
Journal of Computational Physics 378 (2019) 634–664
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A high-order and interface-preserving discontinuous Galerkin

method for level-set reinitialization

Jiaqi Zhang, Pengtao Yue ∗

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 March 2018
Received in revised form 15 October 2018
Accepted 20 November 2018
Available online 23 November 2018

Keywords:
Hamilton–Jacobi equation
Numerical flux
Second-derivative limiter
Weighted local projection
Moving contact line

A high-order numerical method for interface-preserving level-set reinitialization is
presented in this paper. In the interface cells, the gradient of the level-set function is
determined by a weighted local projection scheme and the missing additive constant is
determined such that the position of the zero level set is preserved. In the non-interface
cells, we compute the gradient of the level-set function by solving a Hamilton–Jacobi
equation as a conservation law system using the discontinuous Galerkin method, following
the work by Hu and Shu [SIAM J. Sci. Comput. 21 (1999) 660–690]; the missing constant
is then recovered by the continuity of the level-set function while taking into account the
characteristics. To handle highly distorted initial conditions, we develop a hybrid numerical
flux that combines the Lax–Friedrichs flux and the penalty flux. Our method is stable
for non-trivial test cases and handles singularities away from the interface very well.
When derivative singularities are present on the interface, a second-derivative limiter is
designed to suppress the oscillations. At least (N + 1)th order accuracy in the interface
cells and Nth order in the whole domain are observed for smooth solutions when Nth
degree polynomials are used. Two dimensional test cases are presented to demonstrate
superior properties such as accuracy, long-term stability, interface-preserving capability,
and easy treatment of contact lines. We also show some preliminary results on the pinch-
off process of a pendant drop, where topological changes of the fluid interface are involved.
Our method is readily extendable to three dimensions and adaptive meshes.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Level-set methods, introduced by Osher and Sethian in [1], are popular front capturing techniques which have been
used intensively in computational physics and engineering [2–5]. In a typical simulation, it is preferable or necessary that
the solution be initialized to a signed distance function satisfying the Eikonal equation |∇φ| = 1, where φ is the level-set
function. However, it will not remain so in the process of advection, and will become too flat or too steep. To prevent this,
the solution needs to be reinitialized to a signed distance function after a certain number of time steps without changing
the position of the interface.

There are different types of approaches to perform reinitialization. A popular approach is to directly solve the Eikonal
equation by some fast algorithms, such as the fast marching methods [6,7] and the fast sweeping methods [8,9]. A second
approach, proposed by Sussman et al. [5], is to evolve the following Hamilton–Jacobi (HJ) equation to steady state:

* Corresponding author.
E-mail addresses: zjiaqi@vt.edu (J. Zhang), ptyue@vt.edu (P. Yue).
https://doi.org/10.1016/j.jcp.2018.11.029
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.11.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:zjiaqi@vt.edu
mailto:ptyue@vt.edu
https://doi.org/10.1016/j.jcp.2018.11.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.11.029&domain=pdf

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 635
φt + H(∇φ) = 0, in � × [0, T] ⊂ R
n ×R, φ(x,0) = φ0, (1)

where H(∇φ) = S(φ0) (|∇φ| − 1), S is the sign function, φ0 is the initial level-set function, and t is the pseudo time. For
numerical stability, the discontinuous sign function is always replaced by

Sη (φ0) = φ0√
φ2
0 + η2

, (2)

where η is the smoothing parameter usually chosen to be the computational cell size h. This PDE-based approach has
been widely used in the level-set methods for interfacial flows, e.g., [10–13], and will be the focus of this work. Another
approach is the variational level-set method introduced by Li et al. [14], where φ is evolved by the gradient flow for an
energy functional, the minimization of which leads to |∇φ| = 1. Basting and Kuzmin [15] extended this method to the
elliptic reinitialization, which is solved by a Ritz–Galerkin finite element method. Extension to a discontinuous Galerkin
(DG) method was recently done by Utz et al. [16]. For more recent advances and applications of the level-set methods, the
readers are referred to a recent review by Gibou et al. [17] and references therein.

It is well known that the zero level set tends to shift when we solve HJ equation (1) numerically. This leads to mass loss
in the simulation of interfacial flows. Numerous techniques have been developed to improve mass conservation. For exam-
ple, Peng et al. [18] modified the smooth sign function such that the interface is confined to one cell during reinitialization.
Sussman et al. [19,20] introduced a Lagrange multiplier to enforce the mass conservation in each cell. Russo and Smereka
[21] used a subcell fix to correct the shift of the zero level set, which was later improved and extended to higher order
by Min [22] and du Chéné et al. [23]. Hartman et al. [24,25] proposed a constrained reinitialization scheme that solves a
least-squares problem to compute the level-set function in each interface cell. Sophisticated methods are also proposed to
correct the level-set function by other mass conserving techniques, such as the particle level-set method [26] and the cou-
pled level-set/volume-of-fluid method [27–29]. It should be noted that the conservative level-set method [30,31] proposed
by Olsson et al. takes a different approach to conserve mass and it is more like a variant of the phase-field method [32,33].
Some recent developments of this method can be found in [34,35].

Most high order methods for level-set reinitialization are based on structured meshes, e.g., [9,23,36]. To achieve high
order accuracy on unstructured meshes, DG methods, which have been very successful in solving conservation laws [37–39],
seem to be the top choice. Although Zhang and Shu [40] and Levy et al. [41] have successfully constructed finite volume
Weighted Essentially Non-Oscillatory (WENO) schemes for the HJ equation on unstructured meshes, DG methods still have
the advantages of compactness, easy implementation, and superior scalability. Since the gradient of the HJ equation form
a system of conservation laws, DG methods can be readily adapted to solve this system. Following this idea, Hu and Shu
[42] designed the first DG method for the HJ equation, which was later reinterpreted and simplified by Li and Shu [43].
Later, different DG methods are proposed to directly solve the HJ equation [44,45]. A recent review on DG methods for HJ
equations can be found in [46]. In literature, the particular HJ equation (1) for level-set reinitialization was however mostly
solved by the finite difference methods or the finite volume methods. Sometimes, people still stick to the more mature finite
volume methods for (1) even though they use the DG methods for other equations. For example, Fechter and Munz used
a fifth-order WENO scheme in the finite volume subcells of each DG grid cell [47]; Marchandise et al. completely avoided
reinitialization and relied on special algorithms that did not require φ to be a signed distance function [48]. There are only
a few successful implementations of DG methods, both of which add an additional second-order diffusion term to the right
hand side of (1) and use some filtering technique to stabilize the solution [49,50].

In this paper, we develop an interface-preserving DG method for (1). The computation cells are divided into interface
cells and non-interface cells and the solution of φ is decomposed into ∇φ and an additive constant. In the interface cells,
we construct ∇φ using a weighted local projection method and determine the additive constant such that the interface
location is preserved. In the non-interface cells, we solve ∇φ using the DG method of Hu and Shu [42] and then recover
φ based on continuity. Our method is very stable and does not need additional diffusion terms or filtering techniques. For
smooth φ with piecewise Nth degree polynomial space, we can achieve (N + 1)th order accuracy in the interface cells and
Nth order in the whole domain. An additional benefit is that our method can be directly applied to moving contact line
simulations without complicated treatments on the boundary [49,51].

The rest of this paper is organized as follows: in Section 2, we describe the algorithm to compute ∇φ in non-interface
cells, where a novel hybrid numerical flux is used. In Section 3, we present the interface-preserving reconstruction of
level-set function in the interface cells. In Section 4, a second-derivative limiter is developed to stabilize the solution in the
extreme case when the interface has singularities. Numerical results are illustrated in Section 5.

2. Discontinuous Galerkin method for Hamilton–Jacobi equation

In this paper, we consider (1) with the smooth sign function (2). If by any chance |∇φ0| � 1 or � 1 on the interface,
Sη(φ0) should be replaced by Sη(

φ0|∇φ0|) to maintain the thickness of the transition layer.
Following Hu and Shu [42], we can rewrite (1) as a conservation law system by taking the gradient:

ut + ∇H(u) = 0, in � × [0, T] ⊂ R
n ×R, u(x,0) = ∇φ0, (3)

636 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
where u = ∇φ. It should be noted that components of u are not completely independent, e.g., ∇ × u = 0 is always satisfied.
In this work, we focus on two dimensions and quadrilateral meshes. But the results can be easily extended to three di-

mensions and other types of unstructured meshes. We assume that the domain � is well approximated by the triangulation
Th consisting of non-overlapping quadrilaterals with a characteristic mesh size h. As in [43], we introduce two spaces of
polynomials:

V N
h =

{
v : v ∈ P N(K),∀K ∈ Th

}
, (4)

WN
h =

{
w : w = ∇v, v ∈ V N

h

}
, (5)

where P N (K) is the space of polynomials in K that is of degree at most N . It should be noted other polynomial spaces
such as Q N can also be used here. By approximating u by uh ∈ WN

h , multiplying (3) with the test function w ∈ WN
h , and

performing integration by parts, we obtain the weak formulation(
∂uh

∂t
,w
)

K
− (H (uh) ,∇ ·w)K +

(
Ĥ(u−

h ,u+
h),w

)
∂K

= 0, ∀w ∈ WN
h , (6)

where (., .)K and (., .)∂K denote the inner products in the cell K and on its boundary ∂K , respectively, e.g.,

(uh,w)K =
∫
K

uh ·wdx, (7)

(
Ĥ(u−

h ,u+
h),w

)
∂K

=
∑
e∈∂K

∫
e

Ĥ(u−
h ,u+

h) ·wds. (8)

Ĥ(u−
h , u+

h) is the numerical flux approximating H(uh)n, where n is the unit outward pointing normal to the cell edge. u−
h

is the trace from the interior of cell K , while u+
h from the interior of the neighboring cell. Details of Ĥ(u−

h , u+
h) is given in

Sec. 2.1.
As for the finite dimensional space V N

h , we choose the Legendre polynomial space, whose basis functions are
L2-orthogonal and normalized in the reference cell. Consequently, the first basis function v0 is constant across the cell
(equal to 1 in the reference cell). We approximate φ by

φK
h =

m∑
i=0

ci vi, (9)

where vi ∈ V N
h , i = 0, 1, . . . , m, are the basis polynomials, and m + 1 is the number of degrees of freedom. For the ease of

presentation, we drop the superscript K from φK
h hereinafter. Then the approximation of ∇φ is given by

∇φh = uh =
m∑
i=0

ci∇vi . (10)

Let wi = ∇vi ∈ WN
h . Since v0 is constant, we can further simplify (10) to

∇φh = uh =
m∑
i=1

ciwi . (11)

Substituting (10) into (6), we can obtain

A
dc

dt
= F, (12)

where A ∈R
m×m and Ai, j =

(
wi,w j

)
K , c = [c1, . . . , cm]ᵀ , and F ∈ R

m with

Fi = (H (uh) ,∇ ·wi)K −
(
Ĥ
(
u−
h ,u+

h

)
,wi

)
∂K

. (13)

These m equations uniquely determine uh in K . Thus the calculation of ∇φh is completely decoupled from c0. To recover
φh , we still need c0, and this additional degree of freedom can be used to preserve the interface, as discussed in Sec. 3.2.

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 637
Fig. 1. The edge between two cells.

