005, it was
shown that stem sap flux density (Js) was 25% higher in females than in co-occurring males
growing at a location with shallow groundwater along the Jordan River near Salt Lake City, UT
(n = 8 trees per sex, Figure 3a). Sap flux was also higher in streamside female boxelder trees than
co-occurring males in Red Butte Canyon, east of Salt Lake City (n = 6 trees per sex, Figure 3b).
It is worth noting that Js in boxelder converged significantly in late June (starting on about Day
173) between male and female boxelder trees, a period that follows the completion of seed set in
this population. Perhaps the high cost for reproduction in female box elder trees elevates the sink
strength and resource uptake in females relative to males in microsites with high resource
availability (Hultine et al. 2008). Conversely, Fremont cottonwood trees maintained a
consistently higher Js along the Jordan River during periods following flower production and
seed set, indicating that females may have a consistent advantage over males in high resource

locations.
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Sap flux patterns reflect long-term trends in growth among boxelder and cottonwood
species in western North America (see Fig. 3). For example, radial growth rates in ten year-old
boxelder trees planted in a common garden in Salt Lake City, UT were 28% higher in females
than in males during wet years (Ward et al. 2002). Similarly, growth rates along the Oldman
River in Lethbridge, Alberta, Canada were 21% higher in mature female narrowleaf cottonwood
(P. angustifolia James) trees than in co-occurring males during years with high river discharge
(Rood et al. 2013). A major difference, however, between species is that in box elder, inter-
sexual differences in growth coincided with females having a 0.52%o to 0.67%o lower 8'°C
abundance in wood cellulose during wet years, indicating that female individuals maintained a
higher internal to ambient CO> concentration (ci:ca) over the growing season. On the other hand,
whole-wood §'*C in narrowleaf cottonwood during high discharge years was similar between the
sexes (Rood et al. 2013), and leaf gas exchange collected repeatedly at the same cottonwood
stand in 2006 (a moderate river discharge year) revealed no inter-sex differences in g, 4 or ci:ca
(Letts et al. 2008). It is worth noting that radial growth in the same narrowleaf cottonwood stand
was 38% higher in females than in males during years with low river discharge (Rood et al.
2013), while during dry years, radial growth was equal between male and female box elder trees
in the Salt Lake common garden (Ward et al. 2002). These data suggest that regardless of leaf
gas exchange or integrated ci:ca patterns, higher radial growth rates in female narrowleaf
cottonwood trees is a sustained trait, that ultimately may not reflect population sex ratio.

Conversely, sexual dimorphism in radial growth appears to be much more plastic in box elder.

Climate change impacts on dioecious riparian tree species
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Causal relationships between sexual dimorphism in physiological climate sensitivity and
mortality - a likely mechanism for skewed sex ratios - have yet to be comprehensively explored
in dioecious riparian tree species. Therefore, it is necessary to establish a fundamental basis for
why differential rates of resource uptake between sexes may result in acute resource limitations
and subsequently, higher rates of mortality in one sex over the other. It appears that males in the
genus Populus consistently maintain higher rates of g and 4 under sub-optimal environmental
conditions than co-occurring females (Fig. 1, 2). Likewise, male box elder trees also maintain
higher rates of g and 4 than co-occurring females during periods of excessive high temperature
and VPD conditions (Hultine et al. 2013). Not surprisingly there is a clear link between chronic
reductions in stomatal conductance and woody-plant mortality (Martinez —Vilalta et al. 2002;
Plaut et al. 2012; Andregg et al. 2014; Sevanto et al. 2014). These and other studies have
primarily focused on the physiological mechanisms that ultimately result in whole-plant
hydraulic failure and / or carbon starvation (McDowell et al. 2008; Sperry and Love 2016). A
primary driver of whole-plant hydraulic failure is drought-induced xylem cavitation that results
in lower g and increases the threat of cell turgor loss (Brodribb and Holbrook 2006). This would
set off a feedback loop that increases the reliance on non-structural carbohydrate storage (NSC),
not only to prevent carbon starvation during extended periods of low g and A4, but also for
osmotic regulation to maintain turgor and leaf function (Zwieniecki and Holbrook 2009);
Vilagrosa et al. 2010), and / or refill embolized xylem (Bucci et al. 2003; Salleo et al. 2009).
However, to our knowledge, there are no studies that compare NSC storage in dioecious riparian
tree species from western North America, and the limited data for xylem function in box elder
shows no sexual dimorphism in xylem cavitation vulnerability (Hultine et al. 2008). Future

studies that evaluate sex-specific patterns in xylem function and labile carbon storage will
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greatly improve our understanding of the mechanisms that underpin sex ratio biases and spatial
segregation of the sexes that arise in dioecious plant populations.

