A Randomized Controlled Trial on the Impact of
Polyglot Programming in a Database Context

Phillip Merlin Uesbeck

University of Nevada, Las Vegas

Las Vegas, NV, USA

uesbeck@unlv.nevada.edu
https://orcid.org/0000-0001-8182-9942

Andreas Stefik
University of Nevada, Las Vegas
Las Vegas, NV, USA
stefika@gmail.com

—— Abstract

Using more than one programming language in the same project is common practice. Often,
additional languages might be introduced to projects to solve specific issues. While the practice
is common, it is unclear whether it has an impact on developer productivity. In this paper, we
present a pilot study investigating what happens when programmers switch between program-
ming languages. The experiment is a repeated measures double-blind randomized controlled
trial with 3 groups with various kinds of code switching in a database context. Results provide
a rigorous testing methodology that can be replicated by us or others and a theoretical backing
for why these effects might exist from the linguistics literature.

2012 ACM Subject Classification Software and its engineering — Software development tech-
niques

Keywords and phrases human-factors, randomized controlled trial, polyglot programming
Digital Object Identifier 10.4230/0ASIcs. PLATEAU.2018.1

Funding This work was partially funded by the NSF under grants 1644491, 1738259, and 1640131.

1 Introduction

Polyglot programming, using more than one computer language in the same programming
context, is common. Evidence from Tomassetti and Torchiano suggests that 97% of open
source projects on Github use two or more computer languages [19], with the number of
languages per project averaging about 5 [11, 19]. Seeing how common the use of multiple
programming languages is, the question of its productivity impact on developers at various
levels becomes salient. An obvious research question might be, "Does polyglot programming
have an impact on developer productivity, and if so, how large is it, what direction, and
in what context?" Given that software is a $407.3 billion industry [1] and that the median
salary for a software developer is $103,560 per year in the U.S. [12], productivity impacts are
expensive at scale. This broad question, which we investigate one specific aspect of in this
paper, guides our broader research direction.

One aspect of polyglot programming is repeated switching between languages, which
we will call code switching. Using the study presented in this paper, we aim to evaluate
whether code switching impacts developer productivity. Our running theory as to why this
might be is guided by evidence-based research in the field of linguistics, which investigates
? Phillip Merlin Uesbeck and Andre.as Stefik;

5v icensed under Creative Commons License CC-BY
9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 1; pp. 1:1-1:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

1:2

A Trial on the Impact of Polyglot Programming in a Database Context

the phenomenon of code switching in natural language [8, 10, 21]. Research in that context
has shown that there is a time cost to switching between the use of natural languages [13],
which begs the question of whether a time cost is measurable for switching between computer
languages. Given that neurological studies on program comprehension and natural language
comprehension seem to use the same areas of the brain [14], such a hypothesis seems plausible.

The specific aspect of the broader research line we are investigating is in the common
case of polyglot within a database programming context. Thus, we present here a small pilot
study of a double-blind randomized controlled trial with six programming tasks. To do this,
we created three different versions of a querying API, 1) one without polyglot (non), 2) one
where raw SQL is embedded (polyglot), and 3) a hybrid approach of our own design where
the embedded query is similar to the host language (hybrid). Our null-hypotheses is that
there is no relationship between code switching and productivity in the context of database
programming.

With guidance from this pilot study, our goal is to build up a research line in a systematic
way, increasing the sample size as we go and replicate the work rigorously each time. Finally,
many of the experiments our lab conducts are designed off of the work of Austin Bradford
Hill [6], who led pioneering work in medicine on how to design experiments and which later
helped lead to the CONSORT evidence standard. To our knowledge, the field of computer
science does not have an evidence standard for empirical work, so we adapted CONSORT
after discussions from Schloss Dagstuhl [15]. Put another way, while scholars sometimes
disagree about what should be reported with empirical work, or how it is reported, we
followed an existing evidence standard to provide an evidence-based structure on what we
should and should not report.

The rest of this paper is going to be structured as follows: First, we will discuss related
work. Then, we will go over the design of the experiment in section 3. Results will be shown
in subsection 4 and then discussed in section 5, finally the paper will end in a conclusion in
section 6.

2 Related Work

The benefits and drawbacks of polyglot programming on a human-factors level are under-
explored in the scientific literature. The main argument in favor of polyglot programming
is about “/...] choosing the right tool for the job" [2], a view that seems to drive the field
of domain specific language research which proposes using specialized languages for better
productivity and maintenance [20]. Claims have been made that the use of a more appropriate
language for a task leads to better productivity and easier maintenance by reducing the lines
of code of a project [7], but also that the need to learn more languages creates a strain on
the developers and that introduction of more languages to a project can reduce the pool of
developers able to maintain the project [7].