2.1. The hybrid numerical flux

On a cell edge with normal n, as shown in Fig. 1, the flux is H(uh)n and the Jacobian matrix is

J = n(∇uh H(uh))
T = Sη(φ0)n

uT
h

|uh| . (14)

This matrix has rank one and its only non-zero eigenvalue is

a = Sη(φ0)n · uh

|uh| . (15)

Since the wind direction is readily obtained from the sign of a, the Roe flux can be easily implemented:

Ĥ Roe(u
−
h ,u+

h) =
{
H(u−

h)n, if a−+a+
2 ≥ 0,

H(u+
h)n, otherwise.

(16)

However it is entropy violating and generates unstable solutions according to our numerical tests. Another choice is the
Lax–Friedrichs (LF) flux following [42] with slight modifications:

Ĥ LF (u
−
h ,u+

h) = H(
u−
h + u+

h

2
)n− α

2
�uh�, (17)

where α = maxuh |a| with the maximum taken over the relevant range and �uh � = u+
h − u−

h . We have tested the global LF
(maximum taken over the whole computational domain), local LF (maximum taken over the two cells sharing the same
edge), and the original local LF in [42]; they all work well for initial conditions that are close to a signed distance function
and deliver almost identical solutions. In the rest of this work, we simply choose α = 1, which corresponds to the global LF
flux.

However, the LF flux falls short if the initial condition is far away from a signed distance function. For example, it
takes extremely long time to achieve the steady state in the test case of Sec. 5.1.2. After carefully inspecting the numerical
results, we find that broken φh contours are likely to occur where the cell edge is normal to the φh contours, i.e., when
n · uh ≈ 0. A further look at H(uh)n reveals that the flux on a cell edge only affects the normal component of uh , denoted
by un ≡ (uh · n)n, and has no effect on the tangential component uτ ≡ uh − (uh · n)n. That is, the Riemann problem on the
cell edge is only for un instead of the whole vector uh , and there is no mechanism to smooth out discontinuities in uτ . This
is probably another reason why the Roe flux (16) fails so easily. The LF flux (17) performs much better because the �uh�
term has contributions in the tangential direction, which acts as a penalty term to enforce the continuity in uτ .

We thus come up with the following hybrid numerical flux which combines the LF flux and the penalty flux:

Ĥ(u−
h ,u+

h) = H(
u−
h + u+

h

2
)n− α

2
�un� − β

2
�uτ �, (18)

where β is the penalty parameter. If β = α, (18) reduces to the LF flux (17). To deal with the severely distorted initial
conditions, we adjust β according to the wind direction. Let a± = Sη (φ0)n · u±

h

|u±
h | , then β is determined as in Algorithm 1.

We take βmin = 1 and βmax ≥ βmin. That is, β takes a higher value if there is an expansion wave or the target cell is
downwind. The rationale is that u±

τ should be changed more in the downwind cell than in the upwind cell toward the final
goal u−

τ = u+
τ .

It should be noted that the numerical flux (18) is no longer conservative because of the different β values at the two
sides of the cell edge. But the scheme is still monotone for piecewise constant uh , with the modified CFL conditions for
forward Euler in time:

	t ≤ min

(
h

)
(19)
� α + βmax

638 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Algorithm 1 Determination of β .
if a− ≤ 0 and a+ ≥ 0 then

β = βmax

else if a−+a+
2 > 0 then

β = βmin
else

β = βmax

end if

in two dimensions and

	t ≤ min
�

(
h

α + 2βmax

)
(20)

in three dimensions.

3. Interface-preserving reconstruction of level-set function

In this section, we will develop a highly accurate approach that utilizes the structure of the DG solution space to preserve
the interface.

3.1. Determination of ∇φ in interface cells

Denote the zero level set by

 = {x ∈ � : φ0(x) = 0} , (21)

which is also the implicit expression of the interface. Note that φ and φ0 share the same zero level set. Then the set of
interface cells are denoted by

I = {K ∈ Th : K ∩
 �= ∅}. (22)

Theoretically, u = ∇φ remains normal to the interface and propagates away from the interface along Sη(φ0)∇φ when we
evolve (3). Let τ be the unit tangent vector to the interface
, then τ · ∇φ0 = 0 at x ∈
. Multiplying (3) by τ , we have

τ · ut + τ · ∇H(u) = 0. (23)

Since S(φ0) = 0 for any x ∈
,
 is also the zero level set of H(u). Consequently, τ · ∇H(u) = 0 and ∂(τ ·u)
∂t = τ · ∂u

∂t = 0 on

, where we have used the fact that
 and thus τ are independent of t . Thus if we start with initial condition u = ∇φ0,
we should expect τ · u(x, t) = τ · u(x, 0) = 0 for any x ∈
. However, after discretization, ∂(τ ·u)

∂t could not remain exactly
zero on
. The errors may accumulate and eventually destroy the zero level set in long-term simulations, as shown later in
Sec. 5.2. This kind of instability is common in PDE-based method. For example, it is well-known that the interface tends to
shift if the HJ equation (1) is evolved without any constraints [21,52]. Thus u in the interface cells has to be determined by
a different approach and fixed during the pseudo time evolution.

Ideally, we want φh to be a signed distance function, i.e., φh = 0 on the interface and |∇φh| = 1 in all cells. The former
implies that φh and φ0 share the same unit normal on the interface. Thus uh in an interface cell K ∈ I needs to satisfy

uh = ∇φ0

|∇φ0| on
 ∩ K , (24)

and

|uh| = 1 in K . (25)

Usually, these two conditions can not be satisfied simultaneously. But an optimal uh in K ∈ I can be sought as the minimizer
of the energy functional

E(u) = 1

2

∫

∩K

(
u− ∇φ0

|∇φ0|
)2

ds + λ

4

∫
K

(
|u|2 − 1

)2
dx, (26)

where λ is a positive penalty parameter controlling the weight of the constraint |u| = 1.
Let uh ∈ WN

h be the solution to the minimization problem

min
u∈WN

E(u),
h

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 639
then uh satisfies the variational form∫

∩K

(
uh − ∇φ0

|∇φ0|
)

·wds + λ

∫
K

(
|uh|2 − 1

)
uh ·wdx = 0,∀w ∈ WN

h . (27)

The first term in (27) requires a surface integral on
 ∩ K , which is not known explicitly. To make this integral easy to
compute numerically, we replace it by a volume integral and rewrite (27) as∫

K

(
uh − ∇φ0

|∇φ0|
)

·wδ̄ε(φ0)dx + λ

∫
K

(
|uh|2 − 1

)
uh ·wdx = 0,∀w ∈ WN

h , (28)

where δ̄ε is a shifted smooth delta function defined as

δ̄ε(φ0) =
{

1
2ε

(
1+ cos

(
π
ε

φ0|∇φ0|
))

+ ξ
ε , if |φ0||∇φ0| < ε,

ξ
ε , otherwise.

(29)

Here ε is the half width of the narrow band and ξ is a small positive parameter to avoid singular matrices. The choices of
ε and ξ will be discussed toward the end of this subsection. It should be noted that φ0 here is rescaled by |∇φ0| just to
take care of the extreme cases with |∇φ0| � 1 or � 1. Since the first term in (28) essentially projects ∇φ0|∇φ0| to a gradient
space, this method is hereinafter referred to as the weighted local projection (WLP) method.

If the contours of φ0 are parallel lines or concentric circles, uh = ∇φ0|∇φ0| automatically satisfies the conditions (24) and
(25). Note that φ0 does not need to be a signed distance function here. In this case, the second term in (28) plays no
role. But for the more general case, ∇φ0|∇φ0| does not even reproduce the gradient of any scalar function, because we cannot

guarantee that ∇ ×
(∇φ0|∇φ0|

)
= 0 (although ∇ × ∇φ0 = 0 is satisfied). Thus the second (penalty) term in (28) is necessary to

maintain the signed distance function in the cell K , which will be further discussed in Sec. 5.1.2. It should be noted that the
idea of local projection was first seen in [53], where the author projected φ0|∇φ0| to φh in the interface cells. This is however
inaccurate unless |∇φ0| is a constant.

In practice, the quality of the WLP may deteriorate if the length of the interface in cell K is very small. For example,
if the interface only cuts a small portion of the cell at one corner, the solution of (28) resembles rays emanating from
that corner such that the contours of φh are concentric circles. This may be totally incorrect. To improve the quality of uh ,
the neighboring cells have to be considered as well, which can be very complicated. We take another route to avoid this
problem. In fact, we only need to anchor uh by the WLP in some interface cells, and uh in other interface cells can be
maintained by the diffusive numerical flux.

We thus define another set I p ⊂ I , which only includes cells with sufficient amount of interface:

I p = {K ∈ I : |K ∩
| ≥ p}, (30)

where |K ∩
| is the length of the interface segment in K , and p < h is a positive number. If
 intersects K at two points,
then |K ∩
| can be approximated by the distance between these two intersections. The details on locating intersections and
the complicated case with more than two intersections will be discussed in Sec. 3.2. In practice, we choose p = h/2. The
WLP method (28) is applied to every cell K ∈ I p and the DG method (6) is used in all other cells. Thus the WLP solution
in I p serves as a boundary condition for the DG method, and the accuracy of the WLP affects the solution in the whole
computational domain.

We employ Newton’s method to solve the non-linear problem (28). Denoting the solution at the kth iteration by uk
h , the

solution at the (k + 1)th iteration can be written as

uk+1
h = uk

h + δuh, (31)

where δuh is the increment to be determined. Substituting (31) into (28) for uh and dropping the higher order terms of
δuh , we obtain the linear system for δuh∫

K

[(
δ̄ε(φ0) + λ

(
|uk

h|2 − 1
))

δuh · w+ 2λ
(
uk
h · δuh

)(
uk
h ·w

)]
dx

= −
∫
K

[(
uk
h − ∇φ0

|∇φ0|
)

δ̄ε(φ0) + λ
(
|uk

h|2 − 1
)
uk
h

]
·wdx (32)

We solve (32) for δu and update uk according to (31) repeatedly, until the residual, i.e., the right hand side of (32), is
smaller than a prescribed tolerance.

A good initial guess is crucial for Newton’s method to succeed, otherwise it may not converge or converge to a wrong
solution. An easy way to start is to solve (28) with λ = 0, which reduces to a linear system, or simply solve

640 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
∫
K

(
u0
h − ∇φ0

|∇φ0|
)

·wdx = 0,∀ w ∈ WN
h . (33)

It should be noted that Newton’s method proposed by Chopp [7] to compute the closest point may fail to converge, espe-
cially in three dimensions [36,54]. Our method, however, always converges provided that the solution of (33) is used as the
initial guess. Typically, it takes less than five iterations for Newton’s method to converge to a tolerance of 10−10.

