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In this article, we extend and improve upon a previously developed data-driven approach to design privacy-

setting interfaces for users of household IoT devices. The essence of this approach is to gather users’ feedback

on household IoT scenarios before developing the interface, which allows us to create a navigational structure

that preemptively maximizes users’ efficiency in expressing their privacy preferences, and develop a series

of ‘privacy profiles’ that allow users to express a complex set of privacy preferences with the single click of

a button. We expand upon the existing approach by proposing a more sophisticated translation of statistical

results into interface design, and by extensively discussing and analyzing the tradeoff between user-model

parsimony and accuracy in developing privacy profiles and default settings.
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1 INTRODUCTION

Our everyday life is being revolutionized by all kinds of smart electronic household devices, of-
ten known ‘smart home’ technology. Smart home technology is made possible by recent devel-
opments around the Internet of Things (IoT), and is still in its fledgling stages of development. A
study by PWC [51], suggests that lower levels of Household IoT adoption are primarily due to high
cost of ownership. Interestingly, the second-biggest reason of hesitation towards adoption is pri-
vacy and security concerns [51]. Arguably, such concerns may rise as costs decrease and adoption
increases.
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Privacy is an inherent tradeoff in IoT, because IoT devices cannot provide their services without
collecting data. Moreover, many IoT devices provide personalized services, which requires them to
retain and process the data as well. Preserving users’ privacy therefore means giving them control
over this tradeoff, by allowing them to decide what information can be collected about them. Most
household IoT devices have extensive privacy settings, but these are often hidden in the interfaces
of the individual devices, making it difficult for users to set their preferences across their ‘smart
home’ [24]. Having disparate settings on several devices is also at odds with the fact that these
devices are usually interconnected, sharing both user data and opportunities for control across
devices.
A promising solution to more suitably account for users’ privacy preferences would be to allow

them to control their privacy with global settings for the entire ‘smart home’. But even with a cen-
tralized settings interface (which currently does not exist), users will likely still find it difficult to
translate their preferences into the correct privacy settings [1, 15, 32]. Indeed, the modern ‘smart
home’ has a vast number of household IoT devices—each with several features and interconnec-
tions to other devices—which makes choosing adequate privacy settings a very challenging task
that is likely to result in information and choice overload [56].
What design process allows us to develop a usable privacy-setting interface for household IoT?

The development of usable privacy interfaces commonly relies on user studies with existing sys-
tems. However, this method is not possible in our household IoT scenario, because there currently
exists no centralized household IoT privacy-setting interface.We therefore propose to develop user
interface designs for managing the privacy settings of Household IoT devices using a data driven
design approach: rather than evaluating and incrementally improving an existing interface, we
gather users’ feedback on household IoT scenarios before developing the interface. This approach
allows us to create a navigational structure that preemptively maximizes users’ efficiency in ex-
pressing their privacy preferences. Moreover, it allows us to anticipate the most common privacy
settings, and capture them into a series of ‘privacy profiles’ that allow users to express a complex
set of privacy preferences with the single click of a button.
We first introduced this approach in our previous work [5], where we covered a wide variety

of in-home as well as public IoT scenarios. In this article, we focus on household IoT in particu-
lar, and further refine our approach to allow us to create more carefully tailored user interfaces.
Moving the context to a more narrow environment shifts the focus of the privacy decision from
the entity collecting information (which was the dominant parameter in our previous work) to a
more contextual evaluation of the content or nature of the information [33]. This results in more
complex decisions, and thereby advances our previous approach.
The main contributions of our article are:

• Using an intricate mixed fractional factorial study design, we collect a dataset of 1,133 par-
ticipants making 13,596 privacy decisions on 4,608 scenarios.

• We perform statistical analysis on this dataset to develop a layered IoT privacy-setting in-
terface. As our analysis shows more complex decision patterns than our previous work,
we present guidelines to translate our statistical results into a more sophisticated settings
interface design.

