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Numerical simulations of viscoelastic fluids in the Stokes limit with a four-roll mill background force were per-
formed at a range of Weissenberg number (non-dimensional relaxation time). For small Weissenberg number the
POD flow is steady and symmetric but upon increasing the Weissenberg number (corresponding to increased elasticity
Oldroyd-B or flow memory time), the flow becomes unstable leading to a variety of temporal evolutions to different peri-
odic and aperiodic solutions. These dynamics were analyzed using a Proper Orthogonal Decomposition (POD)
that extracted elastic modes in terms of their contribution to the energy of the system. The temporal behavior of
the system, captured by the decomposition, indicates that the motion of the stagnation points drives the different
flow transitions. In particular, a transition to an asymmetric state occurs when the extensional stagnation points
lose their pinning to the background forcing. A further transition to higher frequency modal dynamics occurs
when the stagnation points that were initially tied by the forcing to the centers of the rolls, begin to move. The
relative frequencies of the motion of these stagnation points is a critical factor in determining the complexity
of the flow, measured by the number of modes needed to capture most of the energy in the system. Even when
the flows are more complex a small number of modes is sufficient to capture the time evolution of these flows,

demonstrating the usefulness of the POD applied to viscoelastic fluids at zero Reynolds number.

1. Introduction

Instabilities in viscoelastic fluids in the low Reynolds number regime,
where viscous effects dominate inertia, have been studied for many
years; see [1-10]. These instabilities are connected to increased flow
resistance [11], the creation of secondary vortex flows [12], and can
lead to a flow state referred to as “elastic turbulence” [13-16]. Insta-
bilities and turbulence in low Reynolds number viscoelastic fluids also
can yield high levels of mixing which is typically difficult to achieve in
micro-fluidics or at low velocities [17].

Numerical simulations have proven to be a useful tool to study elas-
tic instabilities [16,18-25], with both the cross-slot and the 4-roll mill
geometry allowing the study of the onset of complex dynamics near
steady extensional points. There has been some theoretical work re-
garding transitions to turbulence and criteria for instabilities, [5,26,27].
However, there is much left to understand regarding the development
of “elastic turbulence”, and the nature of the flows in these high Weis-
senberg number (or long relaxation time) low Reynolds number fluids.

Nearly singular solutions in the Oldroyd-B model of a viscoelastic
fluid were identified in [19] at extensional points in a flow with a sim-
ple four-roll mill background force. It was shown that the polymer stress
concentrates into thin “stress islands” that are symmetric along the axis
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of extension. Beyond a critical Weissenberg number (Wi) the polymer
stress grows exponentially in time (or faster) at the extensional point.
With some numerical regularization it was shown that complex dynam-
ics emerge beyond a critical Wi when the flow is highly stretched at
the extensional point [23,24]. There are two transitions upon increas-
ing Wi, first to an asymmetric state, and second to time-dependence.
The transitions are similar to those identified in experiments [9] at an
extensional point in a cross-slot flow. Experiments that are closer to the
4-roll mill periodic geometry of the simulations were done in [28] where
a 4x4 checkerboard of rotating disks drives a flow of a thin layer of a
dilute polymer solution. In this experiment a transition to asymmetry
was found for a critical Wi, next they observe a three dimensional insta-
bility driving the free surface to buckle but for sufficiently large Wi the
flow does become oscillatory. Simulations also uncovered interesting
dynamics with the same numerical set-up from [23,24] using an alter-
nate method to find periodic solutions [29] and a bifurcation diagram
was mapped out locally around that solution.

Here we will introduce a Proper Orthogonal Decomposition (POD)
of numerical solutions to the Oldroyd-B model for viscoelastic fluids at
zero Reynolds number. POD has been a useful tool for analyzing insta-
bilities and turbulent flows in Newtonian fluid dynamics for many years,
see for example [30-37]. The review [37] gives a thorough overview of

E-mail addresses: pgutierrez@math.ucdavis.edu (P. Gutierrez-Castillo), bthomases@math.ucdavis.edu (B. Thomases).

https://doi.org/10.1016/j.jnnfm.2018.12.009

Received 6 September 2018; Received in revised form 18 December 2018; Accepted 21 December 2018

Available online 22 December 2018
0377-0257/© 2018 Elsevier B.V. All rights reserved.



P. Gutierrez-Castillo and B. Thomases

modal decomposition with particular applications to fluid mechanics.
Despite the frequent use of POD for Newtonian fluid dynamics, the only
application to the Oldroyd-B model appeared in [38] to analyze vis-
coelastic fluids in the high Reynolds number regime. A difficulty with
applying the techniques of POD to complex fluids arises because there
is no natural inner-product space on the set of symmetric, positive def-
inite tensors, and the elastic energy in the system (for the Oldroyd-B
model) comes from the integral of the trace of the conformation ten-
sor [39]. This is addressed in [38] by defining a POD on the unique
symmetric square-root of the elastic stress tensor, and we employ this
technique here as well. Another method to decompose the conformation
tensor was recently introduced in [40] as a method to study turbulence
in viscoelastic fluids.