The relationship between physiological stress and sex ratio bias will depend largely on a
combination of factors including the magnitude and rate of climate change, life history strategies,
local adaptation and generation turnover times among others. A major tenet of sex ratio theory is
that non-uniform sex ratios will eventually be balanced by Fisherian forces because the mean
fitness of the rare sex exceeds that of the common sex (Fisher 1930; Bull and Charnov 1988;
Wade et al. 2003). In theory, Fisherian sex ratio balance could counter the impact that increased
aridity will have on dioecious plant populations, even those that express strong sexual
dimorphism in physiological traits related to stress. Fisherian forces are most likely to counter
the effects of climate change in species with rapid generation turnover rates, such as herbaceous
annuals and short-lived perennials that also occur in locations where the effects of climate
change occur relatively slowly. However, for many dioecious plant populations, the rate of
change in sex ratio caused by increasing aridity may have the potential to outpace the
rebalancing effects of Fisherian sex ratio selection, with negative impacts on successful mating.
Woody plants such as boxelder, for example, may have sex ratios that are highly susceptible to
rapid shifts in climate due to their relatively long generation turnover times that restrict the rate
of adaptation to rapid changes to environmental conditions. If climate change brings warmer and
dryer conditions to the western U.S. as expected, box elder populations may experience strong
male-biased sex ratios, depending on whether Fisherian balancing mechanisms can outpace the
effects of climate change on aridity and water availability from stream systems (Figure 4a).

With riparian cottonwoods, it is unclear whether or not Fisherian balancing mechanisms

would play a significant role in managing sex ratio biases for two reasons. The first is that,
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unlike box elder, cottonwoods do not consistently express strong sex ratio biases, although male-
biased sex ratios often emerge in the most stressful end of a population’s environmental niche
(reviewed above). The second reason is that under stress, cottonwoods often become “non-
reproductive” (Rowland and Johnson 2001), although it is currently unclear whether one sex is
likely to become non-reproductive at a higher frequency than the other sex. Given these patterns,
it may be that increased aridity from climate change leads to a larger percentage of the
population becoming non-reproductive (Figure 4b), which could have an extreme deleterious
impact on population fitness, even if population sex ratios remain fairly static. Ultimately climate
change may have severe consequences on the fitness of box elder and riparian cottonwoods in
western North America as a result of gender and reproductive effects, even if the mechanisms
that drive reduced fitness differ (Figure 4). Unfortunately, the limited data on sexual dimorphism
in riparian willows makes it difficult to make predictions of future population sex ratios and

fitness in response to climate change.

Future directions and conclusions

As discussed throughout this review, there are many knowledge gaps regarding sex ratio patterns
and sexual dimorphism in secondary traits among dioecious riparian tree species in western
North America, and especially for populations occurring in the arid southwestern U.S. In
addition to these knowledge gaps, two questions are critical to address in future studies: 1) do
inter-sexual differences in traits related to stress, resource use efficiency and productivity emerge
at the pre-productive stage and 2) to what extent will extreme sex ratios impact the capacity of
dioecious tree populations to serve as foundation species in riparian communities where they