• We perform machine learning analysis on our dataset to create a set of “smart profiles” for
our IoT privacy-setting interface. Beyond our previous work, we conduct a deeper analysis
regarding the tradeoff between parsimony and accuracy of our prediction models, leading
to a better-informed selection of smart profiles.

• Aside from the privacy-setting interface and the smart profiles, wemake specific design rec-
ommendations for household IoT devices that can help to minimize users’ privacy concerns.
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The remainder of this article is structured as follows: Section 2 summarizes key elements of
related work. Section 3 provides relevant information of our experiment setup. Section 4 describes
our statistical results which is followed by Section 5 where we discuss our preliminary prototype
for privacy settings. Section 6 presents the machine learning analysis to create a set of “smart
profiles”. Section 7 presents two separate interfaces which are modified version of the preliminary
interface to carefully accommodate results fromMachine Learning analysis. Finally, Section 9 con-
cludes with a summary of contributions and pointers to future work.

2 RELATEDWORK

Our goal is to develop intuitive interfaces for IoT privacy settings, using a data-driven approach.
In this section we therefore discuss existing research on privacy-setting interfaces and on privacy
prediction.

2.1 Personalization in IoT Systems

One of the key features of IoT environments is that they have a high potential for providing per-
sonalized services to their users [10, 13, 52]. For example, Russell et al. [42] use unobtrusive sensors
and micro-controller to realize a human detection for further providing personalization in a sce-
nario of a family making use of the IoT in their daily living. Henka et al. [16] propose an approach
to personalize services in (household) IoT using the Global Public Inclusive Infrastructure’s [53]
preference set to describe an individual’s needs and preferences, and then adapting a smart envi-
ronment accordingly.

2.2 Privacy in Personalized Systems

Researchers have shown that privacy can play a limiting role in users’ adoption of personalized
services [48]. For example, Awad and Krishnan [3] show that privacy concerns inhibit users’ use
of personalized services, and Sutanto et al. [47] demonstrated that privacy concerns can prevent
people from using a potentially beneficial personalized application. Kobsa et al. [27] demonstrate
that the personalization provider is an important determinant of users’ privacy concerns.
Moreover, research has shown users’ willingness to provide personal information to person-

alized services depends on both the risks and benefits of disclosure [17, 19, 39], and researchers
therefore claim that both the benefits and the risks meet a certain threshold [49], or that they
should be in balance [7].

2.3 Privacy in IoT

The argument that using user-generated data for personalization can result in privacy concerns has
also been made in IoT environments [59]. One of the first examples in this regard was the work by,
Sheng et al. [45], who showed that users of “u-commerce” services (IoT-driven mobile shopping)
felt less inclined to use personalized (rather than non-personalized) u-commerce services, unless
the benefits were overwhelming (i.e., providing help in an emergency).
In response, researchers have proposed frameworks with guidelines for evaluating the security

and privacy of consumer IoT applications, devices, and platforms [31, 38]. Most of these guidelines
are focused onminimizing data acquisition, storage, and collection sources. Along these guidelines,
several researchers have proposed architectures that restrict unwanted access to users’ data by IoT
devices. For example, Davies et al. [8] propose “privacy mediators” to the data distribution pipeline
that would be responsible for data redaction and enforcement of privacy policies even before the
data is released from the user’s direct control. Likewise, Jayraman et al.’s [20] privacy preserving
architecture aggregates requested data to preserve user privacy.
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Other research has considered IoT privacy from the end-user perspective [12], both when it
comes to research (e.g., Ur et al. [50] investigated how privacy perceptions differ among teens and
their parents in smart security systems installed in homes) and design (e.g., Williams et al. [56]
highlight the importance of designing interfaces to manage privacy such that they are usable to
the end users of IoT devices, and Feth et al. [12] investigated the creation of understandable and
usable controls). The current article follows this approach by outlining a novel methodology for
the development of usable and efficient privacy-setting interfaces and applying it to household IoT
privacy management.