In what follows we will first describe the numerical framework for
our exploration, including an introduction to the POD for viscoelastic
fluids at zero Reynolds number. The main part of the paper describes the
results of the viscoelastic POD for the Oldroyd-B model at zero Reynolds
number. We also describe some results obtained using the FENE-P model
[41], a macroscopic closure that enforces finite extension of polymeric
coils at the micro-scale.

2. Model

We use the Oldroyd-B model of a viscoelastic fluid at low Reynolds
number, with explicit polymer stress diffusion, given in dimensionless
form by

Au—Vp+pV-S=f, ()
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for u the fluid velocity, p the fluid pressure, and S, the (symmetric) con-
formation tensor, a macroscopic average of the polymer orientation and
stretching that is related to the polymer stress tensor by 7, = (S - I).
The parameters, f, the non-dimensional polymer stiffness, and Wi, the
Weissenberg number, or non-dimensional relaxation time, are defined
by
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for u the solvent viscosity, A the fluid relaxation time, G the polymer
elastic modulus, L the system size, and U a characteristic velocity scale.
Note that the Oldroyd-B model has v, = 0 in Eq. (3). The polymer stress
diffusion term, VpAS, for Vp small, is included in the right-hand side
of Eq. (3) as a numerical regularization, and this modification to the
Oldroyd-B model will be described in detail in the next section.

The background force is given by:

2 sin x cos y>

f= ( . (5)
—2cosxsiny

which in a Newtonian Stokes flow (f = 0) corresponds to a four-roll ve-
locity fieldu = — %f . The Stokes solution sets the characteristic (inverse)
time scale U/L = 1.

2.1. Numerical details and parameters

The system Eqs. (1)-(3) are solved in a 2D periodic domain, [0, 27)?
with N =256 grid points in each direction, giving dx~0.025. We use
a spectral method to solve the Stokes equations and time-step the ad-
vection equation for the conformation tensor in Fourier space using a
second order Adams-Bashforth method with time step d¢ = 0.0025. This
is the same numerical set-up used in [23,24] where the flow transitions
that are discussed here were first observed. Some of the dynamics in this
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problem occur on very long time-scales and to capture the slow dynam-
ics we run our simulations until at least + = 1200Wi, and in some cases
longer. To compute the solutions we start from a random perturbation
of the low Fourier modes from isotropic initial polymer stress S =I. A
similar approach was used in [24], but in this study the same random
initial condition was used for all the simulations.

The quantity #-Wi is the ratio of the polymer viscosity to solvent
viscosity, so that given a particular working fluid the ratio is fixed in-
dependently of experimental conditions. In our simulations g - Wi = 0.5
is fixed. This value is consistent with the fluids used in experiments of
dilute polymer solutions with highly viscous solvents, Boger fluids, (see,
for example, [9]).

It is known that the Oldroyd-B model with the four-roll mill forc-
ing has numerical difficulties associated with the lack of scale de-
pendent diffusion and without adding some numerical regularization
Eq. (1)-(3) (with v, = 0) will form a singularity (perhaps at infinite
time) [19,42,43]. Therefore, we include scale dependent polymer stress
diffusion to the right-hand side of Eq. (3), of the form v, = c(dx?) and
¢ = 1.66. Scale dependent polymer diffusion will regularize the solutions
so that long-time solutions are smooth [44] and upon grid refinement
the solutions converge to the Oldroyd-B model. Analytically it has been
shown that global solutions to the Stokes-Oldroyd-B model with diffu-
sion exist for any ¢ > 0 [45], but for ¢ = 0, this is still an open question
even in 2D.

2.2. Viscoelastic proper orthogonal decomposition

The main tool we employ to analyze the solutions from our simula-
tions is the Proper Orthogonal Decomposition (POD), also known as the
Karhunen-Loéve analysis, or principal component analysis. This method
provides an algorithm to decompose a set of data into a minimal num-
ber of basis functions or modes to capture as much energy as possible.
Furthermore, the obtained modes are ordered in terms of the percent of
energy contained in each mode.

See [33,37] for a review of decomposition methods in fluid dynam-
ics, and [38] for an application of this method to viscoelastic flows at
non-zero Reynolds number. To our knowledge this is the first applica-
tion of a POD analysis of a viscoelastic flow at zero Reynolds number.
We sketch the algorithm below and set up the notation for what follows.

