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Abstract

Autonomous vehicle (AV) fleet management is one of the major as-
pects of AV development that needs to be standardized before AV de-
ployment. There has been no consensus on whether AV deployment in
general will be beneficial or detrimental in terms of road congestion. There
are similarities between packet transmission in computer networks and AV
transportation in road networks. In this work, we argue that congestion
avoidance algorithms used in computer networks can be applied for AV
fleet management. We modify and evaluate a novel adaptation of additive
increase and multiplicative decrease (AMID) congestion avoidance algo-
rithm. We propose assigning different priorities to transportation tasks
in order to facilitate sharing the limited resources in such as usage of the
road network. This will be modeled and assessed using a queueing model
based on AVs arrival distribution. This will result in a load balancing
paradigm that can be used to share and manage limited resources. Then,
by using numerical study we merge congestion avoidance and load balanc-
ing to analyze our scheme in term of road network throughput (number of
cars in network for a given time) for AV fleet management. Our evaluation
demonstrates the improvement in terms of road network throughput.

1 Introduction

As the development of autonomous vehicles (AV) rapidly increases, there is
a higher sense of urgency for engineers and regulator bodies to become more
engaged in how these AVs will be integrated into the current road system.
According to Federal Highway Association (FHWA), in 2016 there were more
than 35,000 fatality crashes in the United States [1]. Implementation of AVs can
reduce these numbers significantly, if their sensors maintained carefully, since
AVs do not have human limitation [2]. The sensing technology used in AV
provides a “360”- degree visualization of the dynamic surrounding environment
that the regular driver cannot access. By 2030, 1 in every 5 citizens will be the
share of older population according to U.S. Census [3]. As driver age increases,
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Figure 1: AV deployment using queueing theory and congestion avoidance al-
gorithm by real time and historic data feedback block diagram.

decline in visual capability, reaction time, and memory will impact their ability
to drive. AVs also increase productivity significantly; autonomous trucks do
not require the resting time as it is necessary for the regular trucks. In this
paper we aim to focus on AV fleet management deployment by introducing
other benefits that can arise from studying the AVs as a group. Here, we study
the AVs in a macro level to identify a global optimal AV fleet deployment. By
quantitatively studying a fleet of AVs in terms of arrival rate and waiting time in
road network, we aim to propose routing and scheduling algorithms that reduce
and/or reshape the traffic. Next, we aim to develop optimization algorithms
and models that consider necessary trade-offs (e.g., quality of service, traffic
congestion, travel time and cost) to determine how to best deploy AVs spatially
and temporally. With proper data gathering and analysis, these algorithms can
be used to manage a feet of AVs.

AVs are being tested in few cities and they are expected to be deployed in
more urban areas such as Pittsburgh and Seattle [4]. These tests have been
mainly focused on the performance of a single AV and its interaction with a
dynamic environment in a real time [5], [6]. We argue that there is an urgent
need for a comprehensive protocol to manage the fleet of AVs (also called au-
tonomous mobility-on-demand or AMoD) that is adaptable to a dynamic and
fast paced road network. In order to achieve that protocol, we aim to build a
scheduling protocol that will lead to a global optimal in terms of using the road
capacity for the traffic containing both AV fleets and regular vehicles. By intro-
ducing a scheduling algorithm assessed by queueing theory based on real time
and historical traffic data, we aim to avoid and/or reduce traffic congestion.
The queue type is determined by the probability distribution of arrival time for
each traffic type (regular or hybrid cars and AVs) in a queue. Then we allocate
the number of AVs in each queue based on a corresponding routing protocol and
the chosen queue type for each case study. Accordingly, fleet size will need to
be tailored for each route. By combining routing, scheduling, and fleet size, we
claim that one can provide a comprehensive algorithm for deployment of fleet
of AVs in urban setting (Fig. 1).

In AV fleet management and routing schemes, multiple resources must be
allocated among competing regular and hybrid cars and AVs. These resources



include but not limited to electric charging, usage of road capacity, and park-
ing. This multiple resource allocation is generally more difficult to solve than
a single resource problem. These vehicles can achieve optimal allocation of
these resources via regular communication with each other and traffic control
units implemented in smart cities. Our resource allocation scheme is based on
additive-increase and multiplicative-decrease (AMID) algorithm that is used to
avoid congestion in transmission control protocol (TCP). Here by using numer-
ical analysis we demonstrate that our new congestion avoidance algorithm for
AVs can improve the road network throughout (number of cars in network for
a given time) similar to algorithms used in computer networks.