2.4 Existing Privacy Control Schemes

Smartphones give users control over their privacy settings in the form of prompts that ask whether
the user allows or denies a certain app access to a certain type of information. Such prompts are
problematic for IoT, because IoT devices are supposed to operate in the background. Moreover, as
the penetration of IoT devices in our homes continues to increase, prompts would become a con-
stant noise which users will soon start to ignore, like software EULAs [14] or privacy policies [21].
Pejovic andMusolesi [37] presented the design and implementation of an efficient online learner

that can serve as a basis for recognizing opportune moments for interruption. The design of the
library is based on an in-depth study of human interruptibility. Comparatively, our work tries to
find the most suitable privacy-setting profile for each user based on their privacy preference on
different household IoT scenarios.

2.5 Privacy-Setting Interfaces

Beyond prompts, one can regulate privacy with global settings. The most basic privacy-setting in-
terface is the traditional “access control matrix”, which allows users to indicate which entity gets
to access what type of information [44]. This approach can be further simplified by grouping recip-
ients into relevant semantic categories, such as Google+’s circles [55]. Taking a step further, Raber
et al. [40] proposed Privacy Wedges to manipulate privacy settings. Privacy Wedges allow users to
make privacy decisions using a combination of semantic categorization (the various wedges) and
inter-personal distance (the position of a person on the wedge). Users can decide who gets to see
various posts or personal information by “coloring” parts of each wedge.
Privacy wedges have been tested on limited numbers of friends, and in the case of household

IoT they are likely to be insufficient, due to the complexity of the decision space. To wit, IoT
privacy decisions involve a large selection of devices, each with various sensors that collect data
for a range of different purposes. This makes it complicated to design an interface that covers every
possible setting [56]. Awedge-based interfacewill arguably not be able to succinctly represent such
complexity, and therefore either be impossible, or still lead to a significant amount of information
and choice overload.
We propose a data-driven approach to solve this problem: statistical analysis informs the con-

struction of a layered settings interface, while machine-learning-based privacy prediction helps us
find smart privacy profiles.

2.6 Privacy Prediction

Several researchers have proposed privacy prediction as a solution to the privacy settings complex-
ity problem—an approach known as “user-tailored privacy” (UTP) [23]. Systems that implement
UTP first predict users’ privacy preferences and behaviors based on their known characteristics.
They then use these predictions to provide automatic default settings or suggestions in line with
users’ disclosure profiles, to educate users’ about privacy features they are unaware of, to tai-
lor the privacy-setting user interfaces to make it easier for users to engage with their preferred
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privacy management tools, or to selectively restrict the types of personalization in which a system
is allowed engage.
Most existing work in line with this approach has focused on providing automatic default set-

tings. For example, Sadeh et al. [43] used a k-nearest neighbor algorithm and a random forest
algorithm to predict users’ privacy preferences in a location-sharing system, based on the type
of recipient and the time and location of the request. They demonstrated that users had difficul-
ties setting their privacy preferences, and that the applied machine learning techniques can help
users to choose more accurate disclosure preferences. Similarly, Pallapa et al. [36] present a system
which can determine the required privacy level in new situations based on the history of interac-
tion between users. Their system can efficiently deal with the rise of privacy concerns and help
users in a pervasive system full of dynamic interactions.
Dong et al. [9] use a binary classification algorithms to give users personalized advice regarding

their privacy decision-making practices on online social networks. They found that J48 decision
trees provided the best results. Li et al. [29] similarly use J48 to demonstrate that taking the user’s
cultural background into account when making privacy predictions improves the prediction accu-
racy. Our data stems from a culturally homogeneous population (U.S. Mechanical Turk workers),
so cultural variables are outside the scope of our study. We do however follow these previous
works in using J48 decision trees in our prediction approach.
We further extend this approach using clustering to find several smart default policies

