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Abstract. An extremely thin gas film was found between a sphere and a free surface when the sphere
impacted onto a water pool. That might influence the generation and evolution of water entry cavity.
However, it is quite difficult to be captured through normal numerical and experimental tests. In this
work, by using a finite element method we investigate the water entry of a hydrophobic sphere with gas
viscosity artificially increased. The air film rupture in the early stage, contact line dynamics on a curved
solid surface, and air pocket formation are investigated. The numerical results reveal that the lifetime of
the gas film can be predicted by a viscous squeezing flow model qualitatively well. That relates to the fact
that the gas film is much thinner than the diameter of the sphere, even when the gas viscosity is 100 times
as large as the liquid one. However, inviscid flow can be found in the most part of the liquid bulk. The free
surface profile (or the gas film profile) is then determined by the impact speed, namely the Weber number.
More importantly, after the “gas” film ruptures at the bottom of the sphere, a contact line is generated.
The contact line retracts along the sphere’s surface, and the retracting speed fulfils Upcr, < T 12 law
generally. This implies that the retracting process of the gas film is dominated by the inertia-capillary

balance, rather than simply by the visco-capillary.

1 Introduction

Solid-liquid impact phenomena have attracted plenty of
interests from scientific and industrial societies. They are
highly nonlinear, multidisciplinary, and mainly relate to
the fundamentals of wetting dynamics, gas-liquid interface
evolution and coupling between micro- and macroscopic
flows, etc. In nature, stone skipping over water surface,
walking of animals over pool surfaces also reflect the mech-
anism of solid-liquid impact. The air cavity formed by the
vertical entry of a sphere into water was first investigated
by Worthington and Cole [1,2]. Subsequently, a series of
studies were performed by May et al. [3,4]. Modern tech-
niques of high-speed imaging further reveal the details of
water entry processes, through which inviscid models are
well established from the pure hydrodynamic viewpoint.
Duclaux et al. [5], Aristoff and Bush [6] analysed the evo-
lution of the air cavities as different models entered water
pool, and the Rayleigh-Besant equation was demonstrated
to be precise to predict the cavity dynamics.

# e-mail: xchen76@nwpu.edu.cn (corresponding author)

An interesting observation was presented by Duez et
al. [7] recently, who found that the wettability of the
sphere did influence the occurrence of a water entry cav-
ity. They proposed that the cavity will occur if the en-
tering speed of the sphere is larger than a critical wet-
ting speed, which corresponds to the wetting failure con-
dition. This critical speed implies a visco-capillary flow in
the vicinity of the moving contact line: V.., < f(0)o/p,
where 0, o and p denote intrinsic contact angle, inter-
facial tension and viscosity, respectively. Further, Zhao
and Chen [8] conducted water entry experiments for rough
spheres. They proposed that air could be easily entrapped
in the microscopic valleys on a hydrophilic sphere sur-
face during the dynamic process, if the sphere is rough.
Therefore, the static contact angle used in Duez’s model
should be replaced by a modified one, which fulfils the
Cassie-Baxter model [9]. Zhao’s model predicts an en-
hanced wetting failure for rough spheres and agrees with
the experimental results very well. The usualness of the
Cassie-Baxter state was further demonstrated by numer-
ical simulations [10]. On the other hand, Ding et al. [11]
conducted numerical simulations on the water entry of
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a sphere. They found that the contact line always stops
on the equator of the sphere as cavity occurs. They argued
that the balance between the viscous stress and Laplace
pressure leads to the pinning of the contact line, which
further induces the cavity.

Numerical simulations are widely applied in the rel-
ative studies, such as on the explorations of wettability
effects [11-13], cavity dynamics [5,6,14], and projectile
responses to the impact [15,16]. However, there are still
severe limitations on resolving the contact line dynamics
in numerical simulations, due to the spatial and temporal
resolutions. As a matter of fact, a subtle process was found
on the early stage of water entry of a sphere. Marston et
al. [17] found a thin gas film is entrapped under the sphere,
where the viscous effect comes into the problem. On the
other hand, gas film effects can also be found in a liquid
drop impacting onto a quiescent liquid surface [18,19] or
onto a flat solid surface [20,21]. Unfortunately, it is miss-
ing in both Ding’s [11] and Duez’s [7] work. We believe
there is strong connection between drop-plate impact and
water entry of spheres in the sense of the contact line mo-
tion.