The remainder of this paper is organized as follows: in Section 2, we inves-
tigate the current state of the art in AV routing and scheduling. In Section 3,
we then define our scheduling protocol based on a congestion avoidance algo-
rithm. We then describe the queueing model we use to evaluate our algorithm
in section 4. In Section 5, we propose assigning different transportation prior-
ity to share the road network. In Section 6, we present our numerical analysis
for the algorithms proposed. In Section 7, we discuss our results and present
conclusions.

2 Literature Review

Recent studies on decision making for AVs focus mainly on:

1. Finding an optimal algorithm for AV allocation to select the next des-
tination for the AVs performing multiple transportation tasks based on
resource allocation [7],

2. Processing, gathering and updating data streams that are necessary for
short and long term planing and decision making for AVs mentioned tasks,

3. Introducing and evaluation algorithms to improve the AVs’ dynamic per-
formance by means of improving high data rate communication among
AVs,

4. Using Adaptive learnings to improve AV’s driving pattern based on past
recorded performance in case studies [8].

In this work, we aim to introduce a new scheduling (by using a congestion
avoidance method) and routing algorithm (using queueing theory) for fleet of
AVs with conditions that need to be satisfied to reach the ultimate goal of a
congestion free road network. It has been claimed that AVs can increase the
congestion since there will be more empty AV cruising to find a transportation
task to perform [9]. Ome intuitive approach can be assigning transportation
tasks to a fleet manager who is aware of the AVs’ locations and their destinations
and as result can avoid congestion. This approach is not practical since there
are many competing entities that are going to act greedy to maximize their
throughput [10]. Load balancing has been proposed for AV routing protocol [11]



with the goal of reducing gas consumption or traveler waiting time. In [11],
authors introduced an algorithm for maximizing the throughput of a mobility-
on-demand transportation tasks. Here, We define a transportation task as a
task to be performed by an AV or an autonomous truck. In this work, we
aim to reduce traffic congestion by introducing different transportation task
priorities. A queueing network framework has been proposed for driver to vehicle
ratio balancing [12]; but not for AVs fleet deployment. They used a queueing
approach to analysis and control of mobility on demand (MoD) systems for
urban personal transportation. A MoD system consists of a fleet of vehicles
providing transportation tasks and showed using a team of drivers; they can
balance such vehicles. We use queueing theory to allocate transportation tasks
based on their priorities to the road network. Almost all AV fleet management
and routing protocols mainly consider point to point transportation [13], [14].
Our goal is to find an optimized routing and scheduling protocol to consider
the road network entirely and find an optimal algorithm for AV deployment.
Autonomous delivery can be expanded from autonomous trucks to autonomous
delivery robots launched from trucks such as [15]. This shows the practicality
of our approach to introduce different transportation tasks.

Scheduling for autonomous trucks and AVs has not been investigated ex-
tensively [16]. Similar to data packet scheduling and resource management
in telecommunication networks, we claim that through efficient scheduling we
can reach the sub-optimal usage of road network capacity. Inspired by Auto-
matic Repeat reQuest (ARQ) and additive increase and multiplicative decrease
(AMID), we argue that the AVs must be deployed as long as there is no traffic
congestion on road network chosen to be the routing algorithm. In a computer
network’s ARQ, the sender transmits the data packets to the receiver and waits
for acknowledgement (ACK) signals. If the ACK is not received, the data will
be retransmitted by sender. Here, we use the real time data about the traffic
congestion as our indicating signal regarding the road condition. If there is no
congestion in the designated route, the AVs and autonomous trucks will be de-
ployed based on transportation tasks’ priorities. If a travel time for an AV for
a given segment of the road network is more than certain threshold levels, the
deployment will be decreased for the next time interval depending on severe or
moderate congestion. Investigating the best interval time and threshold levels
is subject to numerical analysis with real time and historic traffic data for each
route.

3 Problem Definition

In this work, we aim to find an optimum routing protocol and scheduling using
queueing theory for AVs to achieve the minimal traffic congestion using traffic
data. By numerical analysis and simulation we will demonstrate that our AV
fleet management (consisting of routing protocol and scheduling) leads to im-
prove traffic throughput by a novel congestion control inspired by transportation
control used in computer networks.