We consider the POD for a vector q(&,7) € R” that is a function of
spatial variables &, and time t. In our application we will assume a sep-
aration of space and time and look for a decomposition around the tem-
poral mean, q, of the form

a& 0 - a4 =) a0,

J

6)

where aj(t) are the (scalar) temporal coefficients and ¢j (&) are the spatial
or geometric modes. To compute any POD, we consider a time-interval
1 €ty — tepnq in equally spaced time increments At. In what follows we
will give the time-interval and increments that we use in each POD (note
it is not necessary to use the same grid refinement or time-resolution
for the POD as the original simulation). The vector we decompose is
the unique symmetric square-root, b, of the symmetric conformation
tensor S = b2, this choice is made so that the energy in the system can
be written in terms of the stored elastic energy, as will be explained
further below. To give an ordering for b as a vector we write

(b11);(x, y.1)
Qj(g’ 1= (blz)j(x,y, Nl
(byp)(x, y. 1)

(O]

for j =1,...,N,, where N, is the number of snapshots of the data to in-
clude, defined below.

We employ the method of snapshots over a time-interval t € #; — fopq
because often the number of snapshots of data needed to resolve the
temporal behavior N, = % is far less than the number of spatial vari-
ables n = 3N2,i.e. N,< <n.
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The POD is based on an eigenfunction decomposition of the system
in the form

XTXy/j =E;y;, fory € RN,
where
X = [x(t)) X(t;) ... x(N))| € R™N:,

and x = q — q. The geometric modes are recovered from the y via

1
¢ =Xy, , for j=1,....N,.
J I B !

J
The eigenvalues E; represent how much of the original data is captured
by each mode. The temporal coefficients are reconstructed by

a;(1) = (4.1 ~ G(E). $;©) 1.

where (,) is the inner-product defining the energy space.

Ordering the modes by the size of Ej, we can retain modes that cap-
ture as much of the original data (in an L? sense) as we like. In what
follows we keep the number of modes to capture at least 95% of the
original data, i.e. we keep r < <N; modes such that

r N,
Y E;/ Y E;>095.
= =l
In terms of compression of data this can be a significant savings, for
example in what follows we find that r = 14 is the largest number of
modes we need to keep to capture 95% of the energy in all the cases we
consider.

In fluid dynamics this technique is useful because if we choose q = u

to be the velocity of the fluid, then the relevant vector space has inner

product
(wv)g = l/ lpu~vd)c
v 2

4

and the kinetic energy per unit volume is

E= %/V%mmz dx = (0w ®
In this case the eigenvalues will represent how much kinetic energy fluc-
tuations in the system is captured by each mode. In a viscoelastic fluid
modeled by the Oldroyd-B equations the conformation tensor represents

the amount of stored elastic energy in a volume of fluid [41], via

1 /1
Eye = = | = ptrSdx.
e ], pousex

This energy does not have a natural representation as an inner-product,
in part because the set of symmetric positive definite matrices is not a

(b)

Fig. 1. Solution for Wi = 5 at t=6000 (a) Contours of trS, (b) Vorticity contours, and (c) Stagnation points of vector field with threshold of 107*.
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vector-space [39]. However if we write S in terms of the unique sym-
metric square-root [46], S =b? or Sij = byby;, then we can see that
trS = tr(b?) = blzj Thus if we introduce the inner product

(b.b)ye = %/V %ﬂ bijbi;
we have Eye = (b,b)ye. A POD using this inner product will lead to
eigenvalues that measure fluctuations in the stored elastic energy per
unit volume. In the case of the Oldroyd-B model this energy is the me-
chanical energy, and although this is not strictly true for other models
(such as FENE-P) this energy still gives a POD formulation of other sys-
tems.

For each Wi, we will compute a POD as described above on some
specified temporal domain t € [#; — 1o, q] with a given At. We will retain
the minimum number of modes to capture 95%E,,. The POD will give a
set of modes ¢ (x, y) and temporal coefficients a,(t) along with energy
levels E; that weight the modes in terms of the amount of energy they
contribute.

dav, (©)]

3. Flow dynamics

Our computational set-up is similar to that used in [23,24], and as
we saw there we have several different flow regimes depending on Wi.
In this paper we have studied cases for 4 < Wi <12 in increments of 0.25.
For each case, we categorize the flow dynamics and show how the use of
POD can aid in our understanding of the solutions as well as the catego-
rization of the dynamics. For Wi <5 the long time behavior of the flow
is steady with two symmetries, left-right, and up-down, see Fig. 1 for ex-
ample. For 5.25 < Wi <6 the flow loses one symmetry and the transient
behavior includes oscillations that eventually are damped out, but the
long time behavior of the flow is steady with one symmetry. For higher
Wi the transient oscillations remain and the flow is unsteady. Both peri-
odic and aperiodic behaviors are observed and we further characterize
the types of behavior in terms of the dominant modes in the POD.