In our work, we will focus on the early stage of the
water entry of a hydrophobic sphere through numerical
simulations. Of course, we also have the technical barrier
mentioned above, which makes the smallest resolvable flow
structure be limited by the thickness of the liquid-gas in-
terface. To circumvent this difficulty, we use artificially
increased gas viscosities and keep the other quantities in
a reasonable range. It results in a clear gas film between
the sphere and the liquid surface before the gas film rup-
tures, while certain mechanism of contact line motion can
be still reflected. This setup is slightly similar to what was
adopted by Tan et al. [22], who investigated a sphere pene-
trating a stratified two-layer system of immiscible liquids.

2 Methodology
2.1 Numerical methods

Following Yue et al. [23-25], a diffused interface method
coupling the Cahn-Hilliard (C-H) equation and Navier-
Stokes (N-S) equations is adopted to capture the liquid-
air interface. It is demonstrated that the method is able
to regularize the stress singularity on the moving contact
line [26]. In this model, the liquid-air interface is diffu-
sive (with limited thickness), but should be thin enough
in an accurate simulation. The fluid properties vary con-
tinuously, but steeply, across the interface.

The N-S and C-H equations are, respectively, as fol-
lows:

V-v=0, (1)
ov

P (815 +v- Vv> =

—Vp+ V- [ (Vo+ (Vo)')] + GV — pg, (2)

%+U~V¢=V-(7VG). (3)

ot
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The third equation (the convective C-H equation) de-
scribes the evolution of a phase index (-1 < ¢ < 1),
of which the contours indicate the interface between two
phases (normally on ¢ = 0 level). In this work, ¢ = 1
represents the liquid phase, and ¢ = —1 the gas phase.
Across the interface, the profile of ¢ is of hyperbolic-
tangent [23]. This equation satisfies the general thermo-
dynamic fundamentals, where the phase transition (dif-
fusive flux) is controlled by the gradient of the chemi-
cal potential VG. The chemical potential is expressed as
G = N-V?%¢ + (¢? — 1)¢/e?]. The numerical interface
thickness is usually 4-8 times as large as € (namely the
capillary width), and A denotes the mixing energy density.
Both of them determine the liquid-gas interfacial tension
o= 23&% [23]. In the C-H equation, v denotes mobility,
which is a material constant. By neglecting convection,
namely v = 0, one can see that the relaxation of the ¢
distribution depends on 7.

In the momentum equation, eq. (2), the interfacial ten-
sion is introduced as Fs = GV¢. The symbols in egs. (1)
and (2), such as p and v, are defined as usual, and locally
averaged ones are adopted in the equations:

P=pPry TPy
W= 5 fbg 5 -

In the expressions, the subscripts [ and g represent liquid
and gas, respectively. p;, pg, fu and pi4 are predefined ma-
terial properties. The last term in eq. (2) represents the
gravitational force, which is ignored in some of our sim-
ulations. That roots in the fact that the impact is very
fast, since the speed of the sphere is nearly constant be-
fore the cavity is closed [6,27]. Our computational do-
main can be reasonably fixed on the “falling” sphere. On
the other hand, the compressibility of the liquid could be
important at the very beginning of the water impact of
a blunt body [28]. However, the supersonic stage is ex-
tremely short compared to the later film generation and
developing processes, so we use the incompressible fluid
assumption (see eq. (1)) [29,30].