The WLP method can be summarized as follows. Firstly, identify the set I p (30). Secondly, for each cell K ∈ I p solve (33)
to get the initial guess u0

h . Finally, solve (28) by Newton’s method (32).
We now discuss the choice of parameters in the WLP. To guarantee that the matrix in (32) is non-singular, sufficient

quadrature points have to be included in the narrow band. Intuitively, the number of quadrature points in the support of the
smooth delta function (i.e., the narrow band) must exceed the degrees of freedom in uh . A rule of thumb is that the distance
between quadrature points should not exceed the bandwidth 2ε . On the one hand, limited by the number of quadrature
points, ε can not be too small. If the ∇φ0|∇φ0| is close to the gradient of a signed distance function, a large bandwidth of the
interface, such as ε = 0.1h ∼ 1h, can produce accurate results. This is usually the case when a signed distance function is
advected by the flow field only for a few time steps. But highly distorted initial conditions usually require a much smaller
bandwidth, such as ε = 0.001h ∼ 0.01h, as shown in the test cases of Sec. 5.1.2. On the other hand, we use composite
quadrature rules with sufficient number of quadrature points in each interface cell K ∈ I p . In order to maintain sufficient
degree of precision and also resolve the interface that almost overlaps with a cell edge, we adopt a composite Gauss–Lobatto
quadrature rule. Each cell is divided into Q × Q subcells, and a 2N-point Gauss–Lobatto quadrature is used in each cell to
accurately integrate (32) with δu, uk ∈ WN

h . This leads to (2NQ − Q + 1)2 quadrature points in total. For example, in order
to resolve ε = 0.01h with N = 3, we need at least 10 ×10 subcells with 2601 quadrature points. Oftentimes in practice, this
condition can be relaxed to save quadrature points without severely affecting the solution accuracy.

As we have mentioned before, a shift parameter ξ is introduced to further improve conditioning of the matrix. The
numerical results are not very sensitive to ξ and we typically choose ξ = 0.01ε/h. Extra attention is required on the choice
of λ if |∇φ0| is highly non-uniform or if a high order DG method is used. A too small λ may end up with a φh that deviates
from a signed distance function while a too big λ may cause the interface to shift. We usually choose λ = 100.

In the end, we would like to comment on the differences between the WLP method and the minimization-based elliptic
reinitialization (ER) methods [15,16]. The target functional to be minimized in ER is

F (φ) = 1

2

∫
�

(|∇φ| − 1)2dx + αER

2

∫

φ2ds, (34)

where αER is a parameter similar to our 1/λ. First of all, ER is a global method while the WLP is a local method that is
easy to parallelize. Secondly, ER directly enforces φ = 0 while the WLP imposes ∇φ = ∇φ0|∇φ0| on
. Since φ varies along the
normal direction to the interface, the surface integral of (34) is very sensitive to the location of the interface. Sophisticated
techniques such as moment-fitting [55] have to be used for accurate surface integral on
. On the contrary, ∇φ0 is nearly
constant along the interface normal unless φ0 is heavily distorted. Thus the surface integral in the WLP (27) is not that
sensitive to the interface location and we can safely replace it with a volume integral as in (28).

3.2. Determination of c0

The previous sections only determine c1, c2, · · · , cm in uh as shown in (10). But we still need c0 to recover the complete
φh as shown in (9). Hu and Shu [42] suggested two ways to compute c0: directly solving∫

K

φh

∂t
+ ∇H(φh) = 0, ∀K ∈ Th (35)

or integrating ∇φh

φh(x, t) = φh(x0, t) +
x∫

x0

∇φh · ds (36)

along some path from x0 to x. In the second method, φh(x0, t) needs to be computed by the first method in one or a
few cells. The first method always leads to the shift of the zero level set, similar to most other PDE-based reinitialization
methods. We thus adopt the second method but determine φh(x0, t) in an interface-preserving way.

3.2.1. Interface cells
Suppose φ∗ is the exact solution, i.e., the signed distance function satisfying |∇φ∗| = 1 in � and φ∗ = 0 on
. Our goal

is to obtain φh that approximates φ∗ as accurate as possible. Ideally, uh determined from Secs. 2 and 3.1 is already a good
approximation of ∇φ∗ . To achieve φh ≈ φ∗ , we just need to find the appropriate c0 in each cell K . Apparently, if φ∗ ∈ V N
h

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 641
Fig. 2. Some typical configurations of interface cells in the reference frame. (a) and (b) are the regular interface cells that can be easily identified. Only two
intersections of (c) can be detected and it is treated in the same way as (b). (d) and (e) are not numerically detected as in interface cells. (f) is detected
but the interface curvature is too high. Numerically, (d), (e), and (f) are not included in set I . Other cases, including the extremely rare cases of interface
passing through one or more vertices, are not included here but considered in our code.

and uh = ∇φ∗ , then we can easily recover the exact φ∗ by imposing φh(x0) = φ∗(x0) for any point x0 ∈ K . For non-interface
cells, this method is not practical because φ∗ is unknown. But for interface cells, we can choose x0 to be some convenient
point on the interface, e.g. the intersections between the interface and the cell edges.

Numerically, we identify the interface cells by checking the φ0 values at the vertices: a cell is a non-interface cell if φ0
at its four vertices (eight vertices for hexagonal cells in 3D) are all positive or all negative, otherwise it is an interface cell.
This criterion may miss some interface cells, such as Fig. 2(d) and (e). But in those cases, either the interface can be taken
care of by the neighboring cells or the interface curvature is too high (> 1

h). For high curvatures, the DG polynomial space
could not accurately recover the interface anyway, and mesh refinement is usually the only way to go, which is beyond the
scope of this work.

For simplicity, we only discuss the cases with two detected intersections, denoted by Â and B̂ in Fig. 2. We consider
the problem in the reference frame, where the reference cell is the unit square [0, 1] × [0, 1]. A point (x, y) in the physical
cell is mapped to (x̂, ŷ) in the reference cell with φ0(x, y) = φ̂0(x̂, ŷ), where we have used ˆ to denote the quantities in
reference frame. The exact locations of Â and B̂ can be obtained from φ̂0(Â) = φ̂0(B̂) = 0. For example, the location of Â
in Fig. 2(a) can be obtained by solving φ̂0(0, ŷ A) = 0 using the secant method with starting values 0 and 1 (two ends of
the edge). If the iteration diverges or converges to a solution outside [0, 1], we switch to the root-bracketing false position
method. Then the coordinates of A can be recovered from Â. Since we have two intersections but only one unknown, c0
can be determined by solving the least squares problem

min
c0

∥∥∥∥
[
φh(A) − φ0(A)

φh(B) − φ0(B)

]∥∥∥∥
2
= 0. (37)

This problem has a simple solution

c0 = −φh(A)|c0=0 + φh(B)|c0=0

2
, (38)

where φh(·)|c0=0 denotes φh(·) evaluated with c0 = 0. To preserve the interface, we perform this procedure on every cell
K ∈ I . This method can be easily extended to 3D where we use intersections between the interface and the edges (instead
of faces of the 3D cell) to determine c0.

3.2.2. Non-interface cells
In each cell K , from uh , we can easily recover φh(x)|c0=0, which differs from the complete φh(x) only by an additive

constant c0. Meanwhile, (36) also implies that φh(x) is continuous across the cells. This leads to a more efficient method
than directly integrating (36).

Consider two neighboring cells KA and KB . Suppose c0 in KA , denoted by c0,A , is already known. Then c0,B in KB can be
determined by the continuity across their shared edge. Since we only need one constraint here, we can use the continuity
at any point on the shared edge. In this work, we use the edge center E , and c0,B can be determined from

c0,B = φh,A(E) − φh,B(E)|c0,B=0, (39)

642 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 3. Limiters in a quadrilateral mesh.

which is equivalent to (36) with an integration path starting from any point in KA , ending at any point in KB , and passing
through E . This procedure can be repeated until c0 is propagated from the interface cells to all non-interface cells. A simple
way is to update c0 based on mesh connectivity: we first update the direct neighbors of interface cells, then update the
neighbors of neighbors, and so on.

Theoretically, the line integral in (36) is path independent. However, this is not the case numerically, especially when the
path goes through singularities formed by intersecting characteristics (e.g., the center of a circular interface). It makes more
sense to update c0 following the characteristics rather than taking an arbitrary path. For example, we use KA to update KB

only when the characteristic direction Sη(φ0)∇φ points from KA to KB , i.e., KA is the upwind cell and KB is the downwind
cell. To make sure all information is taken from the zero level set along the characteristics, we borrow some ideas from the
Fast Marching method [6] and the Fast Sweeping method [8], and come up with Algorithm 2. In this algorithm we have
used the fact that c0 is a approximately the cell average of φh (exact average in the reference cell), and solution propagates
from a cell with lower |c0| to a cell with higher |c0|. The additional condition on S(φ0)∇φh ·n is just to double confirm that
the neighbor is the upwind cell. If the target cell has multiple upwind neighbors, then we take the c0 with the smallest
magnitude. If the target cell does not have any upwind neighbors, which rarely happens in real calculations, we simple keep
the c0 determined from mesh connectivity.

Algorithm 2 Upwind update of c0 in non-interface cells.
1 Compute an approximate c0 in all non-interface cells based on mesh connectivity.
2 Sort all non-interface cells in an increasing order of |c0|.
for all sorted non-interface cells do

Set c = Inf.
for all edges of the target cell do

Identify the neighboring cell sharing the same edge.
if S(φ0)∇φh · n < 0 AND |ctarget0 | > |cneighbor0 | then

Compute cnew0 in the target cell based on the current neighbor
if |cnew0 | > |cneighbor0 | then

Update c = min(c, |cnew0 |).
end if

end if
end for
if c �= Inf then

Set ctarget0 = sign(ctarget0)c in the target cell.
end if

end for

4. Slope limiter for ∇φh

The DG method in Sec. 2 can handle discontinuities in ∇φh quite well in most cases. However, if the interface has
singularities, such as sharp corners on a square interface as shown in Sec. 5.3, numerical oscillations may develop. In this
case the limiters are necessary. Since the limiters are rarely used, we simply follow the method by Cockburn and Shu [56].
For better accuracy, the readers are referred to the WENO limiters [57–59].

The construction of the slope limiter is based on uh at vertices, since it is easier to extend to adaptive quadrilateral
meshes. Consider two-dimensional quadrilaterals as shown in Fig. 3 where Ci , i = 0, . . . , 4, denote the barycenter of the
quadrilateral Ki , and Vi , i = 1, . . . , 4, the vertex of cell K0. Observe that

V1 − C0 = α1 (C1 − C0) + α2 (C2 − C0) (40)

for some nonnegative coefficients α1 and α2 that can be obtained from geometric positions of barycenters and vertices.
Then we can compute the difference of uh between vertex V1 and cell center C0 based on the cell averages:

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 643
g1 = α1
(
ūh,1 − ūh,0

)+ α2
(
ūh,2 − ūh,0

)
, (41)

where

ūh,i = 1

|Ki|
∫
Ki

uhdx, i = 0, . . . ,4. (42)

Here |Ki| denotes the area of cell Ki . Similarly, we can compute gi, i = 2, 3, 4.
Let

	i = minmod
(
uh(Vi) − ūh,0, νgi

)
, (43)

where the minmod function is defined as

minmod(a,b) =
{
smin(|a|, |b|), if s = sign(a) = sign(b),
0, otherwise,

(44)

and ν is a constant chosen from interval [1, 2]. If a and b are vectors, then the minmod function is applied component-wise.
When 	i = uh(Vi) − ūh,0 for all i = 1, . . . , 4, limiting is not necessary in cell K0. Otherwise, uh = ∇φh with φh ∈ P N (K0) is
limited to ũ = ∇φ̃ with

φ̃ = c̃0 + c̃1ψ1(x) + c̃2ψ1(y) + c̃3ψ1(x)ψ1(y) + c̃4ψ2(x) + c̃5ψ2(y) ∈ P2(K0), (45)

where ψ1 and ψ2 are the first and second Legendre polynomials. Note that we are only concerned about ∇φ̃ here, so c̃0
does not matter and we only need to find c̃1, ̃c2, · · · , ̃c5.