(“profiles”). This is in line with Fang and LeFevre [11], who present an active learning algorithm
that comes up with privacy profiles for users in real time. Since our approach is based on an ex-
isting dataset, our algorithm does not classify users in real time, but instead creates a static set of
profiles ‘offline’, from which users can subsequently choose. This avoids cold start problems, and
does not rely on the availability of continuous real-time behaviors. This is beneficial for household
IoT privacy settings, because users often specify their settings in these systems in a “single shot”,
leaving the settings interface alone afterwards.
Ravichandran et al. [41] employ an approach similar to ours, using k-means clustering on

users’ contextualized location sharing decisions to come up with several default policies. They
showed that a small number of policies could accurately reflect a large part of the location-sharing
preferences. We extend their approach to find the best profiles based on various novel clustering
approaches, and take the additional step of designing user interfaces that incorporate the best
solutions.

2.7 Data-Driven Design

In our previous work [5], we leveraged data collected by Lee and Kobsa [28], which asked 200
participants about their intention to allow or reject the IoT features presented in 14 randomized
scenarios. They varied the scenarios in a mixed fractional factorial design along the following
dimensions: ‘Who’, ‘What’, ‘Where’, ‘Reason’, ‘Persistence’.
We conducted a statistical analysis on this dataset to determine the relative influence of these

parameters on users’ privacy-related decisions. The outcome informed the design of a ‘layered
interface’, which presents privacy settings with the most prominent influence first, relegating less
prominent aspects to subsequently lower layers. Users can use this interface for making manual
privacy settings.
We also conducted a machine learning analysis to predict participants’ reactions to the scenar-

ios. We used the outcomes of this analysis to develop a “smart” default setting, which preempts
the need for many users to manually change their settings [46]. However, since people differ ex-
tensively in their privacy preferences [35], it is not possible to achieve an optimal default that is
the same for everyone. Instead, different people may require vastly different settings [25, 35, 57].
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By partitioning the participants in a number of clusters, we were able to construct a number of
‘privacy profiles’, which represented a selection of default settings for the user to choose from.
These profiles automate (part of) the privacy-setting task.
As noted in the introduction, our current paper builds upon this existing work by applying it

to a newly collected dataset focused on household IoT privacy decisions, and by refining both the
statistical and machine learning procedures underlying this approach. The resulting procedure
can be considered a blueprint for researchers interested in applying data-driven design to their
(privacy-)settings interfaces.

3 EXPERIMENTAL SETUP

To develop our data-driven design approach, we collected a new dataset of users’ privacy behav-
iors in various IoT contexts. In this section, we first discuss the factorial procedure by which we
developed 4,608 highly specific IoT scenarios, as well as the questions we asked participants to
evaluate these scenarios. We then describe the participant selection and experimental procedures
used to collect over 13,500 responses from 1,133 participants.

3.1 Contextual Scenarios

The scenarios evaluated in our study are based on a full factorial combination of five different
Parameters: Who,What, Purpose, Storage, and Action. A total of 8(who) ∗ 12(what ) ∗ 4(purpose ) ∗
4(storaдe ) ∗ 3(action) = 4,608 scenarios were tested this way.
The scenarios asked participants to imagine that they were owners and active users of the pre-