On the surface of the solid sphere, non-penetrating and
no-slip conditions are applied:

’U‘T:R =0, (4)
Il'VG‘T:R:O, (5)

where R represents the radius of the sphere. The wetting
condition is written as

An-Vé+ fl,(¢) = 0. (6)

n denotes the normal (outward) of the surface of the
sphere, and f,, the local surface energy density. f,, relates
to the static contact g through the expression

fw(p) = —ocos 959?7(3 ; ¢2) + Twl ;’O’wg
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Fig. 1. The schematic of a typical computational domain,
where the impact of a sphere onto a liquid surface is simulated.
The radius of the sphere is R, and the size of the domain is
10R x 26 R. The dashed line represents the liquid-gas interface,
corresponding to ¢ = 0 level. The region with ¢ = 1 denotes
the liquid phase, and ¢ = —1 the gas phase. The frame is fixed
on the sphere. Therefore, the velocity boundary condition with
amplitude U is imposed on the lower side of the domain. The
left side is the axisymmetric axis, and the other sides are set
as open boundaries. The inset shows a grid distribution near
the contact line.

Here, 0,1 and o2 represent the liquid-solid and gas-
solid interfacial tensions, respectively. The relation sat-
isfies Young’s equation:

Owl — Ow2 = 0 cosbg. (7)

The above method was validated carefully in our previous
work [10], and the readers are suggested to refer to it for
details.

The standard Galerkin formalism is adopted to dis-
cretize the governing equations and the boundary condi-
tions. Specifically, the fourth-order C-H equation is de-
composed into two second-order equations ahead of the
discretization. An implicit scheme is used for discretiza-
tion, and the resulting nonlinear system is solved by using
Newton’s method with a small tolerance 10~7. To ensure
sufficient temporal accuracy, the time step is chosen to
be 0.002 initially and is gradually increased to 0.05 for
all simulations. It should be noted that our numerical
method is implicit and is not subject to the constraint
of the CFL condition. For more details on the numerical
method and convergence tests, the readers are referred to
refs. [10] and [23,24].

2.2 Numerical setup

A schematic diagram of the computational domain is de-
picted in fig. 1. As aforementioned in sect. 2.1, our numeri-
cal domain is fixed on the sphere and we impose a uniform
velocity boundary condition on the inlet. The dynamics of
the impacting process is simulated in a two-dimensional
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axisymmetric domain, the size of which is 26 Rx 10R. Open
boundaries are imposed on the right and upper sides. That
makes the water entry cavity develop fully with negligible
influences from the boundaries. The inlet velocity U is set
according to the impacting speed (—=U).

According to refs. [24] and [25], it is required that the
numerical interface should be thin enough to get accurate
simulations, namely sharp interface limit. It can be ex-
pressed as € < 4lp, where [p = ('y,u*)l/2 is a diffusive slip
length, and p* = | /tgft;. In the simulations, we take v =
8 x 107* and p* = 0.014-1.0 (non-dimensionalized based
on liquid density, liquid viscosiy, and sphere diameter).
This requires € < 0.013. To achieve the sharp interface
limit, a self-adaptive mesh, implemented by Gmsh [31], is
utilized in the present study. The grid size is set as 0.1R
in the ¢ = +1 region, and refined gradually to 0.005R in
the interfacial region (see the inset of fig. 1). Furthermore,
we remesh the computational domain, if the ¢ = 0 level
set moves over a distance of € (= 0.01), and then map all
the variables from the old mesh to the new one by using
a least squares projection.

3 Results and discussions
3.1 General descriptions and validation of the methods

According to the dimensional analysis, three dimension-
less numbers will influence the water entry process of a

sphere, which are the Bond number (Bo = @)7 the
Reynolds number (Re = p’“@) and the Weber num-

ber (We = @), respectively. Concerning the flow
conditions widely reported in the previous studies, large
Reynolds numbers are utilized in the present study, imply-
ing the viscous effects can be neglected. For hydrophobic
spheres, four distinct water entry cavity profiles (water en-
try modes) are observed [6], including quasi-static, shallow
seal, deep seal and surface seal modes, when the Bo num-
ber is not very large. Furthermore, dimensionless variables
are utilized in this paper.