Programmer productivity is studied in a variety of aspects of programming. Studies range
from programming language features such as syntax [16] and type systems [9], over API
design [17] and the effect of errors [4] to studies trying to investigate the cognitive processes
involved [14, 5]. These studies on APIs, syntax, or others provided guidance to this work,
although there is little in the literature that contains measurements of polyglot programming
itself.

P. M. Uesbeck and A. Stefik

Listing 1 Task 1 as presented to the partici-

pants Listing 2 Task 1 Solution polyglot

Query q = new Query () ;
package library ;

q.Prepare ("SELECT % FROM professors' -+

import library .=; WHERE id < 32 ORDER BY salary DESC") ;
public class Taskl { Table r = prof.Search(q);
/ ** return r;

* Please write this method to return a
<+ Table object containing

* all columns for all entries with an id
<> smaller than 32

5 ond serted fem high melery (e low solozy Listing 3 Task 1 Solution non
— .
* Query q = new Query () ;
* Table information :
* q.SortHighToLow (" salary ") ;
* — prof — q.Filter (q.Where("id") .LessThan (32)) ;
*
% id (int) | firstname (String) | lastname Table r = prof.Search(q);
< (String) | salary (int)

return r;

* Kk K ¥

Use the technique shown to you in the

> 1 i P . .
o sempies given Listing 4 Task 1 Solution hybrid
*/
public Table query(Table prof) throws Query q = new Query () ;

< Exception {
q.SortHighToLow ("salary ") ;
// Your Code here q.Filter ("id < 32");
return null; Table r = prof.Search (q);

}

return r;

3 Methods

Study Design. We conducted a double-blind repeated measures randomized controlled trial
in which participants were randomly assigned to one of three experimental groups between
April and May 2018. Each participant was asked to solve 6 programming tasks.

While we chose this particular design for our study, where participants used a host
language with an embedded code, there are several other ways that it could have been
designed and we are looking to expand testing to such designs at a later time. Under

consideration was to have participants study one language in a task, then another in a second.

We also considered testing smaller code samples to isolate certain aspects of switching, like
just the one method where embedding occurs for polyglot. Ultimately we settled on a design
that we thought was balanced. Since embedding SQL into a host language is common, it has
some face validity as a common polyglot task and thus seemed like a reasonable place to
investigate first.

Study Population & Setting. Eligible were participants over the age of 18 who had some
programming experience. Recruitment occurred during class time via advertisement pamphlet
at the University of Nevada, Las Vegas. The pamphlet contained the URL to the website used

for the experiment which guided participants through the entire process of the experiment.

On the website, participants give consent, fill out a survey, and then solve the programming
tasks. A time limit of 45 minutes per task was given to limit the overall time commitment
for the experiment.

Intervention. Participants were randomly assigned to one of three groups and received a
different code sample depending on their group. Each group’s code sample demonstrated
enough code to let participants infer the solutions needed for the tasks. We designed the three
different groups to require different amounts of language switching while writing database

1:3

PLATEAU 2018

1:4

A Trial on the Impact of Polyglot Programming in a Database Context

queries in Java. The first group (polyglot) uses SQL strings as parameters in method calls
to create a query (see listing 2 and 5), requiring switches. The second group (non-polyglot)
had to create a query by building it from objects in a series of method calls in a more
object-oriented approach (see listing 3 and 6), requiring no switches, and lastly, the hybrid
group’s approach mixes the use of parts of SQL-style strings and method calls, using SQL
syntax for conditions and column names and method calls for the rest (see listing 4 and 7).

To solve the tasks, participants had to fill in the code provided to them in a way that
satisfied all unit tests. If an incomplete solution was submitted, compilation output was
displayed and work on the tasks continued until a successful solution was submitted or the
time ran out. The participants had to solve 3 SELFECT,1 UPDATE, 1 INSERT, and 1
JOIN task to cover a range of different uses of queries. While the UPDATE, INSERT,
and JOIN tasks were kept standard, the 3 SELFECT tasks varied in the complexity of their
conditions and whether a ORDER BY component was needed.

