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Abstract

Using more than one programming language in the same project is common practice. Often,

additional languages might be introduced to projects to solve specific issues. While the practice

is common, it is unclear whether it has an impact on developer productivity. In this paper, we

present a pilot study investigating what happens when programmers switch between program-

ming languages. The experiment is a repeated measures double-blind randomized controlled

trial with 3 groups with various kinds of code switching in a database context. Results provide

a rigorous testing methodology that can be replicated by us or others and a theoretical backing

for why these effects might exist from the linguistics literature.
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1 Introduction

Polyglot programming, using more than one computer language in the same programming

context, is common. Evidence from Tomassetti and Torchiano suggests that 97% of open

source projects on Github use two or more computer languages [19], with the number of

languages per project averaging about 5 [11, 19]. Seeing how common the use of multiple

programming languages is, the question of its productivity impact on developers at various

levels becomes salient. An obvious research question might be, "Does polyglot programming

have an impact on developer productivity, and if so, how large is it, what direction, and

in what context?" Given that software is a $407.3 billion industry [1] and that the median

salary for a software developer is $103,560 per year in the U.S. [12], productivity impacts are

expensive at scale. This broad question, which we investigate one specific aspect of in this

paper, guides our broader research direction.

One aspect of polyglot programming is repeated switching between languages, which

we will call code switching. Using the study presented in this paper, we aim to evaluate

whether code switching impacts developer productivity. Our running theory as to why this

might be is guided by evidence-based research in the field of linguistics, which investigates
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the phenomenon of code switching in natural language [8, 10, 21]. Research in that context

has shown that there is a time cost to switching between the use of natural languages [13],

which begs the question of whether a time cost is measurable for switching between computer

languages. Given that neurological studies on program comprehension and natural language

comprehension seem to use the same areas of the brain [14], such a hypothesis seems plausible.

The specific aspect of the broader research line we are investigating is in the common

case of polyglot within a database programming context. Thus, we present here a small pilot

study of a double-blind randomized controlled trial with six programming tasks. To do this,

we created three different versions of a querying API, 1) one without polyglot (non), 2) one

where raw SQL is embedded (polyglot), and 3) a hybrid approach of our own design where

the embedded query is similar to the host language (hybrid). Our null-hypotheses is that

there is no relationship between code switching and productivity in the context of database

programming.

With guidance from this pilot study, our goal is to build up a research line in a systematic

way, increasing the sample size as we go and replicate the work rigorously each time. Finally,

many of the experiments our lab conducts are designed off of the work of Austin Bradford

Hill [6], who led pioneering work in medicine on how to design experiments and which later

helped lead to the CONSORT evidence standard. To our knowledge, the field of computer

science does not have an evidence standard for empirical work, so we adapted CONSORT

after discussions from Schloss Dagstuhl [15]. Put another way, while scholars sometimes

disagree about what should be reported with empirical work, or how it is reported, we

followed an existing evidence standard to provide an evidence-based structure on what we

should and should not report.

The rest of this paper is going to be structured as follows: First, we will discuss related

work. Then, we will go over the design of the experiment in section 3. Results will be shown

in subsection 4 and then discussed in section 5, finally the paper will end in a conclusion in

section 6.

2 Related Work

The benefits and drawbacks of polyglot programming on a human-factors level are under-

explored in the scientific literature. The main argument in favor of polyglot programming

is about “[...] choosing the right tool for the job" [2], a view that seems to drive the field

of domain specific language research which proposes using specialized languages for better

productivity and maintenance [20]. Claims have been made that the use of a more appropriate

language for a task leads to better productivity and easier maintenance by reducing the lines

of code of a project [7], but also that the need to learn more languages creates a strain on

the developers and that introduction of more languages to a project can reduce the pool of

developers able to maintain the project [7].

Programmer productivity is studied in a variety of aspects of programming. Studies range

from programming language features such as syntax [16] and type systems [9], over API

design [17] and the effect of errors [4] to studies trying to investigate the cognitive processes

involved [14, 5]. These studies on APIs, syntax, or others provided guidance to this work,

although there is little in the literature that contains measurements of polyglot programming

itself.
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Listing 1 Task 1 as presented to the partici-

pants

package l i b r a r y ;

import l i b r a r y . ∗ ;

p u b l i c c l a s s Task1 {

/∗∗
∗ P l e a s e w r i t e t h i s method to r e t u r n a

→֒ Table o b j e c t c o n t a i n i n g
∗ a l l columns f o r a l l e n t r i e s with an i d