We first validate our numerical methods by simu-
lating the water entry processes, with the density ratio
Ap = pg/p1 = 0.02, and viscosity ratio A, = ug/p = 0.02,
respectively, while the other paramters are listed in ta-
ble 1. Figures 2(a)—(d) show the typical free surface pro-
files of the various water entry modes. Figure 2(e) shows
the phase diagram of the water entry modes in the Bo-
We plane. According to the comparisons with the exper-
imental measurements [6], our method can reproduce the
experiments very well. It should be noted that, although
our density and viscosity ratios are larger than real ones
in the experiments, correct results can be obtained.

When we concern the early stage of water entry, grav-
ity can be neglected [6,11]. The case with the dimension-
less groups of We = 90, Re = 1500 and Bo = 0 is studied
for further validation. In such a circumstance, the cavity
will not pinch off, and the flow is almost inviscid. Following
Ding’s analysis [11], the governing equation is presented
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Fig. 2. Four different water entry modes according to the free surface profile: (a) quasi-static (O), (b) shallow seal (O),
(c) deep seal (A) and (d) surface seal (¢) water entry modes. (e) Phase diagram of the water entry modes in the Bo-We plane.
The shadowed background shows the results from ref. [6], and the symbols denote the numerical results obtained from our

simulations. The static contact angle s = 120° is adopted.

Table 1. Dimensionless groups.

Dimensionless numbers Symbols Definitions Magnitude

Bond number Bo pgRE /o 0-100
Weber number We leoUQ/O' 0.5-800
Capillary number Ca Uw /o 0.1-1.2
Reynolds number Re pURo/m  10%-10°
Density ratio Ap Pg/ P 0.02
Viscosity ratio Au Lg/ 0.02-100
Contact angle Os 120°
as the unsteady Bernoulli equation
0o (RO?
ot 2
e ( A ! ) ®
We \ (1 +(RY)?)%2  RC(1+(RY)?)Y/2 )’

where the unknowns R (z,t) and @ are the radius of the
cavity in the horizontal plane (shown in fig. 3) and the
velocity potential (u = V®). The subscripts ¢ and z rep-
resent the derivatives with respect to time and vertical
coordinate z, respectively. The right-hand side of the equa-
tion represents the surface tension effect, and the terms in
the brackets are the local curvature of the cavity surface.
In order to solve the equation, a purely radial motion is
assumed, which leads to a velocity potential @, as

RCRCIn (;) . RC <r< R,

b= 0 9)

0, r > Roo,

where r is the radial coordinate. R, is a cut-off length
where the radial velocity of the liquid vanishes and it is
a function of time. We assume that In(R.,/R®) is on the
order of unity as in refs. [5,11]. Substituting expression (9)

into (8) yields the Rayleigh-Besant equation for the cavity
dynamics:

3
RER{ + E(Rf)Q =

1 RS, 1
We ((1 TROPPE T RO T <R£>2>1/2) - (10

Ding et al. [11] transform the above unsteady partial
differential equation into a boundary value problem by fix-
ing the coordinate frame on the moving object and using
the fact that dz/dt = const (note that the velocity of the
sphere keeps constant during the process). Then, eq. (10)
can be rewritten as

dRS 1 3 o
i = (s g + 3
R¢ -
z o C pC
X <(1+(RZC)2)3/2 WeR RZ> . (11)
Given RY(z = zp) and RS(z = zp), the ordinary