An example of what the tasks looked like can be seen in listing 1, which shows the empty
first task of all three groups. The instructional comments describe the structure of the table
object passed into the method. Possible solutions for each group to the first task can be seen
in listings 2, 3, and 4.

Outcomes. The difference of the start time and the end time of a task decided the dependent
variable time to solution. As a random factor, the platform also recorded the participants’
self-reported experience in using databases.

Randomization. Randomized assignment to the groups was handled by the website and
followed the covariate adaptive randomization approach [18]. The participants were assigned
to a experience category based on their college year. Group assignment was then conducted
randomly but balanced within experience categories.

Blinding. The assignment of participants to their group was done automatically and without
intervention by the researchers. Since the experiment was done using the website, there was
no direct interaction with the participants and therefore the proctors had fewer avenues to
accidentally or intentionally bias them. The participants were not informed about which
group they were assigned to or what the hypothesis of the study might be.

4 Results

Recruitment. We recruited 11 participants for this pilot study. Of the 11 participants,
5 identified themselves as female and 6 as male. On average, the participants were about
24 years old (M = 23.55, SD = 7.10). Six of the participants were sophomores, two were
juniors, two were seniors, and one was a graduate student. Four of the participants reported
that English is not their primary language. The polyglot group had 4 participants, the
non-polyglot group had 3, and the hybrid group had 4. The demographics can also be found
in table 1.

Baseline Data. All 11 of the participants completed all tasks. The data (all times in
seconds) can be found in table 2. Figure 1 shows the average task completion times between
the two groups. Figure 2 shows the task times by group in a boxplot.

P. M. Uesbeck and A. Stefik

Table 1 Demographics.

Metric ‘ ‘ Polyglot Non Hybrid
N 4 3 4
DB Experience 25.00% 33.33% 25.00%
Female 50.00% 66.66% 0.00%
Age 23.50 (SD = 5.74) | 20.33 (SD = 1.53) | 26.00 (SD = 10.74)
Native 75.00% 66.66% 100.00%
Table 2 Times per task in seconds.
Non Polyglot Hybrid Total
Task N mean SD N mean SD N mean SD mean SD
Task 1 | 3 1371.67 545.68 4 1380.50 700.38 4 999.25 668.48 | 1239.45 614.05
Task 2 | 3 676.33 143.39 4 782.00 641.35 4 848.50 368.77 | T77.36 416.42
Task 3 | 3 1006.67 533.35 4 1870.25 419.55 4 1363.50 965.22 | 1450.45 722.35
Task 4 | 3 438.67 220.18 4 268.00 134.39 4 357.50 215.69 | 347.09 184.75
Task 5 | 3 154.33 39.95 4 702.50 945.13 4 258.75 107.21 | 391.64 578.24
Task 6 | 3 663.00 412.94 4 787.00 437.08 4 337.25 47.33 589.64 367.10
Total 18 718.44 507.60 || 24 965.04 751.49 || 24 694.12 615.21 | 799.27 645.89
Analysis. To analyze the results, we ran a mixed designs repeated measures ANOVA using

the R programming language with respect to time to solution, using task as a within-subjects
variable and group and database experience as between-subjects variables. Sphericity was
tested using Mauchly’s test for Sphericity, which shows that the assumption of sphericity was
violated for the variable task. Following reported numbers are reported with Greenhouse-
Geisser corrections taken into account.

There is a significant effect at p < 0.5 for the within-subjects variable task, F(5,25) =
7.065, p < 0.001 (nf, = 0.479), but no significant effect for group, F(2,5) = 0.889, p =
0.467 (12 = 0.110) or database experience, F(1,5) = 0.973, p = 0.369 (12 = 0.064). None of
the interaction effects are significant. To test the differences between the tasks in more detail,
we ran a Bonferroni test. There are significant differences between task 1 and 4 (p = 0.011),
1and 5 (p = 0.041), 3 and 4 (p = 0.009), 3 and 5 (p = 0.008), and 3 and 6 (p = 0.035).