If limiting is required, we compute ũ that approximates the limited directional derivatives along the two diagonals of
K0. This can be done by solving the least squares problem:

min
c̃3,c̃4,c̃5

∥∥∥∥
[
(V4 − V1) · ∇ũ
(V3 − V2) · ∇ũ

]
−
[
2minmod (4,−	1)

2minmod (3,−	2)

]∥∥∥∥
2
, (46)

where ∇ũ =
[
2c̃4 c̃3
c̃3 2c̃5

]
. In addition, the conservation of u requires

∫
K0

ũdx =
∫
K0

uhdx. (47)

For a 2D quadrilateral cell, (46) supplies three constraints and (47) supplies two constraints, which uniquely determines the
five coefficients in ũ (gradient of a quadratic polynomial). In 3D, ũ has nine coefficients (φ̃ ∈ P2(K0) has ten coefficients)
which can be determined from the six constraints in (46) and three in (47). Once ũ is obtained, we directly enforce uh = ũ
in K0.

To avoid overly limiting, we only apply the procedure above when −S(φ0)∇2φ > 1
h in K0, i.e., if the characteristics are

converging and the curvature of φ contours is very high.

5. Numerical examples

In this section, we show the accuracy, long-term stability, and interface preserving properties of our algorithm. Unless
otherwise stated, we choose the following parameters: N = 3, βmax = 3, λ = 100, ε = cεh with cε = 0.1, ξ = cξ cε with
cξ = 0.01, and Q = 5. The computational domain is a square with 64 × 64 uniform cells.

Discontinuous Galerkin methods are usually combined with the total variation diminishing (TVD) Runge–Kutta (RK)
methods [60] to achieve high-order accuracy in both space and time. For convection dominated problems, when a DG
method with polynomial degree N is paired with an (N + 1)th-order TVD RK method, stability requires C F L ≤ 1

2N+1 [61].
For other RK and DG combinations, stability condition has to be established based on numerical tests. For example, the
third-order TVD RK is stable for different DG polynomial degrees with the following maximum CFL numbers: 0.130 for
N = 3, 0.089 for N = 4, and 0.066 for N = 5. More details can be found in [61] and references therein. In our simulations,
we adopt the third-oder TVD RK for time integration and choose 	t = 0.1h for N = 3, such that C F L = 0.1.

The numerical algorithm is summarized as follows:

(i) Prepare initial condition. If φ0 is not given in the DG solution space, project it to φh,0 ∈ V N
h and start the simulation

with φh,0.
(ii) Use the WLP method to determine ∇φh in I p (Sec. 3.1).
(iii) Solve the HJ equation using DG for ∇φh in Th/I p until convergence (Sec. 2). Apply the second-derivative limiter if

necessary (Sec. 4).

644 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
(iv) Determine c0 in I and propagate it to all cells (Sec. 3.2). Now we get the complete solution φh in the computational
domain.

The code is developed based on the deal.II finite element library [62,63].

5.1. Convergence tests

We consider a circular interface in a square domain � = [−2, 2]2. The initial condition is given by

φ0 = g (x)

(√
x2 + y2 − r

)
, (48)

where r = 0.9. The exact solution satisfying (1) is φ∗ =√
x2 + y2 − r. We test two different initial conditions with g(x) =

g1(x) = 0.8 and g(x) = g2(x) = 0.1 + (x− r)2 + (y − r)2. The former has a uniform |∇φ0| and ∇φ0|∇φ0| directly yields the exact
solution ∇φ∗ . While the latter, taken from [24], results in very non-uniform |∇φ0|.

To investigate the accuracy of the WLP method, we define the following errors on the interface. In order to measure the
displacement of the interface from its initial position, we introduce

E I = 1

L

∫
K∈I

∣∣Hε (φh) − Hε

(
φ∗)∣∣dx, (49)

where L is the length of the interface, φ∗ is the exact solution, and Hε is a smooth Heaviside function defined as

Hε(φ) =

⎧⎪⎨
⎪⎩
0, if φ < −ε,

1, if φ > ε,

1
2

(
1+ φ

ε + 1
π sin

(
πφ
ε

))
, otherwise.

(50)

We also define the averaged L2 error

E2 =
√√√√ 1

np

∑
K∈I p

1

|K |
∫
K

(φh − φ∗)2 dx (51)

and the L∞ error

E∞ = max
K∈I p

∣∣φh − φ∗∣∣ (52)

to measure the error in the interface cells. Here np is the number of cells in I p and |K | is the area of cell K .
To investigate the accuracy of the whole method in the computational domain, we define the L2 error

e2 =
√∑

K∈�0

(φh − φ∗)2, (53)

and the L∞ error

e∞ = max
K∈�0

∣∣φh − φ∗∣∣ . (54)

Here we take �0 = [−2, 2]2 \ [−0.4, 0.4]2 to exclude the center of the circular interface, which is a singular point. The cell
size of the uniform grids are h = 0.8

2l
, where l = 0, 1, · · · , 4 is the level of refinement. To guarantee that the steady state is

achieved, we compare ∇φh every 200 pseudo time steps. If the L2-norm of the difference in �0 is below 10−15, then we
stop the computation; otherwise, the problem is computed to the pseudo time t = 15.

5.1.1. Convergence tests for g(x) = g1(x)
For g1(x) = 0.8, ∇φ0|∇φ0| is uniform and we do not need a small ε in the WLP. We fix cε = 0.1 and Q = 5, and test λ = 0

and 100. Owing to the symmetry in ∇φh , we only compute the errors of (φh)x (derivative with respect to x), which are
given in Fig. 4. The orders in the legends, in this figure and all the following figures, are computed based on a power fitting
without considering the data points from the coarsest mesh. For polynomial degree N (roughly degree N − 1 for ∇φh) we
can achieve at least order N for ∇φh . The only exception is the case with N = 3 and λ = 0. Since

∣∣∣ ∇φ0|∇φ0|
∣∣∣= 1 is automatically

satisfied, theoretically, the value of λ in (28) should not matter. But after we project φ to φh,0 ∈ V N
h ,
∣∣∣ ∇φ0|∇φ0|

∣∣∣ is no longer
one. Thus the numerical results are still dependent on λ. For N = 3, λ = 100 gives better results than λ = 0.

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 645
Fig. 4. Convergence of the WLP method for the circular interface with g = g1. The errors are evaluated in the interface cells I p . cε = 0.1 and Q = 5.

Fig. 5. Convergence of the DG method for the circular interface with g = g1. The errors are evaluated in �0 = [−2,2]2/[−0.4,0.4]2.

The solution from the WLP is then fed to the Hamilton–Jacobi equation as “boundary conditions”. For both N = 2 and 3,
the steady state is achieved within t = 6. The errors of ∇φh in the region with the central singularity removed are shown
in Fig. 5. In L2-norm, the convergence orders of ∇φh as shown in Fig. 5(a) are slightly lower than those in the WLP, but are
still essentially of order N . This is expected from the (N − 1)th degree polynomials for ∇φh . In L∞-norm, the convergence
order drops to around N − 1

2 , probably because of some individual cells that are poorly resolved. Note that e∞ of (φh)x
even increases at the first two data points of the N = 3 and λ = 0 curve in Fig. 5(b). This is because in the coarsest 5 × 5
mesh, most cells in �0 are interface cells which do not participate in the DG computation. This kind of abnormal behavior
occurs frequently for errors evaluated in �0, which is also the reason why we exclude the first data point in computing the
convergence orders.

The c0’s in all interface cells are directly computed by (38) and the displacement of the zero level set is given in Fig. 6.
For λ = 100, |∇φh| = 1 is enforced in the whole interface cell at the cost of the accuracy on the interface; thus the values
of E I with λ = 100 are higher than those with λ = 0 in most situations. However, the error with λ = 100 quickly catches
up as mesh refines and the convergence order is at least N + 2. For all λ and N values, the convergence orders of E I are
above N , which is sufficient for the overall Nth order convergence for φh to be discussed later.

The errors of φh are given in Fig. 7. Since φh is essentially the line integral of ∇φh , the order of convergence should be
one order higher than ∇φh if the path length is O (h) and of the same order as ∇φh if the path length is O (1). This is
confirmed by the convergence order N + 1 in I p and the convergence order N in �0.

For higher polynomial degree N , our method can still maintain the optimal convergence orders: order N for ∇φh , order
N + 1 for φh in interface cells, and (at least) order N for φh in the whole domain. The results for N = 4 and 5 are presented
in Fig. 8. To reduce the sources of error, the exact initial condition (55) is directly used without projecting onto V N

h in the
WLP of these tests.

It should be noted that the closest point algorithm by Saye [36] can also achieve arbitrarily high order. A key component
of this algorithm is the least squares polynomial approximation of φ0 around the interface, which always leads to very wide

646 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 6. Interface displacement, measured by E I in the interface cells I , for the circular interface with g = g1.

Fig. 7. Errors of φh for the circular interface with g = g1.

stencils in the finite difference framework. In principle, this algorithm can be adapted to DG and become another option for
high order accuracy on unstructured meshes.

5.1.2. Convergence tests for g(x) = g2(x)
When the signed distance function is disturbed by g2(x), ∇φ0|∇φ0| is far from the exact solution ∇φ∗ except on the interface.

The initial condition, as shown in Fig. 9, exhibits highly non-uniform ∇φ0, and |∇φ0| ranges from 0.239 to 4.82 in interface

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 647
Fig. 8. Convergence tests of higher order methods for circular interface with g = g1. λ = 0, Q = 5, cε = 0.1.

Fig. 9. The initial condition for circular interface with g(x) = g2(x).

cells. Thus extra care has to be taken in the choice of parameters such as the penalty parameter λ in the WLP, the bandwidth
parameter cε = ε/h of the smooth delta function, and βmax in the numerical flux.

We first investigate the effect of λ in the WLP. To make sure that the surface integral on the interface is accurately
evaluated, we use a very small bandwidth with cε = 0.001 and each cell is divided into 50 × 50 subcells (Q = 50) in

648 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 10. Effect of λ for circular interface with g = g2. The errors are evaluated in the interface cells I p . cε = 0.001, Q = 50, and βmax = 3.

Fig. 11. Effect of ε for the circular interface with g = g2. The errors are evaluated in �0 = [−2,2]2 \ [−0.4,0.4]2. λ = 100, βmax = 3.

numerical integration. We test λ = 0 and 100 for polynomial degrees N = 2 and 3. The errors in the interface cells are
given in Fig. 10. When λ = 100, the optimal convergence orders are achieved for both polynomial degrees: Nth order for
∇φh and (N + 1)th order for φh . λ = 100 delivers better results than λ = 0, especially for N = 3. This is due to the fact
that the Q 3 polynomial space has more degrees of freedom to better satisfy ∇φh = ∇φ0|∇φ0| on the interface, but at the cost
of violating |∇φh| = 1 in the interface cells to a higher degree. Thus it is necessary to impose the second term in (28) to
enforce |∇φh| = 1 if φ0 is far from a signed distance function, especially for a high polynomial degree N .

We next investigate the influence of the bandwidth ε in the smooth delta function. We test cε = 0.1 and compare with
cε = 0.001, as shown in Fig. 11. To avoid repeating the ε = 0.001 curves in Fig. 10, we use the errors evaluated in �0 here.
The errors in the interface cells lead to the same conclusion. When cε = 0.001, the surface integral on the interface is well
approximated and optimal convergence order is achieved: order N for both φh and ∇φh in �0. For N = 2, cε = 0.1 yields
almost the same errors as cε = 0.001. This is because ∇φh (and also ∇φh,0

|∇φh,0| after projection onto V N
h) is roughly linear at

N = 2. In this case, integration of ∇φh in the narrow band is only dependent on the values at the center of the narrow
band, i.e., the interface; thus the results for N = 2 are insensitive to cε . For N = 3, ∇φh is no longer linear and cε = 0.1
produces much larger errors than cε = 0.001.