differential equation (ODE) can be solved easily numeri-
cally, for instance, by using Mathematica or Matlab. The
starting point P, at (R%(zp), zp), is some point on the
interface. The challenge then turns out to be the determi-
nation of the boundary conditions, i.e., where point P is.
Since the viscous effects influence the interface profile near
the contact line, the potential flow theory is not valid in
this region. We follow Ding’s procedure [11], and set “P”
on the interface where the vorticity of the flow field is
small enough (shown in fig. 3(b)). The values of R® and
RY at z = zp are measured from the numerical results,
and are then used as the boundary conditions to integrate
eq. (11). The choice of (R®(zp), zp) is insensitive, how-
ever it is suggested to be located as close as possible to
the sphere’s surface. The comparison of cavity shapes be-
tween the theoretical and numerical results is presented
in fig. 3(a). Except in the ripple region and the boundary
layer, the numerical result agrees with the theoretical one
very well. In addition, the moving contact line (MCL) is
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Fig. 3. (a) Comparison of cavity shapes between the simulation (solid curve) and the theoretical prediction (dashed curve) at
dimensionless time 7" = 4.85 (the characteristic time is Tp..y = R/U). We = 90, Re = 1500, Bo = 0 and 05 = 120°, respectively.
The ripple marked by an arrow shows the capillary wave propagating along the cavity surface. (b) The details of the interface
profile corresponding to panel (a). The vorticity contour is included. Point P locates on the interface (z = 0.61), where the
vorticity is small enough. The position and slope of the interface are measured at point P. They are applied as the boundary

conditions for theoretical analysis (see eq. (11)).

pinned slightly above the equator of the sphere. This phe-
nomenon is observed in all of our simulations when the
cavity occurs.

Based on the discussions above, we can conclude that
the viscous effects only play roles in a thin layer near the
impacting sphere surface. Our numerical results are very
consistent with the predictions of the potential theory.
Meanwhile, we also note that the grid size used in the
present computation is still much larger than an ideal one
to resolve the details of the contact line motion. In the rest
of the paper, we will discuss the early stages of the entry
flow, when a hydrophobic sphere penetrates through the
liquid-gas interface. The viscous effects, especially from
the gas phase, will be focused on.

3.2 Lifetime of the gas film

Martson [17] argued that the gas viscosity becomes
important, when the gas film between the sphere and
liquid is very thin, such that a film Reynolds number
Rey = pgUd /g ~ O(1), where § is film thickness. Since
our film thickness is limited by the “interface” thickness,
an increased “gas” viscosity is applied. In fact, a gas film
is usually entrapped below an object, when it impacts
onto a liquid surface. Such object can be solid [17,19]
or liquid [32]. The gas entrapment is also observed when
a droplet impacts on a flat solid surface [21,20]. Those
are mainly because the free surfaces are deformable. The
drainage process becomes slow due to high shear stress
on the solid wall.

In the simulations, we fix the other quantities and
change merely the gas viscosity. The viscosity ratio A, (=
tg/t) ranges from 0.02 to 100 (see fig. 4). This corre-
sponds to the film Reynolds number Re ,ym = 1011072,

unperturbed interface

4L

TO./ b_TO+Tb
3 TS ™

real interface

T, b 2r 0.10 T
0.08

1F 0.06 -
0.04

0r 0025 04 08 12

0 20 40 60 80 100

Fig. 4. Lifetime of a “gas” film (73) as a function of the vis-
cosity ratio (A, = pg/pu). The inset at the lower right corner
shows the T, ~ A\, relation for A = 0-1.0. The upper-left inset
shows a sketch of the typical interface evolution before rupture
and the definition of T}.

where the film thickness is evaluated as d,um ~ 10ec.
Onum 18 slightly larger than the interface thickness, around
5e—8¢. We then measure the lifetime of a gas film (7)) from
the numerical results with various A,. It is defined as the
time duration from the sphere bottom reaching the other-
wise quiescent water surface to the film rupture (see the
inset of fig. 4). After the film rupture, a MCL is gener-
ated and slips fast along the solid surface. Figure 4 shows
the A, dependence of the lifetime, which is normalized
by T,y = R/U. In the rest of the paper, dimensionless
variables will be used, unless otherwise stated. U and R
will be used as the characteristic velocity and length scale,
respectively.



Page 6 of 9

As shown in fig. 4, the lifetime increases with increas-
ing viscosity ratio. The T}, ~ A, relation is close to a linear
one for A\, > 1.0. It is worth noting that, for A, < 1.0,
T, has an order only slightly larger than 102 according
to our simulations. This implies that the gas film thick-
ness is around (T, &) - U = T,R ~ 10~ 2R. Therefore, the
gas film thickness is comparable to the interface thickness
(discussed in sect. 2.2). On the other hand, given a small
gas density (used in the present work), an infinitesimal
gas viscosity will surely lead to zero Ty, which contradicts
the numerical results (see the inset in fig. 4). Therefore,
we will only briefly analyse the data with A, > 1.0.