→֒ s m a l l e r than 32
∗ and s o r t e d from high s a l a r y to low s a l a r y

→֒ .
∗
∗ Table i n f o r m a t i o n :
∗
∗ − p r o f −

∗
∗ i d ( i n t ) | f i r s t n a m e ( S t r i n g ) | lastname

→֒ ( S t r i n g ) | s a l a r y ( i n t )
∗
∗
∗
∗ Use the t e c h n i q u e shown to you i n the

→֒ samples g i v e n
∗
∗/

p u b l i c Table query ( Table p r o f ) throws
→֒ Exception {

// Your Code h e r e

r e t u r n n u l l ;
}

}

Listing 2 Task 1 Solution polyglot

Query q = new Query ( ) ;

q . Prepare ( "SELECT ∗ FROM p r o f e s s o r s " +
" WHERE i d < 32 ORDER BY s a l a r y DESC" ) ;

Table r = p r o f . Search ( q ) ;

r e t u r n r ;

Listing 3 Task 1 Solution non

Query q = new Query ( ) ;

q . SortHighToLow ( " s a l a r y " ) ;
q . F i l t e r ( q . Where ( " i d " ) . LessThan ( 3 2 ) ) ;

Table r = p r o f . Search ( q ) ;

r e t u r n r ;

Listing 4 Task 1 Solution hybrid

Query q = new Query ( ) ;

q . SortHighToLow ( " s a l a r y " ) ;
q . F i l t e r ( " i d < 3 2 " ) ;

Table r = p r o f . Search ( q ) ;

r e t u r n r ;

3 Methods

Study Design. We conducted a double-blind repeated measures randomized controlled trial

in which participants were randomly assigned to one of three experimental groups between

April and May 2018. Each participant was asked to solve 6 programming tasks.

While we chose this particular design for our study, where participants used a host

language with an embedded code, there are several other ways that it could have been

designed and we are looking to expand testing to such designs at a later time. Under

consideration was to have participants study one language in a task, then another in a second.

We also considered testing smaller code samples to isolate certain aspects of switching, like

just the one method where embedding occurs for polyglot. Ultimately we settled on a design

that we thought was balanced. Since embedding SQL into a host language is common, it has

some face validity as a common polyglot task and thus seemed like a reasonable place to

investigate first.

Study Population & Setting. Eligible were participants over the age of 18 who had some

programming experience. Recruitment occurred during class time via advertisement pamphlet

at the University of Nevada, Las Vegas. The pamphlet contained the URL to the website used

for the experiment which guided participants through the entire process of the experiment.

On the website, participants give consent, fill out a survey, and then solve the programming

tasks. A time limit of 45 minutes per task was given to limit the overall time commitment

for the experiment.

Intervention. Participants were randomly assigned to one of three groups and received a

different code sample depending on their group. Each group’s code sample demonstrated

enough code to let participants infer the solutions needed for the tasks. We designed the three

different groups to require different amounts of language switching while writing database

PLATEAU 2018
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queries in Java. The first group (polyglot) uses SQL strings as parameters in method calls

to create a query (see listing 2 and 5), requiring switches. The second group (non-polyglot)

had to create a query by building it from objects in a series of method calls in a more

object-oriented approach (see listing 3 and 6), requiring no switches, and lastly, the hybrid

group’s approach mixes the use of parts of SQL-style strings and method calls, using SQL

syntax for conditions and column names and method calls for the rest (see listing 4 and 7).

To solve the tasks, participants had to fill in the code provided to them in a way that

satisfied all unit tests. If an incomplete solution was submitted, compilation output was

displayed and work on the tasks continued until a successful solution was submitted or the

time ran out. The participants had to solve 3 SELECT , 1 UPDATE, 1 INSERT , and 1

JOIN task to cover a range of different uses of queries. While the UPDATE, INSERT ,

and JOIN tasks were kept standard, the 3 SELECT tasks varied in the complexity of their

conditions and whether a ORDER BY component was needed.

An example of what the tasks looked like can be seen in listing 1, which shows the empty

first task of all three groups. The instructional comments describe the structure of the table

object passed into the method. Possible solutions for each group to the first task can be seen

in listings 2, 3, and 4.

Outcomes. The difference of the start time and the end time of a task decided the dependent

variable time to solution. As a random factor, the platform also recorded the participants’

self-reported experience in using databases.