We finally investigate the influence of βmax in the numerical flux. The convergence results for βmax = 1, 2, and 3 are
given in Fig. 12. When βmax = 1 the solution does not converge at pseudo time t = 15 as we refine the mesh, while βmax = 2
and 3 provides similar convergence order. The pseudo time to reach the steady state for βmax = 2 and 3 are t = 14.55 and
7.24, respectively. After we apply the WLP, there is a big jump between cells in I p and their neighboring cells, which
would generate oscillations. With larger βmax , these oscillations can be dissipated away more quickly. In the test, we set the
maximum pseudo time to t = 15; therefore it is possible that, given enough time, βmax = 1 can also generate the desired
convergence order. Fig. 13 shows the contours of (φh)x . It is obvious that βmax = 3 almost reproduces the exact solution,
βmax = 2 still has oscillations at the center, and βmax = 1 exhibits the most severe oscillations. We further present the

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 649
Fig. 12. Effect of βmax for the circular interface with g = g2. The errors are e2 of φh evaluated in �0 = [−2, 2]2/[−0.4, 0.4]2. N = 3, λ = 100, cε = 0.001,
and Q = 50.

Fig. 13. (φh)x at t = 3 for g = g2 using different βmax. Contours run from −1 to 1 with interval 0.2. N = 3, λ = 100, cε = 0.001, Q = 50, and h = 0.05.

contour plots of φh for βmax = 2 and 3 in Fig. 14, where we can see that βmax = 3 reproduces the exact solution at the
center at an earlier stage. It should be noted that it takes longer than t = 1 for the φh contours to reach steady state because
we use the smooth sign function (2), which causes the speed of propagation along the characteristics to be smaller than
one near the interface.

5.1.3. Reinitialization in three dimensions
Our method can be easily extended to 3D and the same set of parameters still work. It should be noted that the deal.II

library allows for dimension-independent programming by including the number of dimensions as a template parameter.
Thus, in terms of coding, there is almost no difference between 2D and 3D.

We consider a spherical interface in � = [−2, 2]3 with the initial condition

φ0 = g3 (x)

(√
x2 + y2 + z2 − r

)
, (55)

where

g3(x) = 0.1+ (x− r)2 + (y − r)2 + (z − r)2 .

Fig. 15 shows the 3D results using the same parameters as in 2D computations. There is only one exception: we may need
a smaller pseudo time step in 3D because the stability requirement (20) in 3D more restrictive than Eq. (19) in 2D. The
results in Fig. 15 are obtained using 	t = 0.05h. According to our tests, 	t = 0.1h still works for βmax ≤ 2.

5.2. Elliptic interface

In this example, we would like to show the long-term stability of our method. We reinitialize an elliptic interface in a
unit square. The initial condition is given by

650 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 14. Evolution of φh for g = g2 using different βmax. βmax = 3 for the top row and βmax = 2 for the bottom row. Contours run from −0.8 (center) to 1
with interval 0.1. The thick line denotes the interface. N = 3, λ = 100, cε = 0.001, Q = 50, and h = 0.05.

Fig. 15. Reinitialization in 3D. N = 3, βmax = 3, λ = 100, cε = 0.1, cξ = 0.01, and Q = 5. The mesh size is h = 1/16, which corresponds to 643 cells. The
thick line denotes the interface.

φ0(x, y) = (x− 0.5)2 + 6 (y − 0.5− 0.5h)2 − 0.1, (56)

as shown in Fig. 16. To make the problem more challenging, the interface is shifted in y-direction by half cell size such that
its major axis, where discontinuities in ∇φ occur, does not align with cell edges.

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 651
Fig. 16. Initial condition φ0 for the elliptic interface. The thick line denotes the interface. Contours run from −0.1 to 1.2 with interval 0.1.

Fig. 17. Evolution of φh for the elliptic interface. The interface cells are solved by evolving the PDE (3) in the top row, while the interface cells in I p are
fixed by the WLP method in the bottom row. Contours run from −0.1 to 0.4 with interval 0.05. The thick line is φh = 0. N = 3 and h = 1/64.

We solve the PDE (3) in all cells by the DG method and determine c0 still using the interface location. The results are
illustrated in Fig. 17 together with the WLP method for interface cells. At t = 5, both methods generate the same signed
distance function and the derivative discontinuities inside the interface are well captured. However, if we continue the
calculation, oscillations start to appear if the interface cells are solved by the PDE. The reason is that ∇φh in the interface
cells are not influenced by any neighbors and the error may grow without bound. The WLP method resolves this issue by
anchoring ∇φh in I p , a subset of all interface cells.

652 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 18. Reinitialization of the square interface without (b) and with (c) limiters. The top row shows the solutions in the whole domain, with contours run-
ning from −0.25 to 0.25 with interval 0.05. The bottom row shows the close-up views of φh near the upper-right corner of the interface. For visualization
purposes, each actual computational cell is divided into 2 × 2 cells demarcated by the dotted grid lines. N = 3 and h = 1/64.

5.3. Square interface

Generally, we do not need to apply limiters. However when the interface has extremely high or singular curvatures, such
as the corners of a square interface, it is necessary to consider the limiter. In this example, we consider the initial condition

φ0(x, y) = 0.8 (max{|x− 0.5|, |y − 0.5|} − R0) (57)

in a unit square, where R0 = 16.7h ≈ 0.26 such that all the interface cells are included in I p . Note that after we project
the initial condition to φh,0 ∈ V N

h as shown in Fig. 18(a), the corner is no longer sharp, and the zero level set is broken.
This numerical oscillation is typical when polynomials, especially those of high degrees, are used to represent non-smooth
interfaces. A similar deficiency at the interface corner was also reported in [36]. In practice, a better way to treat the
curvature singularity is to smooth it out to a rounded corner, and then refine the mesh to resolve the high curvature. This
is out of the scope of this paper. In Fig. 18(b), the solution without limiters develops oscillations along the diagonals of the
square, where characteristics from different interface segments converge. These oscillations are damped and a much better
signed distance function is obtained when the limiter is applied, as shown in Fig. 18(c), regardless of the singularities at the
corners of the interface.

In the special case when the kinks are located on cells edges, the numerical flux can deal with the discontinuities
without limiting. For example, if we rotate the square interface 45◦ clockwise, then a diamond interface

φ0(x, y) = 0.8
(
|x− 0.5| + |y − 0.5| − √

2R0

)
(58)

is obtained, as shown in Fig. 19(a). In this case, the perfect signed distance function, as depicted in Fig. 19(b), can be easily
obtained without any limiter.

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 653
Fig. 19. Reinitialization of a square interface with all kinks on the cell edges. No limiter is applied. Contour levels run from −0.25 to 0.25 with interval
0.05. N = 3 and h = 1/64.

Fig. 20. Schematic of a drop sitting on the lower wall of a rectangular domain [−2, 2] × [0, 2]. The interface is a part of a circle, which is given by
|x − x0| = R with x0 = (0, −2 − R cos(θ))ᵀ . R is the radius of the circle and θ is the contact angle. A and B are the contact lines (points in 2D) where the
interface meets the solid wall. The arrows denote the directions of the characteristics.

5.4. Contact line

In contact line problems, the fluid interface intersects the solid wall and may result in boundary segments where bound-
ary conditions are required for reinitialization. For example, for the interface as shown in Fig. 20, we have

Sη(φ0)
∇φ

|∇φ| · nw > 0

on AB , and

Sη(φ0)
∇φ

|∇φ| · nw < 0

elsewhere on the lower wall with the outward unit normal nw . As a result, the characteristics go into the computational
domain from the lower wall outside AB , where boundary condition has to be supplied. We refer to this part of the boundary
as inflow boundary and denote it by

∂�in = {x ∈ ∂� : S(φ0)∇φ · nw < 0}. (59)

Different approaches have been proposed to supply boundary conditions on ∂�in . The first approach is to use ghost
cells, where the φ values are obtained by extrapolation [51,64]. However, the use of ghost cells is very difficult to extend
to unstructured mesh and curved boundary. The second approach is to compute φ on ∂�in by solving a reinitialization
problem but only on the boundary [49]. Another approach is to solve a relaxation equation in the first layer of cells along
the inflow boundary such that ∇φ

|∇φ| · nw is fixed [65]. But this approach is dependent on the quality of φ0 away from the
interface. In our method, since we solve for ∇φ, the treatment of inflow boundary is much simpler: Dirichlet conditions for
∇φ can be directly imposed on ∂�in .

The computational setup is given in Fig. 20 and the initial condition is given by

φ0 =
√
x2 + (y + 2+ R cos θ)2 − R. (60)

The computational domain is meshed into 64 × 32 uniform square cells.
We test two cases with different contact angles θ = 3π/4 and π/6. In the first one we set R = 1 and θ = 3π/4. The

inflow boundary is the portion inside a drop: �in = [−1, 1] × 0. Based on the interface normals at A and B , we impose the
boundary condition:

654 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 21. Reinitialization of a drop with a contact angle θ = 3π/4. The solid lines are φh contours at t = 1, while the dotted lines are φ0. Contours run from
−0.8 to 1 with increment 0.2. N = 3 and h = 1/16.

Fig. 22. Reinitialization of a drop with a contact angle θ = π/6. The solid lines are φh contours at t = 1, while the dotted lines are φ0. Contours run from
−0.2 to 1 with increment 0.2. N = 3 and h = 1/16.

u =
⎧⎨
⎩
(
−

√
2
2 ,−

√
2
2

)ᵀ
, if − 1 ≤ x ≤ 0, y = 0,(√

2
2 ,−

√
2
2

)ᵀ
, if 0 < x ≤ 1, y = 0.

(61)

As shown in Fig. 21, the solution φh at t = 1 is exactly the same as φ0 outside the triangle 	ABC . But the solution in 	ABC
is determined by the boundary condition (61). In this region, the contours are straight lines intersecting the boundary at
the angle θ = 3π/4.

The numerical method works equally well for the second case with an acute contact angle θ = π/6 and R = 2. In this
case, ∂�in = ([−2,−1] ∪ [1,2]) × 0, and the boundary condition for (3) is given by

u =
⎧⎨
⎩
(
− 1

2 ,
√
3
2

)ᵀ
, if − 2 ≤ x ≤ −1, y = 0,(

1
2 ,

√
3
2

)ᵀ
, if 1 ≤ x ≤ 2, y = 0.

(62)

As shown in Fig. 22, the level sets in the region above the inflow boundary are straight lines intersecting the boundary at
the angle θ = π/6.

It should be noted that the ∇φ condition on the inflow boundary is artificial, and the choice is not unique. The bottom
line is that the boundary condition should maintain |∇φ| = 1 and produce smooth level sets. For example, for circular inter-
faces in Figs. 21 and 22, it is difficult to say whether the solution φh at pseudo time t = 1 is better than φ0 with concentric
level sets. But in the general case, when the interface shape is arbitrary, imposing ∇φ condition based on the contact angle
seems the most feasible. For three-dimensional problems where the solid wall is a two-dimensional surface, the angle that
the level sets make with the wall can be obtained by solving the normal extension equation on that surface [64].