When the flow is time dependent the POD is very convenient for
defining and understanding the different dynamics of the flows. Note
here that the time range over which a POD is computed will effect the
outcome of the decomposition. In particular if a flow has a transient
from an unstable steady state to another state it is possible to include
the transient to see the dynamics of the transition or exclude it to focus
on the long-time dynamics. We will explore these different views of the
solution for the cases we consider.

3.1. Steady solution (two symmetries): Wi<5

For Wi <5 the flow evolves to a steady symmetric solution after a
very short transient, t ~ 20 — 50. This transient arises in all the numeri-
cal experiments since the initial condition (a perturbation from isotropic
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Fig. 2. First temporal mode, a,, for the cases Wi = 5.25 (left) and Wi = 7 (right).

stress) is not a solution of the governing equations. This transient does
not affect the long-time dynamics that we are categorizing. By choos-
ing a fixed initial condition we are limiting the dynamics that we will
explore to the stable solutions that arise from the chosen initial condi-
tion. A more complete exploration of this dynamical system is beyond
the scope of this work. We will henceforth ignore this initial transient
in our discussion of the solutions.

Fig. 1(a) shows contours of trS for Wi = 5 at # = 6000. The trace of
the conformation tensor trS represents the amount of stretching of the
immersed polymers, and is the strain energy density of the flow. The
extensional point at the center creates symmetric stress islands that are
elongated in the direction of stretching (horizontal) and concentrated
in the direction of compression (vertical). There are two symmetries,
about the lines x = 0 and y = 0. We include axes labels (x, y) as well as
the domain [0, 27) x [0, 27) in this figure, but suppress these axes and
axes labels for all future figures with contours of the stress and vorticity
as they have the same domain.

Fig. 1(b) shows a snapshot of the vorticity at the same instant clearly
demonstrating the 4-roll pattern characteristic for this problem config-
uration for small Wi number. Counter-vortices arise in the opposite di-
rection along the direction of stretching to balance the stress. There are
8 stagnation points (u = (0, 0)) in the domain, plus periodic copies. For
small Wi these stagnation points are either pure extension (type I in
Fig. 1(c)) or pure rotation (type 2 in Fig. 1(c)). For higher Wi the dy-
namics of the flow are connected with the movement of these stagna-
tion points (as was seen in [24]). In what follows we highlight (in pink)
a somewhat coarse threshold, u? + v? < 107#, to visualize regions near
the stagnation points and track those regions through the complex flows
that arise. When identifying the frequency of the stagnation points we
trace the centroid of u? + v? and track the frequency of those points.

A POD decomposition is unnecessary when the flow is steady be-
cause the temporal mean is subtracted before computing the modes (see
Eq. (6)) and deviations from the temporal mean are negligible.

3.2. First transition: Movement of extensional stagnation points, type 1

One of the main advantages of the POD is that the modes are ex-
tracted in the order of energy that they represent. For Wi > 5.25 as the
temporal evolutions evolve, the first mode of the POD of the entire
time series always displays a jump when the temporal evolution first
appears. This jump does not give information about what type of be-
havior will evolve, but indicates the onset of time-dependent solutions.
As an example, Fig. 2 shows this first temporal mode for two different
types of solutions. On the left, Wi = 5.25, the mode has a constant value
until some time where a jump occurs and the mode continues with a
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Fig. 3. Onset time (t,) of time-dependence (normalized by Weissenber number
Wi) as a function of Weissenberg number.

different constant value. On the right, for Wi = 7, the mode clearly shows
oscillatory behavior after the jump.

We can use the onset time of the time dependent behavior as a pa-
rameter to “see” the bifurcation to time-dependent states beyond Wi ~ 5.
We calculate the onset time of time-dependence, t;, by selecting a change
of 5% of the early time value of the dominant mode. Fig. 3 shows the
starting time of the time-dependent solutions for the different Wi stud-
ied scaled with the relaxation time. In the bifurcation diagram, we see
clearly how t,/Wi diverges as Wi\/5.

Some of the cases we consider are more complicated to characterize
than others, and they will be described further in the following sections
using not only the first mode but all the relevant modes. A summary
of the different solutions we find is presented in Table 1 which gives a
flavor of the complexity of the problem. For each group of states, the
required number of modes to capture 95% of the energy is calculated
using different time intervals for the POD: considering the all the sim-
ulated time, and the late time of the flow once the long-time dynamics
are established.

3.2.1. Steady solution (one symmetry): 5.25 < Wi <6.00

We use data for Wi = 6 to represent the behavior in this range of Wi.
Initially the flow is symmetric and qualitatively similar to the Wi =75
case above, see Fig. 4(a), however now this symmetric solution is not
stable. The loss of stability as Wi increases may be related to the fact
that the maximum of the conformation tensor grows linearly with Wi
[44,47]. At around t~ 1980 (t~ 330Wi) this unstable solution evolves to
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Table 1
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Categorization of flow states and number of modes needed to capture 95% of the energy

over different time periods.

