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Abstract

The Immersed Boundary (IB) method has been widely used to solve fluid-structure interaction problems,
including those where the structure interacts with polymeric fluids. In this paper, we examine the conver-
gence of one such scheme for a well known two-dimensional benchmark flow for the Oldroyd-B constitutive
model, and we show that the traditional IB-based scheme fails to adequately capture the polymeric stress
near to embedded boundaries. We analyze the reason for such failure, and we argue that this feature is not
specific to the case study chosen, but a general feature of such methods due to lack of convergence in velocity
gradients near interfaces. In order to remedy this problem, we build a different scheme for the Oldroyd-B
system using the Immersed Boundary Smooth Extension (IBSE) scheme, which provides convergent vis-
cous stresses near boundaries. We show that this modified scheme produces convergent polymeric stresses
through the whole domain, including on embedded boundaries, and produces solutions in good agreement
with known benchmarks.

Keywords: Complex Fluids, Oldroyd-B, Immersed Boundary, Complex geometry, Partial Differential
Equations, High-order

1. Introduction

The Immersed Boundary (IB) method was originally developed for the study of moving, deformable
structures immersed in a fluid, and it has been widely applied to such problems since its introduction [1–
3]. Recently, the method has been adapted to more general fluid-structure problems, including the motion
of rigid bodies immersed in a fluid [4], fluid flow through a domain with either stationary boundaries or
boundaries with prescribed motion [5, 6], and fluid-structure problems in which the boundaries interact
with a polymeric fluid [7–12]. In this broadened context, we use the term Immersed Boundary method

to refer only to methods in which (i) the boundary is treated as a Lagrangian structure embedded in a
geometrically simple domain, (ii) the background PDE (e.g. the Navier-Stokes equations) are solved on a
Cartesian grid everywhere in that domain, and (iii) all communication between the Lagrangian structure
and the underlying PDE is mediated by convolutions with regularized δ-functions. These methods have
many desirable properties: they make use of robust and efficient Cartesian-grid methods for solving the
underlying PDE, are flexible to a wide range of problems, and are simple to implement, requiring minimal
geometric information and processing to describe the boundary. The accuracy and convergence properties
of the IB method have been well-studied for Netwonian fluids, but it has not been carefully validated against
known benchmarks for polymeric fluids. In this paper, we examine the IB method applied to a classical test
problem: the flow of an Oldroyd-B fluid at zero Reynolds number past a stationary cylinder in confinement.
This problem has been extensively studied [13–17], and high quality benchmarks are available at low values

∗Corresponding author
Email address: dstein@flatironinstitute.org (David B. Stein)

Preprint submitted to Elsevier March 22, 2019



of the Weissenberg number. We show that the IB method, uncorrected, produces incorrect stresses in
near-boundary regions, and we identify the cause of this simply as a failure of the viscous stress tensor to
converge in these regions. The errors in the velocity gradients enter into the evolution equation for the
polymeric stress, and cause persistent errors that do not converge with grid refinement. We then summarize
a recently introduced modification of the IB method, the Immersed Boundary Smooth Extension method
[18, 19], which captures the viscous stress tensor accurately near boundaries, and show that this method
coupled to a standard pseudo-spectral Oldroyd-B solver produces accurate solutions that converge to known
benchmarks.

In this paper, we first consider coupling an unaltered Immersed Boundary scheme to a pseudo-spectral
solver for the Stokes Oldroyd-B (SOB) equations for a viscoelastic fluid to simulate polymeric flows in two-
dimensional stationary complex geometries. The evolution of the polymeric stress in the SOB equations
is an ODE along streamlines that contains growth terms dependent on the gradient of the fluid velocity
∇u. When fixed obstacles exist in a flow, large velocity gradients are typically present in near-boundary
regions. For many embedded boundary methods, including the IB method, gradients of the velocity field
are not captured accurately in the near-boundary region: for general flows they show persistent O(1) errors
that do not disappear with grid refinement [19]. It would thus be surprising if the IB method, unmodified,
provided accurate solutions for the polymeric stress near to boundaries, and to our knowledge the convergence
properties of these schemes when applied to complex, nonlinear equations such as the SOB system has not
been rigorously analyzed. In this paper, we show that it is indeed the case that this quantity fails to converge
in the L∞ norm; with large errors precisely in the near-boundary regions where velocity gradients are not
accurately.