sented IoT devices, trying to decide whether to turn on or off certain functionalities and/or data-
sharing practices. To avoid endowment effects, the scenarios themselves made no indication as to
whether the functionality was currently turned on or off (such endowment effects were instead
introduced by manipulating the framing of the Decision question; see Section 3.2). An example
scenario is: “Your smart TV (Who) uses a camera (What) to give you timely alerts (Purpose). The data
is stored locally (Storage) and used to optimize the service (Action).” This scenario may, for example,
represent a situation where the smarthome system has detected (via camera) a delivery of package
and then alerts the user (via the smart TV) about its arrival. In this particular scenario, we note that
the video data is stored locally to optimize service; this could mean that the smarthome system
uses the video stream to (locally) train a package detection algorithm. Similarly, another example
of scenario is: “Your Smart Assistant uses a microphone to detect your location in house. The data is
stored on a remote server and shared with third parties to recommend you other services.” Similarly,
this scenario could represent a situation where the smarthome has detected (via microphone) it’s
user’s location in the house and this information is shared to smart assistant. In the scenario, the
data is stored on remote server and shared with third parties so that it can recommend additional
services (like weather or local transportation) via third parties to the user.
The levels of all five parameters used in our experiment are shown in Table 1. The parame-

ters were highlighted in the scenario for easy identification, and upon hovering the mouse cursor
over them each parameter would show a succinct description of the parameter. Figure 34 in the
Appendix shows a screenshot of a scenario as shown to participants in the study. A thirteenth
scenario regarding the interrelated control of various IoT devices (e.g., “You can use your smart
TV to control your smart refrigerator”) was also asked, but our current analysis focuses on the
information-sharing scenarios only.
The parameters used in the current study deviate from the ones in the Lee and Kobsa [28]

dataset. In our previous work, we observed that the Where parameter in this dataset did not have
a significant effect on user decision making [5], hence we removed it from the scenarios in the
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Table 1. Parameters Used to Construct the Information-Sharing Scenarios

Parameter Levels Code

Who: 1. Home Security System SS
Your Smart... 2. Refrigerator RE

3. HVAC System HV
4. Washing Machine WM
5. Lighting System SL
6. Assistant SA
7. TV TV
8. Alarm Clock SC

What: 1. Home Security System CSE
...uses information 2. Refrigerator CRE
collected by your... 3. HVAC System CHV

4. Washing Machine CWA
5. Lighting System CLI
6. Assistant CAS
7. TV CTV
8. Alarm CAL
9. uses a location sensor CLO
10. uses a camera CCA
11. uses a microphone CMP
12. connects to your smart phone/watch CSW

Purpose : 1. detect whether you are home PH
...to... 2. detect your location in house LH

3. automate its operations AO
4. give you timely alerts TA

Storage: 1. locally L
The data is stored... 2. on remote server R

3. on a remote server and shared with third parties T
Action: 1. optimize the service O
...and used to... 2. give insight into your behavior I

3. recommend you other services R
4. [None] N

The “codes” are used as abbreviations in graphs and figures throughout the paper and the Appendix.

current study. Likewise, in public, IoT encounters are often ephemeral, so persistent tracking is
rather uncommon. Hence, we removed Persistence of tracking from the scenarios as well, since
this parameter is much more relevant in public IoT than in household IoT. The original Reason
parameter is similar to the current Purpose and Action parameters, although the reasons/purpose
for tracking are obviously different in public IoT than in household IoT.
Moreover, we learned from the qualitative feedback in our previous study that the secondary

use of information was a prominent concern among users of IoT systems. Hence, we consider Pur-
pose as the primary purpose of tracking, separate from Action, a secondary purpose that requires
Storage—a parameter we added because it is possible for household IoT systems to operate (and
thus store data) locally, and because the sharing of data with third parties is not as common in
household IoT as in public IoT.
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3.2 Scenario Evaluation Questions

The first question participants were asked about each scenario was whether they would enable
or disable the particular feature mentioned in scenario (Decision). Subsequently, they were asked
about their attitudes regarding the scenario in terms of their perceived Risk, Appropriateness,
Comfort, Expectedness and Usefulness regarding the presented scenario (e.g., “How appropriate
do you think this scenario is?”). These questions were answered on a 7-point scale (e.g., “very in-
appropriate” to “very appropriate”). In every 4th scenario, the Risk and Usefulness questions were
followed by an open question asking the participants to describe the potential Risk and Usefulness
of the scenario. We asked these question mainly to encourage participants to carefully evaluate
the scenarios. A screenshot of the questions asked about each scenario is depicted in Figure 34 in
the Appendix.
The framing and default of the Decision question were manipulated between-subjects at three

levels each: positive framing (“Would you enable this feature?”, options: Yes/No), negative fram-
ing (“Would you disable this feature?”, options: Yes/No) or neutral framing (“What would you do
with this feature?”, options: Enable/Disable); combined with a positive default (enabled by default),
negative default (disabled by default), or no default (forced choice).