Wi range # Flow Long-time dynamics #amodes  #amodes
transitions all times late times

Wi =4.00 - 5.00 0 Steady 2 symmetries 0 0

Wi =5.25-6.00 1 Steady 1 symmetry 1-2 0

Wi=625-17.75 1 Periodic (oscillatory) 3-6 4-5

Wi = 8.00 - 8.75 1 Periodic (loop) 6-8 6

Wi =9.00-10.25 2 Aperiodic 9-14 11-13

Wi=1050-12.00 2 Periodic (dominant vortex) 6 4

(d) t=7200

Fig. 4. Time evolution of Wi = 6. trS in the first row and vorticity superimposed with the stagnation points in the second row.

an oscillatory state. As the symmetric solution loses stability the exten-
sional stagnation points (type 1) begin to oscillate in the +y direction.

The stagnation points are shown in pink in Fig. 4 in the second row
superimposed on contours of the vorticity. Fig. 4(b) is a snapshot at the
time of the first peak of the oscillation, and it is possible to see the oscil-
lation by examining the location of the stagnation points in the vorticity.
We also see that the center island in trS is bent to the right and oscillates
in the vertical direction. The oscillations decrease in time and eventu-
ally the solution converges to a new steady state which has only one
spatial symmetry (in the vertical direction). Details can also be seen in
the supplementary information online where movies for trS and vortic-
ity of all the representative cases are included. We ran this simulation
until 7 = 2000Wi to ensure that it has converged to a steady state. We
see the same symmetry in the vorticity with the stagnation points high-
lighted in Fig. 4. During the transient the 4-rolls lose symmetry in the
y—direction. The loss of up-down symmetry is dependent on the initial
conditions, thus rotations of this case are possible for other initial con-
ditions. This type of symmetry breaking instability was first observed
experimentally near the extensional stagnation point in a cross-slot ge-
ometry [9].

We use a POD to characterize the time-dependent motion for Wi = 6
over three different time ranges with A7 = 5 in each case: t = 0 — 1200Wi,
t = 1000Wi — 1200Wi, and ¢ = 1800Wi — 2000Wi. First, we describe the
POD over the entire time series. Two modes are sufficient to capture
95% of the energy in this case, see Fig. 5(a). The first mode, a;, is
steady in the initial symmetric period with a jump at the onset of the
time-dependence, meanwhile the time-dependent damped oscillations
are captured by the second mode, a,. We also find that the frequency
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associated with the second mode is the same frequency as the vertical
displacement of the extensional stagnation points of type 1. This can be
seen in Fig. 5(b) where we plot mode a, (right axis) as well as the ver-
tical position of the center stagnation point, y. (left axis) over the same
time period.

We get a different view of the solution by doing a POD for later times.
Now we perform the decomposition for r = 1000Wi — 1200Wi. Again two
modes are required to capture 95% of the energy, but in this case there is
no transient. The percent of the energy in each of the modes is shown in
Fig. 6(a), and the temporal structure of the modes is shown in Fig. 6(b).

We turn now to the spatial information in the POD. Recall that the
spatial modes are given in terms of by, but the conformation tensor in-
volves the square, S = b?. For example we have

—p2 —p2 2 2
S = b, = b7 + 267, + b3, (10)

Thus (from Eq. (6)) one needs information from all of the components
of b as well as the mean to reconstruct trS. We display the mean and
the two modes for each component of b in Fig. 7. We remark that the
geometric modes have roughly the same spatial complexity as the stress
at an instant in time. We can quantify this by examining how many
Fourier modes are needed to represent the solution to some level of ac-
curacy and find that a comparable number of Fourier modes are needed
for the geometric modes and for the full solution at some instant in time.

Since the temporal mode is oscillatory, the oscillations we saw in
trS in Fig. 4 come from the periodic addition and subtraction of the by
modes to the mean. The first mode clearly shows vertical oscillations,
and the second mode represents (much smaller in energy) left/right os-
cillations.
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The long-time behavior in this case is steady and hence a POD at
sufficiently long times will not generate any modes since the difference
between the flow and the mean are negligible. In this case we used
t = 1800Wi — 2000Wi.

3.2.2. Periodic solution (oscillatory): 6.25 <Wi<7.75

We look at Wi =7 as a representative solution in this regime. For
Wi = 6 we saw an initial symmetric long time transient which became
unstable with damped oscillations that eventually died out leading to a
long time steady case with one symmetry. For Wi = 7 oscillations do not
get damped, and the long-time behavior of the solution is periodic. Fur-
thermore, the oscillations are observably both in the vertical direction
and the horizontal direction.