Significant effort has been expended on improving the accuracy of embedded boundary schemes [23–39],
an overview is provided in [18]. In addition, methods which build on the IB or Immersed Finite Element
(IFEM) method but with modifications such as the use of one-sided interpolation and spread operators near
to boundaries have been used to model flow past fixed objects and deformable particles in a viscoelastic fluid
[41–43]; these works have shown that averaged flow features are resolved but convergence of the stress at
and near boundaries is not considered. A subset of these improved embedded boundary methods [18, 19, 39]
generate solutions to the fluid equations that are globally smooth in a simple domain, and as such allow
discretizations of more complicated, nonlinear equations to be constructed in a way that is nearly unaltered
from solvers used on simple geometries. In [18], we demonstrate that the Immersed Boundary Smooth
Extension (IBSE) method allows for simple and accurate discretizations of the 2D viscous Burgers’ and
Fitzhugh Nagumo equations, and in [19], we show that the solver applied to the Stokes and Navier-Stokes
equations is able to obtain high-accuracy solutions for all elements of the Newtonian stress tensor, including
velocity gradients, up to the boundary. In light of these observations, it is natural to consider using the
IBSE method, rather than the IB method, as the underlying fluid solver when constructing an embedded
boundary scheme for the SOB equation in complex geometries. In the remainder of the paper, we show that
a simple scheme based on the IBSE method and a Fourier pseudo-spectral evolution scheme for the SOB
equations indeed converges, up to and on embedded boundaries, allowing the consistent computation of local
tractions imparted by the polymeric fluid onto immersed obstacles. To the best of our knowledge, these
results provide the first rigorous demonstration of an embedded boundary scheme providing L∞ convergence
of the polymeric stress up to and on embedded boundaries for the flow of a polymeric fluid — including
convergence to numerically challenging benchmarks [14–16].

This paper is organized as follows: in Section 2, we describe the Stokes Oldroyd-B (SOB) model, a
pseudo-spectral evolution scheme for the simulation of the SOB system in a periodic rectangle, and a
standard benchmark flow experiment. In Section 3, we show how this method can be simply extended to
complex geometries using the IB method, show that this method fails to provided convergent solutions for
the polymeric stress near to domain boundaries, and provide a brief analysis explaining this inaccuracy. In
Section 4, we show how to alter this scheme to instead use the IBSE method, demonstrate convergence for
the relatively simple flow for which the IB based scheme failed, and finally show convergence results for
more challenging numerical benchmarks at higher Weissenberg number.
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2. Evolution of the Stokes Oldroyd-B Equation

The total stress (τtot = τN+τP) in an incompressible polymeric fluid is often decomposed into a Newtonian
portion (τN = ηsγ̇ − P I) and a polymeric portion (τP), where u is the fluid velocity, ηs is the Newtonian
(solvent) viscosity, P is the pressure, I is the identity tensor, and γ̇ is the strain rate tensor γ̇ = ∇u+(∇u)⊺.
Letting λ denote the relaxation time of the polymers, we assume that the polymeric stress (τP) evolves as

τP + λ
∇

τP = H(τP, γ̇), (1)

where the notation
∇

τP denotes the upper-convected time derivative of τP:

∇

τP = ∂tτP + u · ∇τP − (∇u)⊺τP − τP∇u. (2)

We have taken the convention that (∇u)ij = ∂xi
uj . With ηp the polymer viscosity, the Oldroyd-B model is

given by H(τP, γ̇) = ηpγ̇; other common models may be represented with different choices of the function H,
e.g. for the Giesekus model, H(τP, γ̇) = ηpγ̇ − α λ

ηp
τP

2 [44]. The symmetric positive-definite conformation

tensor σ is related to the polymeric stress by τP =
ηp

λ
(σ − I). Substituting this into eq. (1), along with

H(τP, γ̇) = ηpγ̇, and noting that
∇

I = −γ̇ leads to an evolution equation for σ:

∇

σ =
−1

λ
(σ − I) . (3)

Rescaling the pressure P as p = P/ηs, an external force F as f = F/ηs, and defining a coupling constant
ξ = ηp/(ηsλ) gives the system

−∆u+∇p = ξ∇·σ + f , (4a)

∇·u = 0, (4b)

∇

σ = −λ−1 (σ − I) . (4c)

Further rescaling space by a system size L and time by an inverse strain rate L/U (where U is a typical
velocity scale) leads to a nondimensional system of the same form with the relaxation time λ replaced by
the Weissenberg number Wi = Uλ/L. In the literature, it is common to work with a constant β, the ratio
of Newtonian viscosity to total viscosity, given by β = ηs/η, where the total viscosity η is defined to be the
sum of the Newtonian viscosity (ηs) and the polymeric viscosity (ηp). λ and β are related by ξ = 1−β

βλ
.