5.5. Interface deformation in a swirling vortex

In this example, we demonstrate the interface-preserving performance of our method in moving interface problems.

5.5.1. Short-time vortex test
Following [66,67,30], we consider the deformation of a circular interface in a swirling flow with the velocity field

v (x, T) =
[

− sin2 (πx) sin (2π y)

sin2 (π y) sin (2πx)

]
(63)

which is reversed at T = 0.5, in a square domain of size [0, 1]2. Note that T is the flow time, which should be distinguished
from the pseudo time t used in the level-set reinitialization. Therefore, the interface will return to the initial position at
T = 1. The initial condition is

φ0(x, y) =
√

(x− 0.5)2 + (y − 0.75)2 − 0.15 (64)

and the computation domain is a square of size [0, 1]2.

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 655
Fig. 23. Circular interface sheared by a vortex that is reversed at T = 0.5. Reinitialization is performed every time step till a pseudo time t = 0.1. φh

contours run from −0.04 to 0.1 with interval 0.02. The thick line is the zero level set. N = 3 and h = 1/64.

The level-set equation

∂φ

∂T
+ ∇ · (φv) = 0 (65)

is solved by the DG method [39] with a local LF flux for spatial discretization and the third order TVD Runge–Kutta method
for time integration. The time step is chosen to be 	T = 0.1h such that the corresponding CFL number is 0.1.

The solutions at different time instants are shown in Fig. 23. Our method produces a signed distance function for different
interface shapes with good quality. The comparison between numerical and exact solutions is presented in Fig. 24. At T = 1,
the circle is accurately recovered (see the dashed line) except for a small portion near the top, which is caused by the error
at the high-curvature tip as shown in Fig. 24(a).

Conservation of mass, i.e., the area bounded by the zero level set, is given in Fig. 25(a). We first reinitialize the level-set
function every time step, which amounts to 640 reinitializations. The maximum error is −0.39%, which is comparable to
that of the conservative level-set method in [30] at the same mesh resolution. The interface displacement as illustrated in
Fig. 24 is however at least at the same level as h = 1/128 in [30]. It should be noted that the conservative level-set method,
by design, conserves the integral of φ, but that does not necessarily preserve the exact interface location.

In practice it is usually not necessary to perform reinitialization every time step, especially for small time steps. For
example, the reinitialization is performed every 10 steps in [52] and even 100 steps in [47]. Our simulation with reinitial-
ization every 10 steps gives a much better result: the relative error is −0.045%, nearly 1

10 of the original one. The interfaces
at T = 0.5 and 1 are almost the same as the exact ones as shown in Fig. 24.

Before the flow reversal, the maximum of the interface curvature increases with time and reaches 32 (i.e., 1
2h) at

T = 0.28, as shown in Fig. 25(b). The relative errors of area are −7.07 × 10−6 and −5.66 × 10−6 at T = 0.28125 for
reinitializations every 1 step and 10 steps, respectively. This indicates that our method barely causes any mass loss for a
smooth interface with a low curvature (� 1). The mass loss mostly occurs during T ∈ [0.28, 0.72], when curvature is above
2h

656 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 24. Comparison of the interface. The dashed and dotted lines represent the numerical solutions obtained by reinitialization every 1 time step and
reinitialization every 10 time steps, respectively. The solid lines represent the exact solution, which almost overlap with the dotted lines. N = 3 and
h = 1/64.

Fig. 25. (a) Relative error in area bounded by the interface. (b) Maximum curvature of the exact interface.

1
2h . This is expected because the polynomial space cannot accurately resolve the curvature radius that is comparable to or
smaller than the cell size h. If the curvature is too high, there is also a possibility that the interface cell is not detected by
our method, such as Fig. 2(e). One way to resolve high curvature is mesh refinement. The results with h = 1/128 is included
in Fig. 25(a) for comparison. Although 1280 reinitializations are performed during T ∈ [0, 1], the relative error is amazingly
small: −0.012%. This error can be further reduced if we perform reinitialization every few time steps.

5.5.2. Long-time vortex test
To demonstrate the capability of our method in handling long filaments, we consider a slightly modified velocity field

v (x, T) =
[− sin2 (πx) sin (2π y) cos(πt/8)

sin2 (π y) sin (2πx) cos(πt/8)

]
(66)

following [68,54,34,35]. The interface gets fully stretched at T = 4 and restores to initial state at T = 8. Thanks to the
easy implementation of adaptive mesh refinement in the DG framework, we use an adaptive mesh with the finest mesh
size hmin = 1/512 at the interface. An example of the adaptive mesh is given in Fig. 30 and more details can be found in
Sec. 5.7. For stability, we choose 	T = 2.5 × 10−4 for N = 2 and 	T = 10−4 for N = 3. We perform 20 reinitializations
within every time unit.

As shown in Fig. 26, the circle is mostly recovered at T = 8, except for some oscillations at the top. The area loss of N = 2
(0.15%) is comparable to those obtained by Gómez et al. [68] (0.11%) on a 2562 main grid and Herrmann [54] (0.28%) with
h = 1/1024. The third and fifth weighted essentially non-oscillatory (WENO) schemes are used in [68] and [54], respectively.
Since Gómez et al. divided each cell around the interface into 42 subcells, their finest cell size is hmin = 1/1024, which is
comparable to our N = 2 in terms of degrees of freedom. However, our result with N = 3 (area loss of 0.29%) shows no

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 657
Fig. 26. Circular interface under long-time shear. The solid line (red) is the exact solution, while the dashed line is the numerical solution. The insets show
the zooms of the tail tip. Relative errors in area are 0.15% and 0.29% for N = 2 and N = 3, respectively. An adaptive mesh with hmin = 1/512 is used and
the maximal number of cells (at T = 4) is around 25000, which amounts to a 1582 uniform mesh. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

improvement over N = 2, probably because the higher order method is more prone to numerical oscillations when the
solution is non-smooth. This is consistent with the consensus that one should use p-refinement for the smooth part and
h-refinement for the singular part of the solution in hp-finite element methods.

5.5.3. Vortex test in 3D
We consider a sphere with radius r = 0.15 centered at (0.35, 0.35, 0.35) in a divergence free velocity field [69,26,70,35]

v (x, T) =
⎡
⎢⎣

2 sin2(πx) sin(2π y) sin(2π z) cos(π T /3)

− sin(2πx) sin2(π y) sin(2π z) cos(π T /3)

− sin(2πx) sin(2π y) sin2(π z) cos(π T /3)

⎤
⎥⎦ . (67)

The sphere gets fully stretched at T = 1.5 and restores to its initial shape at T = 3. We use an adaptive mesh with hmin =
1/256 and DG with N = 2. The time step is chosen to be 2.5 × 10−4 and we perform 40 reinitializations within every time
unit. The other parameters are the same as those in 2D calculations.

As shown in Fig. 27, oscillations appear near the equator of the sphere at T = 3. This is likely due to the lack of mesh
resolution to describe the thin film: the smallest film thickness at T = 1.5 is less than hmin. Our mass loss 1.62% is slightly
greater than the second order adaptive level-set method by Min and Gibou [70], who reported a volume loss of 0.74% with
hmin = 1/512, but with a slightly different velocity field. The DG conservative level-set method by Jibben and Herrmann
[35] seems to perform much better with a volume loss of 0.25% on a 1283 uniform mesh with N = 2. But they only
performed three reinitializations for the whole simulation while we did 120 reinitializations. This makes the errors not
directly comparable. But since we use an adaptive mesh, the maximum number of unknowns is actually much smaller than
the 1283 mesh in [35]. We have to point out that the classical level-set description develops derivative discontinuities at

658 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 27. Deformation of a sphere under shear. The relative error in volume is 1.62% at T = 3. The maximal number of cells is 460400, which amounts to a
773 uniform mesh. N = 2, βmax = 3, λ = 100, cε = 0.1, cξ = 0.01, Q = 5, and hmin = 1/256.

the center of the thin film, while the conservative level set method has a second order diffusion term that regularizes the
solution. This might be the reason why the conservative level-set may perform better with thin filaments or films. But the
conservative level-set function has a steep transition layer at the interface and thus loses the numerical convenience of the
signed distance function. Further discussions between the conservative level-set methods and the classical level-set methods
are beyond the scope of this work.

5.6. Rotation of a slotted disk

We consider the rigid body rotation of a slotted disk [71] in the unit square [0, 1]2. The velocity is

v (x, T) =
[

π(0.5− y)/3.14

π(x− 0.5)/3.14

]
, (68)

such that the period of rotation is 6.28. A circular disk of radius 0.15 is initially centered at (0.5, 0.75), with a slot of width
0.05 and length 0.25 being cut off. The initial condition for φ is obtained based on the closest distance to the interface. We
test two uniform meshes, h = 1/128 and 1/256, with time steps 	T = 0.001 and 0.0005. In both cases, we reinitialize the
level-set function every 10 time steps so that the frequency of reinitialization is comparable to that in [24]. The level-set
equation is solved in the same way as in Sec. 5.5, and all the other parameters are kept the same. No slope limiter is used
in this problem because the sharp corner quickly gets smoothed.

The interface shapes are given in Fig. 28. In the left column, the interfaces after different full revolutions almost overlap.
Close-up views at a sharp corner are shown in the right column. The initial interface here is the zero level set after pro-
jecting the exact signed distance function to the DG space. It is thus discontinuous at the corner. After rotation, the corner
is eventually rounded to a smooth curve with curvature radius being approximately 2h. The relative mass losses after three
revolutions, as shown in Fig. 29, are around 0.1% and 0.06% for h = 1/128 and 1/256, respectively. These are much smaller
than 0.86% on a 2562 mesh and 0.43% on a 5122 mesh obtained by Hartmann et al. [24] using a fifth-order upstream central
scheme. It should be noted that our DG method with N = 3 has ten degrees of freedom (DOF) in each cell. If we compare
the DOF, our 1282 mesh still has less DOF than the 5122 finite difference mesh. More importantly, the majority of the mass
loss occurs in the initial stage when the sharp corner cannot be well approximated by the DG polynomial space. Once the
corner is rounded to such an extent that the curvature can be resolved by the computational mesh, further rotation causes
very little mass loss. The mass loss in [24], however, grows almost linearly with the number of revolutions. In comparison,
our method preserves interface better, especially in long-time simulations.

5.7. Pinch-off of a pendant drop

In this subsection, we show the capability of our method in handling topological changes. Following [72–74], we consider
the growth and pinch-off of a drop from a capillary tube, with radius a, into an ambient fluid, as illustrated in Fig. 31(a). In
the following, we only briefly explain the governing equations and the numerical methods. More details and code validations
will be presented in a follow-up paper.

Following the standard treatment in level-set literature, the two-phase flow is governed by a single set of equations:

ρ

(
∂u

∂T
+ u · ∇u

)
= ∇ ·

(
−pI+ τ + σδω(φ)|∇φ|

(
I− ∇φ ⊗ ∇φ

|∇φ|2
))

− ρgez (69)

and

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 659
Fig. 28. Rotation of the slotted disk. The solid (black) line represent the initial interface. The dashed (red), long-dashed (green), and dash-dotted (blue) lines
represent the interfaces after one, two, and three revolutions. The right column shows the zoom of the upper-right corner of the slot. For visualization
purposes, each actual computational cell is divided into 2 × 2 cells demarcated by the dotted grid lines. N = 3.

Fig. 29. Relative error in the area of the slotted disk.