Fig. 8 shows snapshots of trS and vorticity over one period once the
flow has converged to a periodic state. The flow for Wi = 7 has lost
both the vertical and horizontal symmetry and now over a period we
see oscillations between near up-down symmetry with two dominant
vortices in the left cells and near left-right symmetry with two dominant
vortices in the top cells. This flow is stably periodic although it has
similarities with the single symmetry flow for Wi = 6. In particular the
flow state in Fig. 8(a) is similar to that from Fig. 4(d).

We show results of a POD using temporal data over 5 periods of the
long-time behavior in Fig. 9. Here 5 modes capture 95% of the energy
with the first mode having about 67%E,,.. The next 4 modes come in
pairs with modes 2&3 having about 10%E, . each and 4&5 having about
5%E,,. each. We plot the time-series of the first 3 modes in Fig. 9(b) and
see that the modes all have the same frequency.

Fig. 10 shows the temporal mean and three geometric modes for by.
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(b) Temporal modes ay, as

The first mode shows a left-right oscillation in b;; and a up-down
oscillation in b,,. The b;, mode contributes to rotations. The pairs of
modes 2&3 will represent traveling structures and there are symmetries
in these modes as well, e.g. mode 2 of b;; reflected by x = y axis and
displaced by # gives mode 3 of b,, and similarly between mode 3 of by;
and mode 2 of b,,.

3.2.3. Periodic solution (loop): 8.00<Wi<8.75

Like Wi = 7, the solutions for 8.00 < Wi <8.75 are also periodic, but
now the flow has transitioned again. We describe the flow for Wi = 8 as
a representative from this group. In this case there is an initial transient
where the solution behaves like Wi = 7, but eventually a new periodic
state evolves where the dominant vortex “loops” around all 4-rolls, ro-
tating clock-wise (in this case). Fig. 11 shows the time evolution of the
vorticity in a period where the loop can be seen. Note that the period is
very long, T~1210.

A POD is performed over 5 periods, and the energy in the modes is
shown in Fig. 12(a). Now the first two modes contribute equally (each
about 35%) to the energy. Note that pairs of modes typically repre-
sent traveling structures, and in this case we see the vortices and other
flow features rotating through the quadrants. The time-series, Fig. 12(b)
shows that these two first modes are periodic with the same period, with
a phase-lag. The higher modes also have the same frequency.

The temporal mean of all the b components is shown in Fig. 13 first
column. Again we find a symmetry where one can obtain the mean of
b,, from b;; with a shift and reflection over y = x. Note that in this case
that the relative difference between b;; and b,, (modulo the symmetry)
is less than 1%. Modes 1 and 2 also have such symmetries.
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3.3. Second transition: Movement of rotational stagnation points, type 2 (type 1) (starting in the center of the domain). Later there is a second

transition associated with the movement of the rotational stagnation

For cases with Wi > 9 the flow presents a new kind of solution. The points (type 2) (moving from the centers of the quadrants). The frequen-

temporal evolution can be described as follows. There is a transient sim- cies of the motion of the stagnation points now leads to two qualitatively
ilar to the Wi = 5 solution, after which there is a change in behavior different types of flows, described below.

associated with the displacement of the extensional stagnation points
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Fig. 9. Features obtained from the POD de-
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Fig. 10. Features obtained from the POD decomposition of Wi = 7 using five periods, T~ 815, with A7 = 5.

3.3.1. Aperiodic solution: 9<Wi<10.25 which capture 83%E,.. In Fig. 14(b) we plot the first 3 temporal modes
We use Wi = 10 to represent the flows for this range of Wi. After a;, a,, and a; for a POD computed over the time r = 0 — 1200Wi (mode
the transient, a big dominant vortex is created in the bottom left cor- a, is similar to a3). As we saw for all Wi>6 the first mode is the shift
ner (again other possible orientations are possible from different initial mode representing the initial transient from symmetric to asymmetric.
conditions) at t~ 1300, and later, around t~ 3600 higher frequency os- Mode a, shows the onset of the oscillations of type 1 when the symmetry
cillations arise in the flow. The flow is not periodic and the POD demon- break occurs. The higher frequency oscillations occur around t~ 3600
strates this clearly with many more modes needed to capture the energy when the stagnation points of type 2 being to move, and these oscilla-
and aperiodicities in the temporal coefficients. For example, when com- tions are captured by as.
puting a POD over the time ¢ = 0 — 1200Wi we see that 13 modes are Focusing now on the long-time behavior, we can define a near-period
needed to capture 95% of the energy, see Fig. 14(a). However, much of of the flow for Wi = 10 by looking at the POD of the flow after the second
the relevant information can be obtained by using the first four modes transition, for example for r = 1000Wi — 1200Wi, and using an approxi-
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Fig. 11. Time evolution of vorticity superimposed with the stagnation points for Wi = 8.
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mation of the period of the highest energy mode at these late times in
the flow, obtaining T,,,4.1 ~ 314. We then use this T,;,4.1 to compute
the POD over 5T,,o4e1, and show the energy in the modes in Fig. 14(c).