Based on the lubrication theory for squeezing flow, we
assume the film is thin and the pressure is uniform over the
cross-section of the film. There are two driving forces that
should be considered: the dynamic pressure pp ~ pU?
and the capillary pressure pc ~ o/R. Since the Weber
number We is much larger than unity, pp predominates
the process. As proposed in sect. 3.1, the pressure field
along the free surface (below the sphere bottom) can be
predicted through the potential flow theory. For various
viscosity ratios, the driving forces are considered as a con-
stant (denoted by G* in the following analysis). The force
balance in the film and the volume conservation are, re-
spectively, expressed as

pot _ dpo _ .
§2 dr
Ugd = dé/dt.

(12a)
(12b)

In the equations, ug denotes the circumferential velocity,
and § the thickness of the gas film. Substituting eq. (12a)
into (12b), and integrating the resultant equation, we can
Hg

Gt
cal results qualitatively well.

Of course, the above model is very crude. A similar
analysis for viscous squeezing flow can be found in ref. [33],
where the relation 6(¢) ~ ¢ was proposed for no-slip
boundaries imposed on both sides of the film. n = —0.5
is generally suggested, which is consistent with the above
analysis. As a matter of fact, fig. 4 shows T}, oc \°-8, there-
fore py oc A oc T}?5 and n = —0.625 according to the
numerical results. The discrepancy might be because the
partially slip boundary on the liquid side leads to a higher
drainage rate. Of course, the deformation of the inter-
face, pressure distribution, etc, might also influence the
drainage of the film in reality [34]. The problem will be
left for further investigation in the future.

get § ~ i.e. Tj o< pg. This agrees with our numeri-

3.3 Moving contact line (MCL) dynamics and
interface profile

After the air film ruptures, a MCL forms and then climbs
up along the surface of the sphere. We will explore the in-
fluence of gas viscosity on the MCL velocity in this section.

In fig. 5, a log-log plot of the dimensionless contact-line
velocity (Uprcr,) vs. time is presented in a wide range of
viscosity ratio A,. Uprcr is measured along the sphere’s
surface, and the time is measured after the film ruptures,

Eur. Phys. J. E (2019) 42: 34
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Fig. 5. The dimensionless contact-line velocity Upycr along
the sphere surface is plotted as a function of the dimension-
less time T, in a log-log representation. Five different viscosity
ratios (A, = pg/pu) are adopted from 0.02 to 100. For all the
cases, a slope of —1/2 is observed in the early stage of the film
retraction. After that, the velocity decreases steeply, and the
MCL is pinned near the equator of the sphere. Uprcr, is nor-
malized with the inlet velocity U. Time T, is measured after
the rupture of the gas film.

which is labelled as T,. The results show that the MCL

velocity meets the Up;or o Tc_l/2 law. If we define the
circumferential position of the MCL as s (shown in
fig. 6(a)), this will fulfill the scr ~ t'/2 law. As in fig. 5,
such scaling hardly depends on A,, although a higher vis-
cosity does lead to a lower slipping speed. The results are
consistent with Eggers’s [35] and Biance’s [18] findings on
the initial stage of drop spreading, where the authors mea-
sured the drop spreading on a flat solid surface. That im-
plies an inertia-capillary flow right after the rupture. After
that fast advancing stage, the MCL decelerates steeply as
in fig. 5. Our numerical results show that the MCL is now
close to the equator of the sphere.