account for extensive ecosystem services?
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Determining whether sexual dimorphism in secondary sex traits are present at the pre-
productive stage is a difficult task, largely because these long-lived riparian tree species, such as
box elder, cottonwoods and most willow species do not produce reproductive structures until
several years after germination. However, recent advances in genomics and other molecular
technologies are providing new opportunities to evaluate the sex of dioecious plants during early
stages of development (Tuscan et al. 2006; Yin et al. 2008). Populus genomic resources, in
particular, have grown rapidly, culminating in the whole-genome sequence database for black
cottonwood (P. trichocarpa, Torr. & Gray) (Tuscan et al. 2006) that has more recently been
extended to other species in the Salicaceae family (Hanley et al. 2006; Yin et al. 2008). Three
subsequent mapping studies have revealed that there is a single locus that controls sex
determination in Populus (Gaudet et al. 2007; Markussen et al. 2007; Yin et al. 2008), although it
is worth noting that a single locus might encompass multiple genes underlying sex determination
(Yin et al. 2008). The identification of sex-determination to a single identifiable locus may open
a wide range of opportunities to explore mechanisms that underlie sex ratio biases at multiple life
history stages. For example, future studies can evaluate whether sexual dimorphism in stress
tolerance and resource acquisition emerge in seedlings or after they reach sexual maturity. In
turn, sex identification of individual genotypes could improve the chances of successful
restoration projects that aim to restore native cottonwood / willow forests in riparian areas
impacted by land use, species invasion and climate change. Restoration projects would have the
necessary tools to target sex ratio balance or spatial segregation of the sexes such that population
fitness is most likely maximized under future environmental conditions, especially in locations

where Fisherian balance cannot be achieved quickly.
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Riparian restoration projects not only aim to reestablish populations of native tree
species, but also preserve ecosystem function and community structure of riparian areas that are
biodiversity hotspots in arid regions of the western U.S. Phenotypic variation between male and
female genotypes has significant and predictable consequences to ecosystem functions such as
soil carbon fluxes and nutrient transformation rates, and to community composition of associated
plants, invertebrates, and micro-organisms (Gehring and Whitham 1992; Varga and Kytdviita
2010; Petry et al. 2013). Functional traits such as foliar nutrient content, carbon to nitrogen
ratios, and defensive strategies vary between the sexes of riparian box elder trees (Jing and Coley
1990; Dawson and Ehleringer 1993; Dawson et al. 2004; Hultine et al. 2013), and these traits are
well known to drive ecosystem function and community structure (Lavoral and Garnier 2002;
Hart et al. 2005). Therefore, altered trait expression in box elder by environmental selection
during climate change, may not only result in shifting sex ratios, but also have potential
cascading impacts on ecosystem function and community structure of highly valued riparian
ecosystems. However, information on the foundational capacity of each sex of riparian
cottonwoods and willows is currently lacking, and should be explored further in future studies.

Our data synthesis of physiological traits in Populus species (Figure 2) suggests that
riparian cottonwoods likely share similar sexually dimorphic traits with box elder such that
males have a greater stress tolerance than females (i.e. Hypothesis 1). These patterns will likely
amplify male biased sex ratios and alter population structure in both box elder and cottonwoods
under future climate conditions (i.e. Hypothesis 2). On the other hand, there is no obvious
evidence for sexual dimorphism in physiological traits or sex ratio bias in riparian willow
populations in part given due to a generally lack of information for willow taxa. Ecologists and

plant biologists will need to resolve many unknown factors to better predict the extent to which
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climate change may impact the population structure of dioecious riparian tree species.
Specifically, more work is needed to successfully integrate analysis of sexual dimorphism in key
traits related to climate sensitivity within sex ratio theory. We advocate for approaches that
emphasize long-term trends and/or broad spatial scales, for example tree-ring analysis of growth
and stable isotope variability in woody tissues (Ward et al. 2002; Rood et al. 2013), and
monitoring sex-specific shifts in reproductive phenology using existing landscape-scale
phenocam networks (Brown et al. 2016). Likewise, researchers should take advantage of recent
technologies that can acquire vast amounts of genomics data in order to link sex-related traits to
specific molecular markers (Yin et al. 2008). In turn, this information could help researchers
determine when sexual dimorphism emerges during the life history of plants, including if
patterns emerge before plants reach reproductive maturity. Finally, the use of reciprocal
transplants and common garden experiments established across broad climate gradients would
provide the necessary infrastructure to quantitatively evaluate divergent selection (Kawecki and

Ebert 2004) that may drive differential patterns of local adaptation between sexes.
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Figure captions