First, we present a road network as a weighted directed graphs to model the
capacity of various roads in the network. Based on that, we develop congestion
aware routing and rebalancing protocol. Second, we introduce a scheduling
scheme using queueing theory and assigning priority levels for transportation
tasks, we aim to efficiently manage the customer waiting time. Third, through
numerical studies on traffic data (number of cars passed through a road network)
obtained by our research group, we validate our models iteratively. As it can
be seen from the Fig. 1, the fleet size to be deployed and the queueing model
will determine our scheduling algorithm. This algorithm and routing protocol
will define AV fleet management. We propose to use the real time and historic
traffic data to analysis the road network performance and dynamically change
the queue model and/or fleet size to improve the road network throughput.

We investigate a road network with an AV travel time as congestion indi-
cator. The time used by an AV to pass a segment of the road will be used to
define the state of the congestion in the system. This time indicator (¢;) will be
compared to two threshold level (71 and 72), representing moderate and severe
congestion in the road network. Then, we introduce the number of AV that can
be deployed in state of i as DW; (deployment window for ith state). If the ¢;
is more than 75, the DW; will be set to 1 and if the ¢i is more than 71, the
DW; will be half of DW,;_; inspired by Reno window update used in AMID
for computer networks. As a result, the deployment window together with the
threshold level represent a Markov chain.

In Fig. 2, two states based on two threshold levels defined for our road
network is presented. For 7, we have a moderate congestions and for 75 we
have a severe congestion. Fig. 2 represents the transmission between these two
states based on the recorded amount for ;. In case of moderate congestion the
deployment increases until we reach saturation in road network. This ensures
that the AV deployment will try to use the road network as much as it can to
increase the network throughput. In the following the network throughput for
AV is defined as the number of AV over time deployed in the road network.
In the second state of Fig. 2, when the ¢; is more than 75, we have a severe
congestion and as result the AV deployment needs to be reduced to relieve the
road network from congestion.

(a) Moderate (b) Severe Con-
Congestion gestion

Figure 2: Transition between different Markov state levels based on threshold
levels for congestion

Here we want to find the throughput of road network by using Markov chain
properties. We define EN;; and ET;; as expected number of AVs and time



spent in the road network during the transition from state i to j respectively.
We define the cost function for the number of AVs as

N; = ZENiqu (1)
J
and for time spend in the road network

ZE Pij (2)

where P;; is the transition probability from state i to j. The steady state
expected value for the number of AVs deployed and time in road network is can
be found from the following expression [19]:

CN = ZENijﬂi7 (3)

similarly we can use the following expression to find the total expected number
of time spend in road network (CT):

= Z ETi]‘ﬂ'i, (4)
i
where m; is the steady state distribution of the Markov chain. C'N(t) will be

C'N for each epoch of Markov chain transmission.

Theorem 3.1. Define the number of AV deployed in a road network over time
as CN(t) and S(t) the number of Markov chain transmission. The road network
throughput is Tay = CN/CT.

Proof. The road network throughput can be found using:

CON(1)

T =
AV n

assuming ¢y is the epoch of the first transition, we can find CN(t) and ¢ upper
limit from the following expression using the Markov Chain property:

S(t)+1
CN(t) < CN(to) + Z CN;

and

Therefore the upper limit for Txy is

p s LONI/S(t)
SW=ee T /(S(1) ~ 1)




The lower limit for T4y can be similarly found [20], therefore T4y can be:

Tsy = CN/CT.

According to theorem 3.1, we can identify the throughput of the road net-
work using the Markov chain transition probability. This transition probability
demonstrate the expected amount of AVs in each state (moderate and severe
congestion). The expected number of cars will be in severe or moderate conges-
tion is going to be determined by choosing these threshold levels. By showing
that a lower and upper limit for the T4y merges to CN/CT, we proved 3.1. In
the road network, a deployment scheme using the road traffic data and designed
threshold levels, we can find the optimal T4y. Using theorem 3.1 together with
(3) and (4) can provide the designers with a trade off for AV deployment. In
the numerical analysis section, we demonstrate that based on values used for 7;,
we can find the best T4y for different road networks.

4 Scheduling via Queueing Theory

Queueing theory has been used extensively for various networks for resource
management and scheduling [17]. Qeueing theory is a study of expected waiting
times in queue. A queueing model is used to predict the expected waiting
time and queue length. This helps to effectively mange limited resource that
is going to be shared between various parties. The state of a queue is defined
by a process in which the arrivals and departures from the queue, along with
the number of users (in this work AVs) currently in the network. An arrival
process is determined by the arrival probability distribution that best describes
the users arrival.