While 13 modes are needed to capture 95% of the energy, the flow
is now dominated by the first 3 modes, this time capturing 76%E,..
The temporal evolution of these modes over late times, is shown in
Fig. 14(d). For this long-time behavior the shift mode does not appear.
Now we find that the frequencies of the first two modes are the same
as the frequencies of the oscillations of the stagnation points of type 1
and type 2. We find T o401 # 314 and Ty o402 & 57, these two frequen-
cies are not multiples of each other, and this creates the aperiodicity in
the flow. Note that the POD decomposition was computed with a very
small time interval A7 = 0.1 to avoid any imprecision caused by calculat-
ing the POD decomposition with Ar = 5, with little change in the result.
We conclude that it is not possible to represent this kind of solution with
periodic modes.

Fig. 15 shows snapshots of contours of trS over time. The initial tran-
sient shows oscillations in the stress concentration with a dominant vor-
tex in the bottom left corner. The second temporal transition has led to a
qualitatively different flow state where the stress concentration appears
to rotate within the dominant vortex with a period that is not a multiple
of the oscillations. The snapshots are plotted at fractions of Tp,4e1, and
we can see that the motion is not periodic.

The temporal mean and first three geometric modes of b are shown
in Fig. 16. These modes display the same features associated with os-
cillations and rotations as have been seen previously. It is the temporal
structure of the modes, i.e. the frequencies are not multiples of one an-
other, that causes the flow complexity.

3.3.2. Periodic solution (dominant vortex): 10.5 <Wi<12.

In this range we find that the solutions are once again periodic,
here we use Wi =12 to represent the solutions in this range. The
temporal evolution of this solution has an initial transient with two
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symmetries followed by oscillations in the stagnation points of type 1.
Unlike Wi = 10, these oscillations decay nearly to zero leading to an un-
stable asymmetric steady state. This is followed later by another tran-
sition when the stagnation points of type 2 oscillate. In this case, the
oscillations in the stagnation points of type 1 and type 2 have the same
frequency, and the solution is periodic. We show snapshots of trS over
a period in Fig. 17.

In this case we present results of the POD over 5 periods of the long-
time behavior. For this periodic flow, four modes capture 95% of the
energy as it is shown in Fig. 18(a). The modes come in pairs with a; and
a, having the same energy as do a; and a4. The temporal behavior is
shown in Fig. 18(b). We see that modes a3, a, have double the frequency
of modes ay, a,.

In Fig. 19 we plot the geometric modes and we can see again how
the full solution can be constructed out of minimal information. We note
that Ar = 1 was used in this case to get the appropriate temporal resolu-
tion since the frequency of the motion is high. Due to the simplicity of
this flow, only 6 modes are needed to represent the full solution includ-
ing both transients.

4. Spatio-temporal error in approximation with POD

The POD is an approximation of the solution in terms of the energy,
but here we consider a measure of the error in the approximation of the
solution in both space and time. The viscoelastic POD at zero-Reynolds
number gives the elastic modes for b, and the modes for S involve the
squares of the modes of b. For each b;, 1 <i<j <2, we define an approx-
imation for b with r modes:

ij>

,
B =by(x. ) + 2 a0b (x, y), (1
k=1
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where b?.k is the geometric mode for b; coming from ¢, and b;;(x,y) is We compare the approximate solution trS” using r modes (i.e. the
the temporal mean of by;. With this we define number of modes needed to capture 95%E,.) with the full solution trS,
and define the relative error in this approximation as
Sr =B (12)
- . l[trS — eS|
to be the approximation of Sy, with r modes. Rel. error = meanjme s 13)
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where ||-|| is the L2 norm. In each case we reconstruct using a POD
over ¢t = 0 — 1200Wi with Ar = 5. The errors are listed in Table 2. In all
cases the error is around 10%, largest for Wi = 8 which has the large-
scale traveling vortices. It is also quite small for the case Wi = 6 which
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only involves a transient between two steady cases. This shows that the
energy decomposition gives a reasonably good approximation for the
flow over the time series in terms of differences at a fixed point in space
and time.
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modes needed to capture 95%E,, over the
whole time series 0 — 1200Wi using At = 5.