∇ · u = 0, (70)

where τ = μ (∇u+ (∇u)ᵀ) is the viscous stress, g is the gravitational acceleration, and σ is the surface tension. The density
ρ and the viscosity μ of the mixture are given by

660 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
Fig. 30. Computational mesh before pinch-off occurs. T̄ = T V
a = 3.3478. The right panel shows a zoom of the mesh around the neck. The thick lines are the

φ = 0 level set.

ρ = Hω(φ)ρ1 + (1− Hω(φ))ρ2, (71)

μ = Hω(φ)μ1 + (1− Hω(φ))μ2, (72)

where Hω(φ) is the smooth Heaviside function, as defined in Eq. (50), but with ε replaced by the half-width ω of the fluid
interface. The subscripts 1 and 2 denote the fluid properties inside (φ > 0) and outside (φ < 0) the drop, respectively. δω(φ)

is the smooth delta function obtained by taking the derivative of Hω(φ). The flow equations (69), (70) are solved using a
mixed finite element method with Q 2 for velocity and Q 1 for pressure. A Crank–Nicolson scheme is adopted for temporal
discretization. The discretized linear system is solved by the sparse direct solver UMFPACK [75].

Since the flow is axisymmetric, we only compute half of the meridian plane. The computational domain is [0, 4a] ×
[0, 10a] in the r-z plane. The mesh is refined at the interface until a minimum mesh size hmin = 1

64a is reached and
coarsened far away from the interface until a maximum mesh size hmax = 1

2a is reached, as illustrated in Fig. 30. We take
ω = 1.5hmin.

On the upper boundary, we impose the inflow condition:

u =
{

−2V
(
1 − (ra)2)ez, if r < a

0, otherwise,
(73)

where V is the average velocity in the capillary tube. Symmetry, slip, and zero stress conditions are imposed on the left,
right, and lower boundaries, respectively. The interface is initially hemispherical. We take a = 1, ρ1 = 1, ρ2 = 0.5, μ1 =
μ2 = 0.178, σ = 1, g = 0.930, and V = 0.0172 such that the dimensionless groups match those of [74]: density ratio
ρ1
ρ2

= 2, viscosity ratio μ1
μ2

= 1, Capillary number Ca = μ1V
σ = 3.05 ×10−3, Bond number Bo = (ρ1−ρ0)ga2

σ = 0.465, and Weber

number We = ρ1V 2a
σ = 2.95 × 10−4. To present the transient results, we define a dimensionless time T̄ = T V

a .
The time step is determined adaptively based on the mesh size and the fluid velocity. Limited by the DG method for

the level-set equation, the CFL number is set to 0.1. We reinitialize φ every 50 time steps before the pinch-off, but when it
gets close to pinch-off (T̄ ≈ 3.35), φ is reinitialized every time step in order to better capture the detachment of the drop.
The pseudo stopping time is 4ω, i.e., a signed distance function is maintained in the narrow band |φ| < 6hmin. Since φ is
always close to a signed distance function, there is no need to use a large λ and we simply take λ = 1. Other parameters
for reinitialization are N = 3, cε = 0.1, Q = 5, βmax = 3.

The evolution of the interface is given in Fig. 31. The pinch-off occurs at T̄ = 3.3495, after which a primary drop detaches
and several satellite drops form. At pinch-off, the horizontal radius of the primary drop is 1.33a, very close to the 1.3a
extracted from Fig. 2 of [74]. The φ contours in the neck region near the instant of pinch-off are given in Fig. 32. After
pinch-off, the tip of the thin filament above the primary drop quickly retracts upwards. The topological transitions are well
captured by the current method, although the curvature at filament tip is beyond the mesh resolution. Meanwhile, capillary
waves develop and the filament eventually breaks up, as shown in Fig. 32(c), (d). The radii of the filament in Fig. 32(d) and
the bulb at its lower end are about 0.1hmin and hmin, respectively.

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 661
Fig. 31. Snapshots of the pinch-off process of a pendant drop.

Fig. 32. φ contours near the instant of pinch-off. The thick line denotes the interface.

We have to point out that the successful capture of the filament much thinner than the cell size in this test case is
fortuitous: the shock wave of φ inside the filament lies exactly on the axis of symmetry. In the general case, the WLP
method may have trouble in capturing sub-cell structures for the following two reasons. First, if both sides of the filament
passes through the same cell, similar to Fig. 2(f), our method fails to identify that cell as an interface cell. Of course, this can
be resolved if we consider all the possibilities of interface cells. But the second reason is more substantial: the polynomial
approximation suffers from large errors in case of shock waves or other sub-cell structures inside the cell. This limitation
applies to all methods based on high-degree polynomial approximation. In interfacial flows, mesh refinement is probably
the only way to go because the flow field also needs to be resolved.

In the end, we would like to comment on the computational cost of our reinitialization method. On a regular Cartesian
mesh, we have to admit that the DG method is usually much slower than its finite-difference or finite-volume counterparts.
There are several reasons, e.g., DG uses many quadrature points for numerical integration and DG needs to deal with more
degrees of freedom on the same computational mesh. In our case, there is an additional reason: our code is developed for
general unstructured quadrilateral and hexagonal meshes. That being said, our code still treats the rectangles as arbitrary
quadrilaterals, which makes it further slower. But DG has its own advantages on stencil compactness, high order accuracy,
hp-refinement, unstructured mesh, and parallel performance. In interfacial flows, the cost of reinitialization is not a concern
as long as it is much less than the flow solver. On a single core of an Intel Xeon E5 2.4G processor, our code spends
1.01 s and 3.02 s (wall time) on average on matrix assembly and direct sparse solver, respectively, for one time step of flow
equations in the pendant drop problem (typically around 7500 cells). In comparison, it only takes around 0.18 s to perform
one step of level-set reinitialization, which is much less than the flow solver. The cost of reinitialization is almost negligible
if we only perform one reinitialization every many flow time steps. For parallel computing on eight cores, the costs of matrix
assembly and level-set reinitialization are brought down to 0.16 s and 0.034 s, respectively, while the computational time

662 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
for the direct sparse solver still remains the same. The cost of reinitialization can be further reduced if we only perform
reinitialization within a narrow band of the interface [18,68].

6. Concluding remarks

We have developed a high-order level-set reinitialization method that preserves the zero level set. The major conclusions
are summarized as follows.

(i) For the Nth degree piecewise polynomial space, both the weighted local projection and the discontinuous Galerkin
method can achieve the optimal Nth order convergence in ∇φ for smooth solutions. The convergence order of φ is at
least N +1 in the interface cells and N in the whole domain. The interface displacement may even achieve order N +2.

(ii) The penalty flux is necessary to produce smooth solutions, especially when the initial φ is highly distorted.
(iii) The numerical method is stable in most cases and handles the discontinuities in ∇φ with ease. But in the extreme case

with singularities on the interface, the second-derivative limiter may be needed.
(iv) Since we compute ∇φ instead of φ in the discontinuous Galerkin method, the boundary condition for the Hamilton–

Jacobi equation is easy to set up for contact line problems.
(v) The mass loss is negligible if the highest interface curvature can be resolved by the computational mesh. Mesh refine-

ment is suggested if interface curvature exceeding 1
2h or other sub-cell structures need to be resolved. In the moving

interface problems, mass conservation can be further improved if we preform reinitialization only once every few time
steps.

There are many parameters in the proposed method, the tuning of which may be necessary when the initial φ is highly
distorted. But for general interfacial flows, where φ is usually reinitialized before it gets too distorted, these parameters are
no longer sensitive and we recommend the following values: βmax = 3, ε = 0.1h, λ = 1, ξ = 0.01ε/h, and Q = 5.

It should be noted that the use of Runge–Kutta discontinuous Galerkin method for the convection dominated level-set
equation always leads to a small CFL number. This may be too restrictive, especially, if the level-set method is coupled with
an implicit flow solver. One solution to this issue is to use multiple sub-steps for the level-set equation within each time
step for the flow solver [34].

The method proposed in this paper can be easily extended to other types of unstructured mesh and complex geometries.
The coupling with a finite-element flow solver for moving contact line problems is currently ongoing.

Acknowledgements

This work was supported by the National Science Foundation (Grant DMS-1522604). The authors thank Prof. Chi-Wang
Shu at Brown University for stimulating discussions. The coding in this work is based on the open source finite element
library deal.II and we would like to thank all of its developers. We also acknowledge Advanced Research Computing at
Virginia Tech for providing computational resources and technical support that have contributed to the results in this paper.

References

[1] S. Osher, J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988)
12–49.

[2] D. Adalsteinsson, J. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118 (2) (1995) 269–277.
[3] T. Hou, Z. Li, S. Osher, H. Zhao, A hybrid method for moving interface problems with application to the heleshaw flow, J. Comput. Phys. 134 (2) (1997)

236–252.
[4] W. Mulder, S. Osher, J. Sethian, Computing interface motion in compressible gas dynamics, J. Comput. Phys. 100 (2) (1992) 209–228.
[5] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–159.
[6] J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. 93 (4) (1996) 1591–1595.
[7] D.L. Chopp, Some improvements of the fast marching method, SIAM J. Sci. Comput. 23 (1) (2001) 230–244.
[8] H. Zhao, A fast sweeping method for eikonal equations, Math. Comput. 74 (2005) 603–627.
[9] Y.-T. Zhang, H.-K. Zhao, J. Qian, High order fast sweeping methods for static Hamilton–Jacobi equations, J. Sci. Comput. 29 (1) (2006) 25–56.

[10] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, An adaptive level set approach for incompressible two-phase flows, J. Comput.
Phys. 148 (1) (1999) 81–124.

[11] S. Pillapakkam, P. Singh, A level-set method for computing solutions to viscoelastic two-phase flow, J. Comput. Phys. 174 (2) (2001) 552–578.
[12] X. Zheng, J. Lowengrub, A. Anderson, V. Cristini, Adaptive unstructured volume remeshing – ii: application to two- and three-dimensional level-set

simulations of multiphase flow, J. Comput. Phys. 208 (2) (2005) 626–650.
[13] J.-J. Xu, Z. Li, J. Lowengrub, H. Zhao, A level-set method for interfacial flows with surfactant, J. Comput. Phys. 212 (2) (2006) 590–616.
[14] C. Li, C. Xu, C. Gui, M. Fox, Level set evolution without re-initialization: a new variational formulation, in: IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 430–436.
[15] C. Basting, D. Kuzmin, A minimization-based finite element formulation for interface-preserving level set reinitialization, Computing 95 (1) (2012)

13–25.
[16] T. Utz, F. Kummer, M. Oberlack, Interface-preserving level-set reinitialization for dg-fem, Int. J. Numer. Methods Fluids 84 (2017) 183–198.
[17] F. Gibou, R. Fedkiw, S. Osher, A review of level-set methods and some recent applications, J. Comput. Phys. 353 (2018) 82–109.
[18] D. Peng, B. Merriman, S. Osher, H. Zhao, M. Kang, A pde-based fast local level set method, J. Comput. Phys. 155 (2) (1999) 410–438.
[19] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible two-phase flows, Comput. Fluids 27 (5) (1998) 663–680.

http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4F735365743838s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4F735365743838s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4164615365743935s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib486F754C694F735A683937s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib486F754C694F735A683937s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4D756C4F735365743932s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5375536D4F733934s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5365743936s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib43686F3031s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68616F3035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68615A68615169613036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib537573416C6D42656C3939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib537573416C6D42656C3939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib50696C53696E3031s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68654C6F77416E643035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68654C6F77416E643035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib58754C694C6F773036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4C6958754775693035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4C6958754775693035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4261734B757A3132s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4261734B757A3132s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib55747A4B756D4F62653137s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4769624665644F73683137s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib50656E4D65724F73683939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib53754661536D3938s1

J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664 663
[20] M. Sussman, E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow,
SIAM J. Sci. Comput. 20 (4) (1999) 1165–1191.