2.1. A pseudo-spectral evolution scheme for the SOB system

We initially consider solving the Stokes Oldroyd-B equations on the periodic torus T2 = [0, 2π]× [0, 2π]
in two spatial dimensions, with the flow driven by a force f(x, y, t), with zero polymeric stress at t = 0:

−∆u+∇p = ξ∇·σ + f(x, y, t) in T
2, (5a)

∇·u = 0 in T
2, (5b)

∇

σ = −λ−1 (σ − I) in T
2, (5c)

σ(x, y, 0) = I. (5d)

Note that zero polymeric stress corresponds to σ(x, y, 0) = I, and that no initial condition is needed for u

— as we are solving the Stokes Oldroyd-B model, u(x, y, 0) is determined by the solution to

−∆u(x, y, 0) +∇p(x, y, 0) = ξ∇·σ(x, y, 0) + f(x, y, 0) in T
2, (6a)

∇·u(x, y, 0) = 0 in T
2. (6b)
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Throughout this paper, we will be interested primarily in steady-state behavior. To discretize this system in
time, we thus consider u to be fixed, advance the equation for σ forward in time by ∆t, and then recompute
u using the updated value of σ. The Runge-Kutta 4 (RK4) timestepping scheme is well suited to evolving
the convection dominated evolution equation for σ [46], although in Section 4.4 we will utilize an IMEX-
BDF based scheme. Derivatives are computed spectrally by utilizing the Fast Fourier Transform (FFT),
and nonlinear terms are computed pseudo-spectrally with the filter defined in [45].

Analytically, it is known that if σ is initially positive-definite, then the solution σ(x, y, t) to Equation (5)
remains positive-definite [47]. Unfortunately, the numerical scheme described above does not retain this
property, and a loss of positive-definiteness of σ is typically accompanied by numerical instability and
failure [17]. Several numerical solutions have been proposed for this problem, including one in which the
matrix logarithm of σ is advanced in time [48], and one in which the matrix square-root of σ is advanced in
time [49]. We will use the matrix square-root method: letting b =

√
σ be the unique positive-definite matrix

square-root of σ, we solve the evolution equation [49]:

∂tb+ u · ∇b = b∇u+ ab+
1

2λ

(

b−⊺ − b
)

, (7)

where a is a skew symmetric matrix with off-diagonal elements depending on b and ∇u. As in the previous
discussion for the evolution of σ, this evolution is accomplished using explicit pseudo-spectral methods.
Once b has been updated, to update u we first compute σ = b2, and then solve for u as before. Since σ = b2,
σ is guaranteed to stay at least positive semi-definite [49].

The preceding discussion is sufficient to evolve the SOB system in a periodic box. Many flows of interest
are set in more complex domains, for which we will need more complex algorithms. In this paper, we
introduce two: one based on the IB method (Section 3), and one based on the IBSE method (Section 4.2).
Before introducing these methods, we discuss a standard benchmark problem that we will use to assess the
quality of the solutions produced by each method.

2.2. A standard benchmark Stokes Oldroyd-B flow and flow characteristics

A standard benchmark flow for evaluating numerical solvers for polymeric flow problems is the confined
flow of a fluid around a cylinder in a channel, studied in [14–16, 50]. The behavior of the flow is well
understood at low Weissenberg numbers but the behavior of the flow is unknown for Wi & 0.7 (for this
problem, Wi = λ). The typical computational setup is in a rectangular domain, [−20, 20] × [−2, 2] with
no-slip (u = 0) boundaries imposed on the bottom and top of the domain, the inflow condition u(−20, y) =
(uin(y), 0) with

uin(y) =
3

2

(

1− y2

4

)

, (8)

and an outflow boundary condition (which may differ depending on the computational setup). The parameter
β = ηs

η
is fixed at 0.59.