Randomization. Randomized assignment to the groups was handled by the website and

followed the covariate adaptive randomization approach [18]. The participants were assigned

to a experience category based on their college year. Group assignment was then conducted

randomly but balanced within experience categories.

Blinding. The assignment of participants to their group was done automatically and without

intervention by the researchers. Since the experiment was done using the website, there was

no direct interaction with the participants and therefore the proctors had fewer avenues to

accidentally or intentionally bias them. The participants were not informed about which

group they were assigned to or what the hypothesis of the study might be.

4 Results

Recruitment. We recruited 11 participants for this pilot study. Of the 11 participants,

5 identified themselves as female and 6 as male. On average, the participants were about

24 years old (M = 23.55, SD = 7.10). Six of the participants were sophomores, two were

juniors, two were seniors, and one was a graduate student. Four of the participants reported

that English is not their primary language. The polyglot group had 4 participants, the

non-polyglot group had 3, and the hybrid group had 4. The demographics can also be found

in table 1.

Baseline Data. All 11 of the participants completed all tasks. The data (all times in

seconds) can be found in table 2. Figure 1 shows the average task completion times between

the two groups. Figure 2 shows the task times by group in a boxplot.
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Table 1 Demographics.

Metric Polyglot Non Hybrid

N 4 3 4

DB Experience 25.00% 33.33% 25.00%

Female 50.00% 66.66% 0.00%

Age 23.50 (SD = 5.74) 20.33 (SD = 1.53) 26.00 (SD = 10.74)

Native 75.00% 66.66% 100.00%

Table 2 Times per task in seconds.

Non Polyglot Hybrid Total

Task N mean SD N mean SD N mean SD mean SD

Task 1 3 1371.67 545.68 4 1380.50 700.38 4 999.25 668.48 1239.45 614.05

Task 2 3 676.33 143.39 4 782.00 641.35 4 848.50 368.77 777.36 416.42

Task 3 3 1006.67 533.35 4 1870.25 419.55 4 1363.50 965.22 1450.45 722.35

Task 4 3 438.67 220.18 4 268.00 134.39 4 357.50 215.69 347.09 184.75

Task 5 3 154.33 39.95 4 702.50 945.13 4 258.75 107.21 391.64 578.24

Task 6 3 663.00 412.94 4 787.00 437.08 4 337.25 47.33 589.64 367.10

Total 18 718.44 507.60 24 965.04 751.49 24 694.12 615.21 799.27 645.89

Analysis. To analyze the results, we ran a mixed designs repeated measures ANOVA using

the R programming language with respect to time to solution, using task as a within-subjects

variable and group and database experience as between-subjects variables. Sphericity was

tested using Mauchly’s test for Sphericity, which shows that the assumption of sphericity was

violated for the variable task. Following reported numbers are reported with Greenhouse-

Geisser corrections taken into account.

There is a significant effect at p < 0.5 for the within-subjects variable task, F (5, 25) =

7.065, p < 0.001 (η2
p

= 0.479), but no significant effect for group, F (2, 5) = 0.889, p =

0.467 (η2
p

= 0.110) or database experience, F (1, 5) = 0.973, p = 0.369 (η2
p

= 0.064). None of

the interaction effects are significant. To test the differences between the tasks in more detail,

we ran a Bonferroni test. There are significant differences between task 1 and 4 (p = 0.011),

1 and 5 (p = 0.041), 3 and 4 (p = 0.009), 3 and 5 (p = 0.008), and 3 and 6 (p = 0.035).

Listing 5 Solution 6 polyglot

Query q = new Query ( ) ;
q . Prepare ( "SELECT id ,

→֒ f i r s t n a m e , lastname ,
→֒ clubname "+

"FROM s t u d e n t s JOIN clubmap
→֒ ON s t u d e n t s . i d =
→֒ clubmap . s t u d e n t i d " ) ;

Table r = s t u d e n t s . Search ( q ,
→֒ clubmap ) ;

r e t u r n r ;

Listing 6 Solution 6 non

Query q = new Query ( ) ;
q . AddField ( " i d " )

. AddField ( " f i r s t n a m e " )

. AddField ( " lastname " )

. AddField ( " clubname " ) ;

q . Combine ( s t u d e n t s , " i d " ,
→֒ clubmap , " s t u d e n t i d " ) ;

Table r = s t u d e n t s . Search ( q ) ;
r e t u r n r ;

Listing 7 Solution 6 hybrid

Query q = new Query ( ) ;
q . AddFields ( " id , f i r s t n a m e ,

→֒ lastname , clubname " ) ;

q . Combine ( s t u d e n t s , " i d " ,
→֒ clubmap , " s t u d e n t i d " ) ;

Table r = s t u d e n t s . Search ( q ) ;

r e t u r n r ;

5 Discussion

It is crucial to state that we found no significant differences overall in our pilot. This is what

we would expect with a sample size of 11 unless polyglot had a very large effect size. We

observed that η2
p

= 0.110 for the group task, which means the polyglot effect explained about

11% of the variance. This needs to be confirmed or refuted at scale.