3.3 Participants and Procedures

To collect our dataset, 1133 adult U.S.-based participants (53.53% Female, 45.75% Male, 8 partic-
ipants did not disclose) were recruited through Amazon Mechanical Turk. Participation was re-
stricted to Mechanical Turk workers with a high reputation (at least 50 completed tasks, average
accuracy of >95%). Participants were paid $2.00 upon successful completion of the study. The par-
ticipants were warned about not getting paid in case they failed attention checks (see below).
The study participants represented a wide range of ages, with 9 participants less than 20 years

old, 130 aged 20–25, 273 aged 25–30, 418 aged 30–40, 175 aged 40–50, 80 aged 50–60, and 43 par-
ticipants over 60 years old (5 participants did not disclose their age). This significant increase in
participants over the Lee and Kobsa [28] dataset is commensurate with our expectation of more
complex privacy decision behaviors in household IoT compared to public IoT.
Each participant was first shown a video with a brief introduction to various smart home de-

vices, which also mentioned various ways in which the different appliances would cooperate and
communicate within a home. After the video, participants were asked to answer three attention-
check questions depicted in Figure 30 in the Appendix. If they got any of these questions wrong,
they would be asked to read the transcript of the video and re-answer the questions. The transcript
is depicted in Figure 31 in the Appendix.
After the introduction video, each participant was presented with 12 information-sharing sce-

narios (and a 13th control scenario, not considered in this article). These scenarios were selected
from the available 4608 scenarios using fractional factorial design1 that balances the within- and
between-subjects assignment of each parameter’s main effect, and creates a uniform exposure for
each participant to the various parameters (i.e., to avoid “runs” of near-similar scenarios). Partici-
pants were asked to carefully read the scenario and then answer all questions about it. Two of the
13 scenarios had an additional attention-check question (e.g., “Please answer this question with
Completely Agree”, see Figure 33 in the Appendix), and there was an additional attention check
question asking participants about the remaining time to finish the study (which was displayed
right there on the same page, see Figure 32 in the Appendix). Participants rushing through the ex-
periment and/or repeatedly failing the attention-check questions were removed from the dataset.

1The scenario assignment scheme is available at https://www.usabart.nl/scenarios.csv.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 10. Publication date: September 2019.

https://www.usabart.nl/scenarios.csv


A Data-Driven Approach to Designing for Privacy in Household IoT 10:9

Fig. 1. Different tests conducted for mediation analysis.

4 INSPECTING USERS’ DECISIONS

In this section we explain the different regression analyses performed on the dataset to under-
stand how different scenario parameters affected the decisions made by participants. We begin
by explaining the effects of scenario parameters on participants’ decision to enable or disable the
feature mentioned in the scenario. Similar to Ajzen and Fishbein [2] and Bahirat et al. [5], we also
present the results of the mediation analysis, which are on the lines of attitude-behavior models.
As shown in Figure 1, we test whether participants’ attitudes mediate the effects of the scenario
parameters on their decisions. This mediation analysis involves the following tests:

Test 1: The effect of parameters (Who, What, Purpose, Storage, Action) on attitudes (Risk,
Comfort, Appropriateness, Expectedness and Usefulness).

Test 2: The effect of attitudes on decision.
Test 3: The effect of both parameters and attitudes on decision.