In order to assess the quality of the solutions, we examine two quantities. The first is the scalar drag
coefficient, which may be computed as

Cd =
1

η

✂ 2π

0

[

(τPxx + ηsγ̇xx − P ) cos θ +
(

τPxy + ηsγ̇xy
)

sin θ
]

dθ. (9)

This benchmark has been computed to high accuracy using a variety of methods [13, 51–63], with close
agreement at low values of Wi. In comparing the IB and IBSE based methods, it will be sufficient to
focus only on the very low Weissenberg number case of Wi = 0.1, for which there is good agreement in
the literature for a value of Cd = 130.364. The second quantity that we examine is the value of the xx-
component of the extra polymeric stress (τP) near to and on the cylinder walls. Although exact values are
not reported in the literature, the value may be inferred from plots to be between 17 and 19 [16].
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conditions is nontrivial. Instead, we approximate these by adding a constant forcing to the domain whose
magnitude is treated as a Lagrange multiplier to enforce the average inflow condition

✂ 2

−2

u(−6π, y) dy = 1, (13)

discretized using Simpsons rule. Because of the fact that the IB method relies on simple, underlying
Cartesian grid solvers, integration of the pseudo-spectral solver for the polymeric stress and the IB solver
for the Stokes equations is simple. The full system to be evolved is:

∂tb+ u · ∇b = b∇u+ ab+
1

2λ

(

b−1 − b
)

, in C, (14a)

−∆u+∇p+ SF− αx̂ = ξ∇·σ in C, (14b)

∇·u = 0 in C, (14c)

S∗u = 0, (14d)✂ 2

−2

u(−6π, y) dy = 1. (14e)

This system is evolved in exactly the same way as is described in Section 2.1, with the exception that
u(t+∆t) is found by solving the Stokes equations as given in Equations (14b) to (14e).

3.1. Results: Flow past a cylinder at low Wi using the IB-SOB solver

To analyze the quality of the solutions produced by the IB-SOB scheme introduced in Section 3, we solve
the flow around a cylinder problem described in Section 2.2 for both a coarse discretization (ny = 64), and
a relatively fine discretization (ny = 256), where ny denotes the number of points discretizing the domain
in the span-wise direction. For all computations the time-step is set to ∆t = 0.64/ny, and the simulations
are run to tfinal = 20Wi = 2.

The stress in the upper half of the channel, in a region near the cylinder, is shown in Figure 2. Benchmark
solutions are qualitatively different, with stresses that are larger and maximized at the boundary [14–
16, 50], while the solutions produced by the IB method are smaller and maximized away from the boundary.
Interpolating the stress to the boundary (by computing the stress in C and applying S∗) produces stresses
that are far smaller than the benchmark solution (with maximum value no greater than 6 at all discretizations
tested), and does not converge to the known solution (with a maximum value between 17 and 19) with grid
refinement.

The drag-coefficient, as defined by Equation (9), involves an integral of elements of the viscous and
polymeric stress tensor on the boundary. Because these fail to converge near to the boundary, computation
of this quantity by computing the relevant quantities in the domain, interpolating to the boundary using
S∗, and computing the integral given in Equation (9) gives an incorrect result. Instead, we may compute
the drag coefficient as a sum over the singular forces:

Cd =
1

η

✂
Γ

ηsF · x̂ dS. (15)

Note that F gives the jump in stress, for this problem the interior solution converges to 0; for the flow of an
incompressible, viscous Newtonian fluid around a cylinder, this is known to provide a consistent result [23].
For ny = 64 and ny = 256, we find values of Cd = 173.951 and Cd = 138.647, giving errors (as computed
to the benchmark value of 130.364) of approximately 33% and 6.4%, respectively. Perhaps surprisingly, this
appears convergent, despite the inaccuracy in the stress in the near-boundary region.

3.2. Analysis of Errors in the IB-SOB solver

To understand the failure for the convergence of the stress in the preceding section, we turn to the
simple one-dimensional Poisson problem. We will solve ∆u = f , where C is the periodic interval [0, 2π],
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4.1. Review of the IBSE method

It is considerably simpler to explain the Immersed Boundary Smooth Extension (IBSE) method in the
context of the Poisson, rather than the Stokes, equation. Although some details differ, the basic ideas are
the same, and the differences are carefully analyzed in [19]. Suppose then that we wish to solve the Poisson
problem

∆u = f in Ω, (21a)

u = g on Γ, (21b)

in an arbitrary smooth domain Ω. The IBSE method works by smoothly extending the unknown solution u
from the physical domain Ω to the simpler computational domain C. We assume that the boundary Γ = ∂Ω
is smooth, not self-intersecting, and must separate C into the two disjoint regions Ω and the extension
domain E = C \Ω. We denote an extension of the unknown solution u by ξ. This extension of the solution
is then used to define a volumetric forcing Fe = ∆ξ in the region E. With this forcing, an extended problem
in all of the simple domain C may be solved:

∆ue − χEFe = χΩf in C, (22a)

ue = g on Γ. (22b)

The solution ue gives the desired solution u in Ω and is equal to ξ in E. Because ξ was chosen to be a
smooth extension to u, the function ue is globally smooth in C.