In Biance’s analysis, a time-independent geometrical
condition was utilized: d(s) oc s2, which is also found in
our simulations (see fig. 6(b)). s denotes the curvilinear
coordinate along the sphere’s surface. Figure 6(a) implies
that the driven-out gas accumulates slightly in a ridge
at the head of the film, while the other part of the film
appears almost undisturbed during the retraction process.
Before the analysis, one should also note that the inertia
of the “gas phase” can be neglected, although the viscosity
of it is artificially increased. We then consider the motion
of the liquid, which displaces the gas below the sphere
(see fig. 6(a)). The mass of liquid which is entrained by
the capillary force scales as m ~ ps%;§ ~ psg,. During
the film rupture process, the capillary energy transforms
to the kinetic energy of liquid:

4 dSCL 2 2
pscL\ —q ) T 9%cL
Therefore, we obtain
D =

SQCL(t) ~ Dt, U/p'
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Fig. 6. (a) A schematic indicating the contact line position (scr) and the film thickness (6). The dashed line is presented as
the interface profile before rupture. The solid curves show three snapshots of the interface during the retraction in a typical
simulation. (b) ¢ wvs. s for different )\, ranging from 20 to 100, where s denotes the curvilinear coordinate along the sphere’s
surface. The gray zone indicates the relation § o s2.
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Fig. 7. (a) A sketch of the potential flow model: the influences of a point source-sink pair on uniform flow (Vo at far field) in
Z-direction. The sink and source have the same strength, but opposite signs. They align on the Z-axis with a distance H from
each other. Concerning the axisymmetry, we only consider the flow in the X-Z plane in the context. Point P in the X-Z plane
denotes a detect point, and R; and Rz are the distances from the source and sink to point P, respectively. (b) The streamlines
predicted through the potential flow theory and the liquid-gas interface obtained from numerical simulations (the solid curve),
with We = 90, Re = 1500, A, = 100. The broken curves are obtained from the theoretical model: the dotted, dash-dotted and
long dashed lines correspond to the dipole (Mgp = Qap - H|r—0 = 0.503), point source (Qsre = 0.511) and point source-sink
pair (M = @ - H = 0.655) influences on a uniform flow, respectively. By knowing the flow in the viscous region is very slow, we

suppose that the interface passes through the stagnation point marked, where a streamline passes as well.

In the analysis, we neglect the viscous effects. As pointed
out by Biance [18], the scp ~ t'/? law is valid to a wide
range of liquid viscosities, which is agreed by our results.

Although the above analysis is well demonstrated by
the numerical results, the § o s2 relation is not obvious.
In Biance’s analysis, it is obtained through the droplet
profile at its bottom. In our case, the liquid-gas interface
profile depends on the flow conditions and even on the in-
terfacial tension. Thanks to the information we obtained
in sect. 3.1, we know that the viscous roles should only
be considered in a thin layer. Yan et al. [14] used a chain
of point sources and sinks to reproduce the sphere influ-
ences on a uniform flow, where a free surface is involved.
The predicted water entry cavity agrees with the experi-
ments well. In the following part, we will show that well-
distributed point source and sink do result in a correct
free surface profile, which will finally lead to the § o s?
relation.

As in fig. 7(a), a pair of point source and sink (we call
them “disturbance” in the rest of the paper) is distributed
in tandem in the flow direction. Combined with a uniform
flow, the velocity potential is written as

Q ¢

D=V 0 — )
rees 47TR1 47TR2

and the stream function is

2
_ Voo R sinZ6 — Q (cosO — cosby).

4
2 47

In these equations, Q and —(@Q are the strengths of the
source and sink, respectively. V(= U) denotes the uni-
form velocity, Ry, Ry and 6, 65 represent the distances
and corresponding angles from the field point P to the
point source and point sink, respectively. In the figure,
the source locates on the center of the sphere, while the
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position of the sink is adjustable. The distance between
the source and sink is labelled as H. The above setup
can be divided into three types, namely, dipole (H = 0),
source-sink pair (H is finite) and point source (H — 00),
depending on the distance between the source and the
sink. The first type (dipole) results in the classical solu-
tion for flow around a sphere. The moment of the dipole
(Map = Qap - H|g—o = const) can be determined by the
radius of the sphere and inlet velocity (Vo). The last one
corresponds to the point sink infinitely far from the source.