Besides the effect, which gives us clues toward what we might see in replications, we think

observations about the individual tasks are interesting. Note that the non-polyglot group

performed 3.50% slower than hybrid group across all tasks and that the polyglot group was

PLATEAU 2018
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Figure 1 Boxplot of results between the

groups.
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Figure 2 Boxplot of differences in time by

task.

39.0% slower than hybrid. For some tasks, the effects were more pronounced. Consider task

6, where the non-polyglot group performed 96.6% slower than the hybrid group and the fully

polyglot group was 133.4% slower than hybrid. This task is shown in listings 5, 6, and 7. We

highlight this task not because of its result, but because the differences in the code are quite

small. Given the large differences in human performance, this surprised us.

We think these observations teach us two lessons. First, polyglot programming is not

a simple concept. Claims made in the literature about the practice being good or bad,

without corresponding data, should be re-considered empirically. For example, after reading

the linguistics literature on code switching, while we hypothesized the non-polyglot group

might do very well, our polyglot hybrid seemed to have about the same impact. The study

presented in this article is only a first step towards investigating the issue and we hope that

the experimental design we presented can be a building block in future study of the impact

of polyglot programming. Secondly, the polyglot group did quite poorly, despite the fact

that we tested a commonly known case of polyglot programming. This might indicate, if

our results are confirmed at scale and under more conditions, that a conditional polyglotism

might be reasonable in programming languages. As the polyglot group uses two distinct

languages and the hybrid group mixes languages while the last group stays within the same

language, it appears that the distance from the host language could have an impact on

results. This might suggest that switching between semantically and syntactically similar

languages might be easier than switching between different ones.

Differences between tasks overall are explained by the differences in difficulty of the tasks

and a learning effect. Task 3, presents a spike in times as it was the conceptually hardest

task. It required participants to create a complex logical expression, compared to the ones

for task 1 and 2, while most other tasks are what could be considered standard versions of

their respective database commands.

Limitations. Every empirical study has limitations and ours is no exception. The most

obvious to our pilot study is that it is a low sample size experiment on student programmers.

We certainly make no claims about generalization, as this is not the point of a pilot study.
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That said, it is important to discuss limitations not just in this sense, because generalization

can mean many things, but also what limits must be overcome to get a generalized grasp of

polyglot in practice.

First, we think to really understand polyglot in the wild, we would need a combination

of measures to sort out the effects. For example, non-native English speakers writing code

in English might have different results that need to be considered. On this same line of

thinking, children learning to program, with various levels of understanding of their native

tongue, would likely have different impacts as well. Similarly, professional programmers, or

perhaps more specifically experts in polyglot programming in databases, might have different

effects still. From our perspective, we think it is important to test all of these different kinds

of people to sort out the facts over time.

Second, while we used a randomized controlled trial in a lab setting because our hybrid

approach does not exist in the field, it is important to recognize that effects from a lab

setting may not match those in practice, although in programming languages they sometimes

do. Just as one example, studies on syntax [16] seem to provide similar results to those

on compiler errors in the field [3], which Bradford-Hill would call "coherence." That said,

there is no panacea in empirical work. Rigorous data gathering over time, through multiple

techniques, is often what settles difficult research questions.

6 Conclusion

In this paper, we described a pilot experiment on the impact of code switching on software

development productivity, which was motivated by the prevalence of the practice in the

field. Findings in linguistic research suggest that there is a time cost to switching between

natural languages, but to our knowledge this is the first randomized controlled trial on the

topic for programming languages. We conducted a pilot study with three groups, exploring

alternative designs for database programming, including polyglot, non-polyglot, and a hybrid

approach. Our study was a small pilot designed to evaluate our methodology, so the results

are not conclusive. That said, they do appear to provide a hint that the syntactic and

semantic distance between embedded languages, amongst other factors, could impact human

productivity in practice.
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