If tests 1 and 2 are significant and test 3 reveals a drastic reduction in the conditional direct effect
of parameters, then we can say that the effects of scenario parameters on participant’s decision
are mediated by their attitudes [5].
Finally, we present a post-hoc analysis of differences between individual levels of the parameters

on attitudes and decision.

4.1 Effect of Scenario Parameters on Decision

To understand the effect of the scenario parameters on participants’ allow/reject decision, we de-
veloped a generalized linear mixed effects regression (glmer) with a random intercept (to account
for repeated measures on the same participant) and a logit link function (to account for the fact
that the outcome variable is binary). We used a forward stepwise approach, where we added the
strongest remaining parameter into the model at each step and then comparing it using ANOVA
tests against the previous model. If new parameter makes a significant improvement to the pre-
vious model, it has a significant overall effect on the outcome variable. Once all significant main
effects are added to the model, two-way interaction effects are tested one by one.
Table 2 shows the effects of the parameters on the allow/reject decision. All parameters had a

significant effect. Particularly, Storage had the strongest effect on participants’ decisions, followed
byWhat,Who, and Purpose (all similar), and finally Action.
Moreover, we find many significant interaction effects, but some of them are not substantial

compared to the main effects.2 Substantial two-way interaction effects were observed between
Who, What, and Purpose. It should be noted that the interactions are added separately, not
accumulatively. This reduces overfitting and multicollinearity.

2Very small but still significant interaction effects are a common occurrence in the analysis of large datasets.
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Table 2. Effect of Scenario Parameters
on Decision

Model χ 2 d f p-value
decision ∼ (1|sid )
+storage 1487.76 2 <.0001
+purpose 206.97 11 <.0001
+what 202.48 3 <.0001
+who 195.91 7 <.0001
+action 77.20 3 <.0001
Interactions
+what:who 138.03 77 <.0001
+who:purpose 87.92 21 <.0001
+what:purpose 68.30 33 .0002

Table 3. Effect of Scenario Parameters
on Appropriateness

Model d f Chi .Sq. p-value
appropriateness ∼ (1|sid ) 3
+storage 5 2346.19 <.0001
+what 16 398.63 <.0001
+purpose 19 359.98 <.0001
+who 26 179.09 <.0001
+action 29 91.05 <.0001
Interactions
+what:who 106 167.01 <.0001
+who:purpose 50 113.73 <.0001
+what:purpose 62 55.67 .0081

4.2 Effect of Scenario Parameters on Attitudes

Test 1 of the mediation model is a test of the effect of the scenario parameters on participants’ atti-
tudes. For this, we developed a separate linear mixed effects regression model (lmer) with a random
intercept (to account for repeated measures on the same participant) for each dependent variable
(Risk, Comfort, Appropriateness, Expectedness, and Usefulness), using the scenario parameters as
independent variables. As in the previous section, we took a forward stepwise approach.
Tables 3–7 show the effects of the parameters on the different attitudes. All parameters

had a significant effect on all attitudes. Substantial two-way interaction effects were again ob-
served between Who, What, and Purpose. Again, the interactions are added separately, not
accumulatively.

4.3 Effect of Attitudes on Decision

Test 2 of the mediation model is a test of the effect of participants’ attitudes on their allow/reject
decision. We perform this test by creating a glmer model with a random intercept and a logit link
function. Using a forward stepwise approach, we find that all attitudes except Expectedness have
a significant effect on decision (see the top part of Table 8). Specific effects are as follows:

• Each 1-point increase in Comfort (measured on a 7-point scale) results in a 2.30-fold in-
crease in the odds that the participant will allow the scenario (p < 0.001).
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Table 4. Effect of Scenario Parameters
on Comfort

Model d f Chi .Sq. p-value
comf ort ∼ (1|sid ) 3
+storage 5 2822.57 <.0001
+what 16 391.10 <.0001
+purpose 19 381.69 <.0001
+action 22 113.68 <.0001
+who 29 90.57 <.0001
Interactions
+what:who 106 132.86 <.0001
+who:purpose 50 89.20 <.0001
+what:purpose 62 58.24 .0043