The extension ξ to the unknown function u is defined as a solution to a high-order PDE which takes
for its boundary conditions matching criteria of the form ∂jξ/∂nj = ∂ju∂nj . This allows the extension
to be defined by a small number of unknowns (proportional to the number of points used to discretize
the boundary). The extension PDE for ξ is solved efficiently in the simple domain C using an Immersed
Boundary type method.

In order to succinctly describe the methodology we require some additional notation. We define the
spread operator :

(S(j)F )(x) = (−1)j
✂
Γ

Fj(s)
∂jδ(x−X(s))

∂nj
dX(s) (23)

and the interpolation operator :

(S∗

(j)ξ)(s) = (−1)j
✂
C

ξ(x)
∂jδ(x−X(s))

∂nj
dx (24)

for the jth normal derivative, where X(s) is a parametrization for Γ with s in the parameter interval IΓ.
We further introduce the composite operators Tk, T

∗

k , and R∗

k by:

Tk =

k
∑

j=0

S(j), (25a)

T ∗

k =
(

S∗

(0) S∗

(1) · · · S∗

(k)

)⊺

, (25b)

R∗

k =
(

S∗

(1) · · · S∗

(k)

)⊺

. (25c)

The operator T ∗

k provides an interpolation of a function and its first k normal derivatives to the boundary;
R∗

k provides an interpolation of the first k normal derivatives to the boundary, but excludes the values;
the spread operator Tk represents a set of singular forces (δ-like) and hyper-singular forces (like the first k
normal derivatives of the δ-function) on the boundary.
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The central challenge of the IBSE method is to compute the smooth extension to an unknown solution.
We first discuss how to compute an extension to a given function. Let v ∈ Ck(Ω) be given. To compute a
Ck(C) extension to v, we solve the following high-order PDE in the region E:

Hkξ = 0 in E, (26a)

∂jξ

∂nj
=

∂jv

∂nj
on Γ, 0 ≤ j ≤ k. (26b)

Here Hk is an appropriate differential operator such as the polyharmonic operator ∆k+1. Details regarding
the specific choice of this operator are available in [18]. This problem may be solved on the simpler domain
C using methodology directly analogous to the direct forcing Immersed Boundary method. The boundary
conditions given in Equation (26b) that force ξ to share its first k normal derivatives with u along Γ are
enforced by the addition of unknown singular and hyper-singular forces supported on the boundary:

Hkξ(x) + (TkF )(x) = 0 for x ∈ C, (27a)

(S∗

(j)ξ)(s) =
∂jv

∂nj
(s) for s ∈ IΓ, 0 ≤ j ≤ k. (27b)

Notice that ξ is not actually an extension to v: that is, ξ(x) 6= v(x) in Ω. We will only be interested in the
function ξ in E, and so need not form its literal extension (which is χΩv + χEξ).

To solve the Poisson problem given by Equation (21) using the IBSE method, we instead solve the
extended problem given in Equation (22). The forcing function Fe that is specified in E must be chosen
so that it forces the extended solution ue to be Ck(C). Let ξ smoothly extend u, that is, we ask that ξ is
globally smooth in C and that it satisfies the constraints

R∗

kξ = R∗

ku (28)

at the interface Γ. These constraints require that the first k normal derivatives of ξ agree with the first k
normal derivatives of u on the boundary. The forcing function Fe is then defined as Fe = ∆ξ. Coupling
these equations together, we obtain the IBSE formulation for the Poisson problem given by Equation (21):

∆u− χE∆ξ = χΩf in C, (29a)

Hk + TkF = 0 in C, (29b)

R∗

kξ = R∗

ku, (29c)

S∗u = 0. (29d)

In [18], we verify that the IBSE formulation of the Poisson problem given in Equation (29) produces
Ck(C) solutions that converge at a rate of O(∆xk+1), in the L∞(Ω) norm, for the Poisson problem, as
well as the heat equation, Burgers equation, and the Fitzhugh-Nagumo equations. In [19], we derive a
generalization of the IBSE formulation described here sufficient for solving the Stokes equations, and verify
that it produces velocities u with global regularity Ck(C) and that all elements of the viscous stress tensor
are Ck−1(C). The velocity and stress converge to the correct solutions at a rate of O(∆xk+1) and O(∆xk),
respectively.