To find a reasonable configuration of the disturbances,
we adjust the values of Q and H, so that a streamline
(contour of ¥) passes through the stagnation point near
the head of the sphere (shown in fig. 7(b)). We also note
that the profile of the streamline evolves from circle, el-
lipse to parabola, when H increases from zero to infin-
ity. Figure 7(b) shows that the source-sink solution with
M =@Q-H =6.55-0.1 = 0.655 (dashed curve) matches
the simulated interface profile the best. The other two bro-
ken curves indicate typical solutions of dipole and point
source in the uniform flow, respectively. Now, further con-
cerning the geometrical expressions of a circle and ellipse
in polar coordinate, and applying the polynomial expan-
sion of cosf = 1 — (1/21)6% + (1/41)6* — (1/61)6° + - - -,
§ = (Ry — R) « 6? = (s/R)* can be reached on the first
order (according to the contours of ¥). In this expres-
sion, R; denotes the distance from a point on the elliptical
streamline to the center of sphere, and R is the radius of
the sphere (as in fig. 7(b)).

So far, it can be concluded that the irrotational flow
leads to a certain liquid-gas interface profile (6 o< s2).
After the gas film ruptures, the capillary force drives

the MCL with a velocity of Upcp o Tc_l/Q. Compared
with Maston’s experiments [17], our “gas” film does not
breakup into gas bubbles, which is most probably because
we increase the gas viscosity, and our film is more sta-
ble. Meanwhile, the numerical simulation is limited by
the spatial resolution and the interface thickness. How-
ever, our results supply some insights in the early stage
contact line dynamics during water entry processes, which
supplements Duez’s [7] model.

4 Conclusions

We conducted a numerical study on a hydrophobic sphere
penetrating through a liquid-gas interface. The early stage
of the process with artificially increased gas viscosity is
studied carefully. It makes the detailed flow in the “gas”
film measurable, while the large scale flows are roughly
the same as in the normal condition. The purpose of this
study is to explore the formation of the contact line and
its motion during the water entry, which is very difficult to
be detected by using normal experimental and numerical
methods. By noting the visco-capillary flow of the mov-
ing contact line proposed by Duez [7], our results reveal
another mechanism during the occurrence of the water en-
try cavity: the retracting process of the contact line can be
determined by the inertia-capillary balance if a thin film

Eur. Phys. J. E (2019) 42: 34

with a significant area forms at impact. It is known that
the wetting failure implies that the interface is nearly par-
allel to the solid wall at the contact line [36,37]. Therefore,
our MCL should have a speed lower than Duez’s predic-
tion, i.e., lower than the wetting failure velocity. Another
important point is that the contact line slows down drasti-
cally when it approaches the equator of the sphere, which
satisfies Ding’s [11] picture.

We summarize the current results of the study as fol-
lows:

— Through the preliminary analyses and the discussions
on the moving contact line motion on the sphere sur-
face, it is found that the viscous effects play a role in
a thin layer near the sphere surface, if the impact We-
ber number We and Reynolds number Re are large.
The inviscid potential flow can be found in the bulk
of the fluid, which results in the § ~ s profiles of the
gas film, and the water entry cavity shape can be well
described by the Rayleigh-Besant equation.

— Before it ruptures, the gas film thins under the action
of hydrodynamic pressure. The balance between the
viscous stress and the driving force makes the lifetime
of the gas film almost linearly proportional to the vis-
cosity ratio: Tp, oc A,.

— After the “gas” film ruptures, the capillary force drives
the gas to flow out of the film, and the contact line mo-
tion as well. With the aforementioned quadratic film
thickness, the resultant contact line motion fulfils the
inertia-capillary flow scenario: the contact line position
on the sphere’s surface evolves following scy ~ tl/2
law. Duez’s paper focuses on the contact line dynam-
ics after the film has disappeared.

Of course, further research is still required for a deeper
understanding of the water entry, including the liquid in-
fluences on the gas film drainage, the breakup modes of
the gas film (3D effects), the splashing process, and so on.
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