Here we aim to use queuing theory to manage and implement the trans-
portation tasks’ priority (Fig. 4). We aim to implement a model so that queue
lengths and waiting time for each transportation task can be predicted. We use
a single queueing node for each deployment center using Kendall’s notation. If
the transportation task for each priority arrives with a Poisson process, and for
the case of AVs they pass a route in deterministic time, then we have a M/M/1
queue (in the notation, the M stands for Markovian and M/M/1 means the
queue in a road network having one road that is the server, where AV arrivals
are determined by a Poisson process and passage times have an exponential
distribution). Various scheduling policies can be used at queuing nodes such
as first in first out or shortest job first. The waiting time for each AV can be
predicted and an optimal scheduling scheme can be designed. Our goin in load
balancing is that considering that road capacity is a limited resource, a pricing
scheme can be introduced and numerically assessed by queuing theory in order
to implement an optimal assignment for different transportation tasks.
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Figure 3: Assigning different transportation types for sharing a road network.

5 Traffic Load Balancing

We defined a transportation task as a task to be performed by an AV or an
autonomous truck. We aim to find optimal scheduling for transportation tasks
based on the constraints on resources, such as availability of AVs or autonomous
trucks, time requirements for each task, and the traffic and road condition.
Currently, popular delivery services are providing various options such as a
range between one day and up to three week shipping options, each with different
pricing. A well defined resource management algorithm with a pricing scheme
can lead to an optimal scheduling for AVs and autonomous trucks. For example,
an autonomous delivery can be scheduled to use the roads with less rush hour
traffic for transportations tasks that have low sensitivity to delivery time.

Suppose we have n transportation tasks. By assigning each priority task
described above (Fig. 4) to share a portion of the server in the queue (here
the road network), we can find the waiting time for each task according to the
following [17]:

1

W= — o)
where W is total waiting time including service time, p is the average service
rate, and )\ is the average arrival rate. Here by assigning the portions of u,
the AV fleet management can assign each transportation task share of the road
network (eg., high priority tasks get higher share). For different queue types
based on different arrival distribution, different formulation for W can be found.
In section 4, we introduced different transportation types that can have various
arrival distribution. As one example, an emergency transportation has lower
arrival rate, but should have assigned higher portion of u.



6 Numerical Analysis

First, we investigate the service time according to (5) in the road network. In
Fig. 3, we increase the number of AV in the road network from a share of 0.1
to share of 0.9 and see the waiting time will drop when most of the cars in the
network are AVs. This is intuitive since the AVs are following the congestion
avoidance algorithm introduced before and as a result they will reach a social
optimal throughput. For regular cars, when the share of the AVs in road network
increases, the portion of p they are allocated according to (5) is decreased. As
a result their waiting time increases, hence they do not change their scheduling
algorithm.

=®= AV
=== Normal Cars

Normalized Time in Queue and Netowrk
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AV Share of Total Cars in Network

Figure 4: Normalized waiting time based on the share of AVs in a road network.

To investigate the threshold level used for Markov chain, 7;, we used three
methods for different pairs of 7;. Method 1 has low 77 and 75. Method 2 has low
71 and high 75. Method 3 has high 7 and 7. The road network throughput with
increasing number of AVs is presented in Fig. 5. This result demonstrates that
for each road network based on the physical attributes of the road an optimal
AV fleet size can be found.
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Figure 5: Normalized road throughput for various congestion threshold levels
based on the share of AVs in a road network.

To validate our congestion avoidance algorithm, we modeled deployment of
fixed number of regular cars using MATLAB. As it can be seen in Fig. 6, when
AVs share increases in the road network, their throughput increases since they
follow the congestion avoidance algorithm. This result closely correlates with
our understanding that if the majority of cars follow a congestion avoidance
algorithm, the overall throughput of the road network will improve.
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Figure 6: Normalized road throughput for a fixed number of regular car for
various congestion threshold levels.

7 Conclusion

In this work, we proposed a novel adaption of a congestion avoidance algorithm
based on additive increase and multiplicative decrease (AMID) in computer net-
works for AV fleet management. We define various transportation task to share
a road network and by using queueing theory we implement and evaluate this
assignment. Our numerical analysis suggests that our algorithms improve the
road network throughput significantly. The results demonstrate that a conges-
tion avoidance algorithm must be tailored to physical and traffic data of a road
network in order to achieve an optimal network throughput.

Studying the impact of hybrid AV is the future research direction. During
transmission to an AV transportation system, there will be cars that can operate
in both autonomous mode and driver mode. Some drivers may want to optimize
their route and as a result this may cause to a road network throughput that
is less than social optimal. A game theoretic approach similar to ( [17]) must
be evaluated to force these greedy drivers to follow the congestion avoidance
algorithm to achieve the social optimal road network throughput.
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