4.2. Coupling of IBSE to the SOB solver

In Section 3, we computed solutions to a standard benchmark problem (the flow around a cylinder
in a confined channel) for the Stokes Oldroyd-B model using the Immersed Boundary method, and find
several deficiencies with the quality of the solutions. In particular, even for low values of the Weissenberg
number (Wi = 0.1), the solutions produce polymeric stresses that are too small, are maximized away from
the boundary, and fail to converge when interpolated to the boundary. Although an integral quantity
relating to the stress (the drag coefficient, Cd) does converge, it converges slowly, and produces large errors:
approximately 33% on a coarse grid (ny = 64) and approximately 6% on a fine grid (ny = 256). The
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Immersed Boundary Smooth Extension method introduced in [19] and summarized in Section 4 was designed
primarily to deal with these issues. By automatically generating a globally smooth extension of the velocity
field u and pressure field p at every timestep, the boundary can be effectively ignored when solving the
Oldroyd-B update without introducing large errors at the boundary.

The IBSE based Stokes Oldroyd-B solver works in almost exactly the same way as the IB based Stokes
Oldroyd-B solver described in Section 3. There is only one additional difficulty: we must decide what to
do with the extra polymeric stress τP in the extension region E. Recall that b is defined to be the positive
definite matrix square-root of the conformation tensor σ. Assuming that ut and bt are known at the discrete
time t, the Stokes Oldroyd-B system is advanced in time as follows:

1. The evolution equation for b given in Equation (7) is advanced for one time-step to compute b∗, as
described in Section 2.1.

2. The conformation tensor σ∗ is computed as b2∗.

3. The Stokes equation:

−∆ut+∆t +∇pt+∆t = ξ∇ · σ∗ in Ω, (30a)

∇ · ut+∆t = 0 in Ω, (30b)

Supplemented with boundary conditions for ut+∆t, is solved using the IBSE method to find the
solutions ut+∆t and pt+∆t that are globally smooth in C and satisfy Equation (30) in Ω (see Section 4
for details).

4. The square root of the conformation tensor, b∗, is re-extended ; that is, redefined in the extension
region E to maintain smoothness in the entire domain, denoted by bt+∆t = Rb∗. We describe the
re-extension process in detail below.

Other than the final re-extension step, this algorithm is identical to the IB-SOB algorithm described in
Section 3, with the IBSE method replacing the IB method for solving the Stokes equation given by Equa-
tion (30). The re-extension step is necessary due to the fact that the solution of u in E is non-physical, and
often displays large derivatives. Naively evolving b in E using this aphysical u leads to instabilities, and
thus we choose simply to reset b in E at each timestep. The re-extension operator Rk−1, for use with the
IBSE-k method, is defined by the following process:

1. Let b̃ be the solution to the equation:

Hk−1b̃+ Tk−1 = 0 in C, (31a)

T ∗

k−1b̃ = T ∗

k−1b∗, (31b)

Note that this equation is solved elementwise for each element of the tensor. That is, we define b̃ij to
be a Ck−1(C) function that shares its first k − 1 normal derivatives with bij∗ on the boundary Γ.

2. Define Rb∗ by

Rb∗ =

{

b∗ in Ω,

b̃ in E.
(32)

Thus the re-extension operator Rk−1 smoothly re-defines bt+∆t in the extension region E. This equation is
solved using the methodology described in Section 4. Notice the choice to re-extend b to be only Ck−1, and
not Ck. The IBSE-k method produces Ck solutions of the velocity field u, and thus b will be only Ck−1 in
the vicinity of the boundary.

4.3. Results: Flow past a cylinder at low Wi using the IB-SOB solver

We now return to the confined channel flow around a cylinder problem defined in Section 2.2 and studied
using the IB-SOB algorithm in Section 3.1. The setup for the simulations is identical, and we present results
for the same coarse (ny = 64) and fine (ny = 256) discretizations used in Section 3.1. Evolution of the
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