Listing 5 Solution 6 polyglot Listing 6 Solution 6 non Listing 7 Solution 6 hybrid

Query q = new Query () ;
q.AddFields ("id, firstname ,
<> lastname, clubname") ;

Query g = new Query () ;

a.AddField ("id")
.AddField (" firstname ")
.AddField ("lastname ")
.AddField (" clubname") ;

Query q = new Query() ;
q.Prepare ("SELECT id ,
<5 firstname , lastname,
< clubname "+
"FROM students JOIN clubmap
< ON students.id =

q.Combine(students , "id",

<+ clubmap, "studentid") ;
q.Combine(students , "id",

< clubmap, "studentid");
Table r = students.Search(q);
return r;

<+ clubmap.studentid") ;
Table r = students.Search(q,
<+ clubmap) ;
return r;

Table r = students.Search(q);

return r;

5 Discussion

It is crucial to state that we found no significant differences overall in our pilot. This is what
we would expect with a sample size of 11 unless polyglot had a very large effect size. We
observed that 7)12, = 0.110 for the group task, which means the polyglot effect explained about
11% of the variance. This needs to be confirmed or refuted at scale.

Besides the effect, which gives us clues toward what we might see in replications, we think
observations about the individual tasks are interesting. Note that the non-polyglot group
performed 3.50% slower than hybrid group across all tasks and that the polyglot group was

1:5

PLATEAU 2018

1:6

A Trial on the Impact of Polyglot Programming in a Database Context

Group E3 Hybrid E3 Poly B3 Non
Group E3 Hybrid £ Poly EJ Non

2500

2500

2000
2000

@
g
8

1500

Time [s]
Time [s]

1000

500 500
=
==
3 4 5 6

Hybrid Poly Non o 3
Group Task

1000

Figure 1 Boxplot of results between the Figure 2 Boxplot of differences in time by
groups. task.

39.0% slower than hybrid. For some tasks, the effects were more pronounced. Consider task
6, where the non-polyglot group performed 96.6% slower than the hybrid group and the fully
polyglot group was 133.4% slower than hybrid. This task is shown in listings 5, 6, and 7. We
highlight this task not because of its result, but because the differences in the code are quite
small. Given the large differences in human performance, this surprised us.

We think these observations teach us two lessons. First, polyglot programming is not
a simple concept. Claims made in the literature about the practice being good or bad,
without corresponding data, should be re-considered empirically. For example, after reading
the linguistics literature on code switching, while we hypothesized the non-polyglot group
might do very well, our polyglot hybrid seemed to have about the same impact. The study
presented in this article is only a first step towards investigating the issue and we hope that
the experimental design we presented can be a building block in future study of the impact
of polyglot programming. Secondly, the polyglot group did quite poorly, despite the fact
that we tested a commonly known case of polyglot programming. This might indicate, if
our results are confirmed at scale and under more conditions, that a conditional polyglotism
might be reasonable in programming languages. As the polyglot group uses two distinct
languages and the hybrid group mixes languages while the last group stays within the same
language, it appears that the distance from the host language could have an impact on
results. This might suggest that switching between semantically and syntactically similar
languages might be easier than switching between different ones.

Differences between tasks overall are explained by the differences in difficulty of the tasks
and a learning effect. Task 3, presents a spike in times as it was the conceptually hardest
task. It required participants to create a complex logical expression, compared to the ones
for task 1 and 2, while most other tasks are what could be considered standard versions of
their respective database commands.

Limitations. Every empirical study has limitations and ours is no exception. The most
obvious to our pilot study is that it is a low sample size experiment on student programmers.
We certainly make no claims about generalization, as this is not the point of a pilot study.

P. M. Uesbeck and A. Stefik

That said, it is important to discuss limitations not just in this sense, because generalization
can mean many things, but also what limits must be overcome to get a generalized grasp of
polyglot in practice.

First, we think to really understand polyglot in the wild, we would need a combination
of measures to sort out the effects. For example, non-native English speakers writing code
in English might have different results that need to be considered. On this same line of
thinking, children learning to program, with various levels of understanding of their native
tongue, would likely have different impacts as well. Similarly, professional programmers, or
perhaps more specifically experts in polyglot programming in databases, might have different
effects still. From our perspective, we think it is important to test all of these different kinds
of people to sort out the facts over time.

Second, while we used a randomized controlled trial in a lab setting because our hybrid
approach does not exist in the field, it is important to recognize that effects from a lab
setting may not match those in practice, although in programming languages they sometimes
do. Just as one example, studies on syntax [16] seem to provide similar results to those
on compiler errors in the field [3], which Bradford-Hill would call "coherence." That said,
there is no panacea in empirical work. Rigorous data gathering over time, through multiple
techniques, is often what settles difficult research questions.