Figure 1 - The ratio of male to female leaf stomatal conductance (g), net carbon assimilation (A4),
and measurements of productivity synthesized from previous studies (Appendix Table 1) of
sexual dimorphism in Populus and Salix species. Experiments took place under ambient
temperatures and well-watered conditions (Control) and experiments where plants were
subjected to either temperature warming of drought conditions (Drought / Warming). (a) The
comparison of leaf g in male and female Populus and Salix plants under control conditions
(gmale:gfemate = 1.07, P =0.43, n = 18) and under Drought / Warming conditions (gmale:Zfemale =
2.51, P=0.0074, n = 12). (b) The comparison of 4 in male and female plants under control
conditions (Amate:Afemate = 1.03, P =0.87, n = 19) and under Drought / Warming conditions
(Amate:Afemate = 2.31, P=0.0017, n = 11). (c) The comparison of productivity using
measurements of either biomass production, height growth or radial growth of male and female
plants under control (M:F = 1.00, P = 0.99, n = 16), and under drought / warming conditions

(M:F=1.59, P=0.0068,n=7).

Figure 2 - The ratio of male to female leaf stomatal conductance (g) and net carbon assimilation
(4) synthesized from previous studies (Appendix Table 1) of sexual dimorphism in Populus and
Salix species. Experiments took place under ambient temperatures and well-watered conditions
(Control) and experiments where plants were subjected to either temperature warming of drought

conditions (Drought / Warming). (a) The comparison of leaf g in male and female Populus plants
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under control conditions (gmate:gfemate = 1.12, P = 0.25, n = 14) and under Drought / Warming
conditions (gmale:gfemale = 3.05, P =0.0390, n = 6). (b) The comparison of leaf g in male and
female Salix plants under control conditions (gmale:gfemale = 0.88, P = 0.28, n = 4) and under
Drought / Warming conditions (gmale:gfemate = 1.65, P = 0.27, n = 5). (c) The comparison of 4 in
male and female Populus plants under control conditions (Amale:4femate = 1.07, P =0.11, n = 14)
and under Drought / Warming conditions (Amate:A4femate = 2.24, P = 0.0150, n = 7). (d) The
comparison of 4 in male and female Salix plants under control conditions (Amale:4femate = 0.93, P

=0.51, n =5) and under Drought / Warming conditions (Amate:Afemate = 2.18, P = 0.35, n =5).

Figure 3 — Difference in sap flux density (Js), calculated in grams of water per cm of sapwood
area per day, between co-occurring male and female individuals relative to the mean of male and
female trees combined (i.e. horizontal lines). a. Js in mature male and female Fremont
cottonwood (Populus fremontii) trees occurring next to the Jordan River, near Salt Lake City,
UT, measured from June 21 (Day 172) to July 11 (Day 192), 2005. b. Js in mature male and
female box elder (4cer negundo) trees occurring within 1 m of a perennial stream channel in Red
Butte Canyon near Salt Lake City, UT, measured from June 10 (Day 161) to June 30 (Day 180),
2005. Figure 3 is based on sap flux data originally reported by Hultine et al (2007; 2008). Error

bars represent &+ 1 standard error of the mean.

Figure 4 - Expected male to female ratios under current and predicted future climate conditions.
a. Population sex ratios in box elder (Acer negundo) in relation to distance from the immediate
stream channel. Under current climate conditions, sex ratios vary from being female-dominated

near the stream channel to male-dominated further from the channel (black solid line), but the
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population overall maintains a 1:1 ratio (horizontal line). With climate change — predicted to
bring more extreme growing season temperatures and lower stream discharge - populations are
expected to shift in sex ratios such that they become significantly male-dominated (red solid
line), depending on the rate of climate change and the potential for Fisherian processes to
balance sex ratios. b. Population sex ratios in riparian cottonwoods (Populus spp.) in relation to
distance from the immediate stream channel. In contrast to box elder, cottonwood populations
are not expected to express female biased sex ratios in high resource environments, or strong
male-biased sex ratios in low-resource locations. However, the proportion of non-reproductive
individuals in the population should increase with distance from the stream channel (dashed
black line). With predicted climate change, the number of non-reproductive individuals (red
dashed line) should increase to include a higher proportion of the population than under current

conditions.
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