Wi Rel. error  # of modes for 95%E,,
6 3.4% 2

7 9.07% 6

8 13.15% 8

9 8.78% 9

10 9.43% 13

11 9.44% 6

12 9.81% 6

5. FENE-P model

The results in the previous sections are calculated for a fixed grid
with added polymer stress diffusion to regularize the solutions. We have
checked that upon refinement if we fix the stress diffusion we obtain
the same solution dynamics, but the dynamics do change quantitatively
(and may change qualitatively) when the diffusion is grid-dependent.
However, when the stress diffusion is fixed independently from the grid,
the set of equations does not converge to the Stokes-Oldroyd-B system
as dx — 0. Fixed diffusion as a numerical regularization will set a length-
scale for max trS, as well as for the width of the stress islands that con-
centrate in the direction of compression (at least in the symmetric tran-
sient of the solution [44,47]). The influence of artificially large stress
diffusion on the dynamics of elastic turbulence is considered in a recent
paper [48]. There are many other types of numerical regularizations
that have been used to make solutions of the Stokes-Oldroyd-B equa-
tions more robust (see [8] for a nice review of numerical method for
viscoelastic fluids). In addition there are many other models that one
can use to enforce finite extension, such as FENE-P or other FENE mod-
els [41,49,50], and many different models with some sort of nonlinear
relaxation term that will effect how the stress grows at extensional points
such as the Giesekus [51] or PTT models [52]. In the case of a steady
extensional flow such as the 4-roll mill geometry considered here, some
numerical regularization is still necessary in the FENE-P, Giesekus, and
PTT models [19,53] to obtain long-time solutions. However, in the 4-roll
mill geometry, beyond the transition to unsteady solutions, no artificial
diffusion was needed to simulate the flow dynamics with FENE-P using
the square-root method [46].

To demonstrate that with other models we can recover qualitatively
similar results to those described above, we run simulations with the
FENE-P model and perform a POD of the obtained data. The FENE-P
model is given by

Au—-Vp+pV-S=f, (14)

15)
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Here the conformation tensor C, is related to the stress tensor S, via

C

T - (ac/e?) an
where #2 is the parameter to enforce maximum extension of polymer
coils. We use initial data for the conformation tensor from a Stokes-
Oldroyd-B solution for Wi = 12 at a time that is beyond the second tem-
poral transition when the flow is well into the periodic regime. We run
a simulation of FENE-P from this initial data for + = 1600 time units with
diffusion set to v, ~ 0.0006, and a length cut off £? = 400. After this flow
reaches a new near-periodic state we set the diffusion to zero and con-
tinue the simulations. A POD of the data for this simulation of FENE-P at
Wi = 12 is performed and we find the behavior to be strikingly similar
to the Wi = 10 case for Stokes-Oldroyd-B explained in Section 3.3.1. In
particular we need 10 modes to capture 95%E,,. and the first 3 modes
capture 78%E,,, (compared to 76%E,, for Wi = 10, Oldroyd-B) with the
second and third mode in pairs. The period of the highest energy mode is
approximately Tp, - qe 1 = 250. We show the first 4 temporal coefficients
of the POD over 5T,,,4.1 for FENE-P at Wi = 12 in Fig. 20 (a) to make
a comparison with the temporal structure of the solution for Oldroyd-B
at Wi = 10, plotted in Fig. 20 (b).

6. Conclusion

We have analyzed the dynamics for the Stokes-Oldroyd-B system of
a viscoelastic fluid at zero Reynolds number in a 2D periodic geometry
with a 4-roll mill background force. The system demonstrates multi-
ple bifurcations and an underlying complex dynamical system. As the
Weissenberg number is increased, in the range 4 <Wi <12, the system
transits from steady solutions to periodic solutions to aperiodic solu-
tions and back again to periodic solutions. Some of these dynamics are
complicated, and we have used POD to examine them. We define an
energy based on the square-root of the conformation tensor to perform
the POD in terms of the elastic energy of the system. This technique
has previously only been used to examine high Reynolds number elastic
turbulence.

The POD gives a low mode representation to the system which is con-
nected to essential dynamics of the flow, and easily demonstrate tran-
sitions in the flow. We have found that we need at most 14 modes to
capture 95% of the energy of the system using the POD, which is a fairly
small set of modes. Furthermore, in our examples we have shown that
the POD is able to capture both the long-time dynamics of the system
or the transients from different solution types depending on what time-
series of data is used in the decomposition. Either representation may
be useful depending on the application.

Another advantage of using a POD is the ability to approximate the
temporal behavior of the flow with only a few time-independent geo-
metric modes and scalar temporal coefficients or modes. This small set
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of spatial and temporal modes replaces numerous snapshots, and still is
able to capture the flow dynamics with reasonable accuracy. We found
that we could reconstruct the time evolution of trS with ~10% relative
error in space and time (except for Wi = 8). Using the POD as an approx-
imation provides a significant savings in data storage. The true benefit
of the compression capability of the POD would be seen for 3D simu-
lations or simulations with very long channel flow geometries. These
more computationally expensive geometries are where physical purely
elastic instabilities have been experimentally measured [15,54], and the
POD provides a new way to analyze the dynamics in these geometries.
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