6 Conclusion

In this paper, we described a pilot experiment on the impact of code switching on software
development productivity, which was motivated by the prevalence of the practice in the
field. Findings in linguistic research suggest that there is a time cost to switching between
natural languages, but to our knowledge this is the first randomized controlled trial on the
topic for programming languages. We conducted a pilot study with three groups, exploring
alternative designs for database programming, including polyglot, non-polyglot, and a hybrid
approach. Our study was a small pilot designed to evaluate our methodology, so the results
are not conclusive. That said, they do appear to provide a hint that the syntactic and
semantic distance between embedded languages, amongst other factors, could impact human
productivity in practice.

—— References

1 Gartner Says Worldwide Software Market Grew 4.8 Percent in 2013. https://www.

gartner.com/newsroom/id/2696317. Accessed: 2018-06-02.

2 Polyglot Programming. http://nealford.com/memeagora/2006/12/05/Polyglot_
Programming.html. Accessed: 2018-04-25.

3 Amjad Altadmri and Neil C.C. Brown. 37 Million Compilations: Investigating Novice
Programming Mistakes in Large-Scale Student Data. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, SIGCSE 15, pages 522-527, New
York, NY, USA, 2015. ACM. doi:10.1145/2676723.2677258.

4 Brett A Becker. A new metric to quantify repeated compiler errors for novice programmers.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, pages 296-301. ACM, 2016.

5 Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. Eye movements in code reading: Relax-
ing the linear order. In Program Comprehension (ICPC), 2015 IEEE 23rd International
Conference on, pages 255—265. IEEE, 2015.

1:7

PLATEAU 2018

1:8

A Trial on the Impact of Polyglot Programming in a Database Context

10

11

12

13

14

15

16

17

18

19

20

21

Richard Doll and A Bradford Hill. Smoking and carcinoma of the lung. British medical
journal, 2(4682):739, 1950.

Hans-Christian Fjeldberg. Polyglot programming. a business perspective. PhD thesis, Mas-
ter thesis, Norwegian University of Science and Technology, 2008.

Roberto R Heredia and Jeanette Altarriba. Bilingual language mixing: Why do bilinguals
code-switch? Current Directions in Psychological Science, 10(5):164-168, 2001.

Michael Hoppe and Stefan Hanenberg. Do developers benefit from generic types?: an
empirical comparison of generic and raw types in java. In Proceedings of the 2018 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, pages 457-474. ACM, 2013. doi:10.1145/2509136.2509528.

Ping Li. Spoken word recognition of code-switched words by Chinese-English bilinguals.
Journal of memory and language, 35(6):757-774, 1996.

Philip Mayer and Alexander Bauer. An empirical analysis of the utilization of multiple
programming languages in open source projects. In Proceedings of the 19th International
Conference on FEvaluation and Assessment in Software Engineering, page 4. ACM, 2015.
Bureau of Labor Statistics. Software Developers - Summary. https://www.bls.gov/ooh/
computer-and-information-technology/software-developers.htm. Accessed: 2018-
04-20.

Daniel J Olson. Bilingual language switching costs in auditory comprehension. Language,
Cognition and Neuroscience, 32(4):494-513, 2017.

Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister, Chris-
tian Késtner, Andrew Begel, Anja Bethmann, and André Brechmann. Measuring neural
efficiency of program comprehension. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 140-150. ACM, 2017.

Andreas Stefik, Bonita Sharif, Brad. A. Myers, and Stefan Hanenberg. Evidence About
Programmers for Programming Language Design (Dagstuhl Seminar 18061). Dagstuhl
Reports, 8(2):1-25, 2018. doi:10.4230/DagRep.8.2.1.

Andreas Stefik and Susanna Siebert. An Empirical Investigation into Programming Lan-
guage Syntax. Trans. Comput. Educ., 13(4):19:1-19:40, November 2013.

Jeffrey Stylos and Brad A Myers. The implications of method placement on APT learnability.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, pages 105-112. ACM, 2008.

KP Suresh. An overview of randomization techniques: an unbiased assessment of outcome
in clinical research. Journal of human reproductive sciences, 4(1):8, 2011.

Federico Tomassetti and Marco Torchiano. An empirical assessment of polyglot-ism in
GitHub. In Proceedings of the 18th International Conference on Fvaluation and Assessment
in Software Engineering, page 17. ACM, 2014.

Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices, 35(6):26-36, 2000.

W Quin Yow, Jessica SH Tan, and Suzanne Flynn. Code-switching as a marker of linguistic
competence in bilingual children. Bilingualism: Language and Cognition, pages 1-16, 2017.

	Introduction
	Related Work
	Methods
	Results
	Discussion
	Conclusion