[21] G. Russo, P. Smereka, A remark on computing distance functions, J. Comput. Phys. 163 (1) (2000) 51–67.
[22] C. Min, On reinitializing level set functions, J. Comput. Phys. 229 (8) (2010) 2764–2772.
[23] A. du Chéné, C. Min, F. Gibou, Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization

schemes, J. Sci. Comput. 35 (2–3) (2008) 114–131.
[24] D. Hartmann, M. Meinke, W. Schroder, Differential equation based constrained reinitialization for level set methods, J. Comput. Phys. 227 (14) (2008)

6821–6845.
[25] D. Hartmann, M. Meinke, W. Schroder, The constrained reinitialization equation for level set methods, J. Comput. Phys. 229 (5) (2010) 1514–1535.
[26] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys. 183 (1) (2002)

83–116.
[27] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, J.

Comput. Phys. 162 (2) (2000) 301–337.
[28] S.P. van der Pijl, A. Segal, C. Vuik, P. Wesseling, A mass-conserving level-set method for modelling of multi-phase flows, Int. J. Numer. Methods Fluids

47 (4) (2005) 339–361.
[29] X. Yang, A.J. James, J. Lowengrub, X. Zheng, V. Cristini, An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured

triangular grids, J. Comput. Phys. 217 (2) (2006) 364–394.
[30] E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (1) (2005) 225–246.
[31] E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow ii, J. Comput. Phys. 225 (1) (2007) 785–807.
[32] D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1) (1999) 96–127.
[33] T. Biben, C. Misbah, Tumbling of vesicles under shear flow within an advected-field approach, Phys. Rev. E 67 (2003) 031908.
[34] M. Owkes, O. Desjardins, A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows, J. Comput. Phys. 249

(2013) 275–302.
[35] Z. Jibben, M. Herrmann, An arbitrary-order Runge–Kutta discontinuous Galerkin approach to reinitialization for banded conservative level sets, J.

Comput. Phys. 349 (2017) 453–473.
[36] R. Saye, et al., High-order methods for computing distances to implicitly defined surfaces, Commun. Appl. Math. Comput. Sci. 9 (1) (2014) 107–141.
[37] B. Cockburn, C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws. II: general

framework, Math. Comput. 52 (1989) 411–435.
[38] B. Cockburn, S.Y. Lin, C.-W. Shu, Tvb Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-

dimensional systems, J. Comput. Phys. 84 (1989) 90–113.
[39] B. Cockburn, S. Hou, C.-W. Shu, The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidi-

mensional case, Math. Comput. 54 (1990) 545–581.
[40] Y.-T. Zhang, C.-W. Shu, High-order weno schemes for Hamilton–Jacobi equations on triangular meshes, SIAM J. Sci. Comput. 24 (3) (2003) 1005–1030.
[41] D. Levy, S. Nayak, C.-W. Shu, Y.-T. Zhang, Central weno schemes for Hamilton–Jacobi equations on triangular meshes, SIAM J. Sci. Comput. 28 (6) (2006)

2229–2247.
[42] C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (1999) 666–690.
[43] F. Li, C.-W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton–Jacobi equations, Appl. Math. Lett.

18 (2005) 1204–1209.
[44] Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations, J. Comput. Phys. 223 (2007)

398–415.
[45] J. Yan, S. Osher, A local discontinuous Galerkin method for directly solving Hamilton–Jacobi equations, J. Comput. Phys. 239 (2011) 232–244.
[46] C.-W. Shu, Survey on discontinuous Galerkin methods for Hamilton–Jacobi equations, Contemp. Math. 586 (2013) 323–330.
[47] S. Fechter, C.-D. Munz, A discontinuous Galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow, Int. J.

Numer. Methods Fluids 78 (7) (2015) 413–435.
[48] E. Marchandise, J.-F. Remacle, N. Chevaugeon, A quadrature-free discontinuous Galerkin method for the level set equation, J. Comput. Phys. 212 (Feb.

2006) 338–357.
[49] J. Grooss, J. Hesthaven, A level set discontinuous Galerkin method for free surface flows, Comput. Methods Appl. Mech. Eng. 195 (25) (2006) 3406–3429.
[50] A. Karakus, T. Warburton, M. Aksel, C. Sert, A GPU accelerated level set reinitialization for an adaptive discontinuous Galerkin method, Comput. Math.

Appl. 72 (3) (2016) 755–767.
[51] P.D.M. Spelt, A level-set approach for simulations of flows with multiple moving contact lines with hysteresis, J. Comput. Phys. 207 (2005) 389–404.
[52] R.F. Ausas, E.A. Dari, G.C. Buscaglia, A geometric mass-preserving redistancing scheme for the level set function, Int. J. Numer. Methods Fluids 65 (8)

(2011) 989–1010.
[53] N. Parolini, Computational Fluid Dynamics for Naval Engineering Problems, PhD thesis, EPFL Lausanne, 2004.
[54] M. Herrmann, A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, J. Comput. Phys. 227 (4) (2008)

2674–2706.
[55] B. Muller, F. Kummer, M. Oberlack, Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Int. J. Numer.

Methods Eng. 96 (8) (2013) 512–528.
[56] B. Cockburn, C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys. 141

(1998) 199–224.
[57] J. Qiu, C.-W. Shu, Runge–Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput. 26 (3) (2005) 907–929.
[58] J. Zhu, J. Qiu, C.-W. Shu, M. Dumbser, Runge–Kutta discontinuous Galerkin method using WENO limiters ii: unstructured meshes, J. Comput. Phys.

227 (9) (2008) 4330–4353.
[59] J. Zhu, X. Zhong, C.-W. Shu, J. Qiu, Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J. Comput.

Phys. 248 (2013) 200–220.
[60] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge–Kutta schemes, Math. Comput. 67 (1998) 73–85.
[61] B. Cockburn, C.-W. Shu, Runge–Kutta discontinuous Galerkin finite element methods for convection-dominated problems, J. Sci. Comput. 16 (2001)

173–261.
[62] W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general purpose object oriented finite element library, ACM Trans. Math. Softw. 33 (4) (2007)

24/1–24/27.
[63] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, D. Wells, The deal.II library, version 8.4, J. Numer.

Math. 24 (2016).
[64] S. Xu, W. Ren, Reinitialization of the level-set function in 3d simulation of moving contact lines, Commun. Comput. Phys. 20 (5) (2016) 1163–1182.
[65] G. Della Rocca, G. Blanquart, Level set reinitialization at a contact line, J. Comput. Phys. 265 (2014) 34–49.
[66] J. Bell, P. Colella, H. Glaz, A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys. 85 (2) (1989) 257–283.

http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5375734661743939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5375734661743939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5275536D3030s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4D696E3130s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4368654D696E4769623038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4368654D696E4769623038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4861724D65695363683038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4861724D65695363683038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4861724D65695363683130s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib456E724665644665723032s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib456E724665644665723032s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5375735075633030s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5375735075633030s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib76616E5365675675693035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib76616E5365675675693035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib59616E4A616D4C6F773036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib59616E4A616D4C6F773036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4F6C734B72653035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4F6C734B72655A61683037s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4A61633939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4269624D69733033s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4F776B4465733133s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4F776B4465733133s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4A69624865723137s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4A69624865723137s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5361793134s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F53683839s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F53683839s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F4C696E53683839s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F4C696E53683839s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F486F53683930s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F486F53683930s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68615368753033s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4C65764E61795368755A68613036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4C65764E61795368755A68613036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib487553683939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4C6953683035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4C6953683035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436853683037s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436853683037s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib59614F733131s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib53683133s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4665634D756E3135s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4665634D756E3135s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4D617252656D4368653036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4D617252656D4368653036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib477248653036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4B615761416B3136s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4B615761416B3136s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5370653035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4175734461724275733131s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4175734461724275733131s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5061723034s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4865723038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4865723038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4D756C4B756D4F62653133s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4D756C4B756D4F62653133s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F53683938s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F53683938s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5169755368753035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68755169755368753038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68755169755368753038s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68755A686F5368753133s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A68755A686F5368753133s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib53476F7453683938s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F53683031s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib436F53683031s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib42616E4861724B616E3037s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib42616E4861724B616E3037s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib6465616C49493834s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib6465616C49493834s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib587552656E3136s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib44656C426C613134s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib42656C436F6C476C613839s1

664 J. Zhang, P. Yue / Journal of Computational Physics 378 (2019) 634–664
[67] W. Rider, D. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (2) (1998) 112–152.
[68] P. Gomez, J. Hernandez, J. Lopez, On the reinitialization procedure in a narrow-band locally refined level set method for interfacial flows, Int. J. Numer.

Methods Eng. 63 (10) (2005) 1478–1512.
[69] R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal. 33 (2) (1996) 627–665.
[70] C. Min, F. Gibou, A second order accurate level set method on non-graded adaptive cartesian grids, J. Comput. Phys. 225 (1) (2007) 300–321.
[71] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (3) (1979) 335–362.
[72] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional

flows, J. Comput. Phys. 152 (2) (1999) 423–456.
[73] E.D. Wilkes, S.D. Phillips, O.A. Basaran, Computational and experimental analysis of dynamics of drop formation, Phys. Fluids 11 (12) (1999) 3577–3598.
[74] C. Zhou, P. Yue, J.J. Feng, Formation of simple and compound drops in microfluidic devices, Phys. Fluids 18 (9) (2006) 092105.
[75] T.A. Davis, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (June 2004) 196–199.

http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5269644B6F743938s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib476F6D4865724C6F703035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib476F6D4865724C6F703035s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4C65763936s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4D696E4769623037s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A616C3739s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4775654C694E61643939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4775654C694E61643939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib57696C5068694261733939s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib5A686F59756546656E3036s1
http://refhub.elsevier.com/S0021-9991(18)30773-3/bib4461763034s1

	A high-order and interface-preserving discontinuous Galerkin method for level-set reinitialization
	1 Introduction
	2 Discontinuous Galerkin method for Hamilton-Jacobi equation
	2.1 The hybrid numerical ﬂux

	3 Interface-preserving reconstruction of level-set function
	3.1 Determination of ∇φ in interface cells
	3.2 Determination of c0
	3.2.1 Interface cells
	3.2.2 Non-interface cells

	4 Slope limiter for ∇φh
	5 Numerical examples
	5.1 Convergence tests
	5.1.1 Convergence tests for g(x)=g1(x)
	5.1.2 Convergence tests for g(x)=g2(x)
	5.1.3 Reinitialization in three dimensions

	5.2 Elliptic interface
	5.3 Square interface
	5.4 Contact line
	5.5 Interface deformation in a swirling vortex
	5.5.1 Short-time vortex test
	5.5.2 Long-time vortex test
	5.5.3 Vortex test in 3D

	5.6 Rotation of a slotted disk
	5.7 Pinch-off of a pendant drop

	6 Concluding remarks
	Acknowledgements
	References