Table 5. Effect of Scenario Parameters on Risk

Model d f Chi .Sq. p-value
risk ∼ (1|sid ) 3
+storage 5 47240.72 <.0001
+purpose 16 421.08 <.0001
+action 19 355.65 <.0001
+who 26 81.35 <.0001
+what 29 70.64 <.0001
Interactions
+what:who 106 77.14 0.0017
+who:purpose 50 19.91 <.0001
+what:purpose 62 37.19 0.0352

• Each 1-point increase in Usefulness results in a 2.09-fold increase in the odds that the
participant will allow the scenario (p < 0.001).

• Each 1-point increase in Appropriateness results in a 44% increase in the odds that the
participant will allow the scenario (p < 0.001).

• Each 1-point increase in Risk results in a 14% decrease in the odds that the participant will
allow the scenario (p < 0.001).

• Expectedness had no signficant influence on the participant’s decision (p = 0.201).

The strongly significant relationship between attitudes and behavior is interesting in light of
the “privacy paradox” [34], an attitude-behavior gap that has been studied extensively by privacy
researchers. Arguably, the privacy paradox is an artifact of the fact that general privacy concerns
(which are commonly high) do not match specific behaviors (which subsequently ignore these
general concerns). Since in our study attitudes and behaviors are measured at the same contextual
level, their relationship is much stronger than in other studies. This may explain why we do not
find an attitude-behavior gap.

4.4 Mediation Analysis

With tests 1 and 2 of our mediation analysis confirmed, we conduct test 3 by adding the scenario
parameters to the glmer of participants’ decisions on their attitudes. The bottom half of Table 8
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Table 6. Effect of Scenario Parameters
on Usefulness

Model d f Chi .Sq. p-value
use f ulness ∼ (1|sid ) 3
+what 5 939.91 <.0001
+storage 12 457.36 <.0001
+purpose 23 401.18 <.0001
+action 26 328.88 <.0001
+who 29 117.57 <.0001
Interactions
+what:who 106 214.48 <.0001
+who:purpose 50 184.48 <.0001
+what:purpose 62 85.39 <.0001

Table 7. Effect of Scenario Parameters
on Expectedness

Model d f Chi .Sq. p-value
expectedness ∼ (1|sid ) 3
+storage 5 841.24 <.0001
+who 16 425.92 <.0001
+what 19 422.31 <.0001
+purpose 22 231.98 <.0001
+action 29 29.45 <.0001
Interactions
+what:who 106 262.80 <.0001
+who:purpose 50 138.73 <.0001
+what:purpose 62 84.89 <.0001

Table 8. Effect of Attitudes on Decision; Conditional
Effects of Parameters Are Added Subsequently

Model χ 2 d f p-value
decision ∼ (1|sid )
+Comfort 7934.72 1 <.0001
+Usefulness 1249.51 1 <.0001
+Appropriateness 149.15 1 <.0001
+Risk 10.90 1 .0009
+Expectedness 1.62 1 .201
Adding Scenario Parameters
+action 0.332 3 0.953
+what 13.871 11 0.2401
+purpose 3.60 3 0.3069
+storage 14.57 2 0.0006
+who 24.53 7 0.0009
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Fig. 2. Final mediation model.

shows these conditional effects of the significant scenario parameters on participants’ allow/reject
decision, controlling for their attitudes. Action, What, and Purpose are no longer significant in
this model, suggesting that these effects are fully mediated by participants’ attitudes. Storage and
Who are still significant, but their conditional effects are smaller than their marginal effects on
decision (without controlling for attitude, see Table 2). Their chi2s are reduced drastically by 98%
and 87%, respectively. Overall, there was a substantial mediation effect. Figure 2 shows the final
model mediation model.

4.5 Post-Hoc Results

To understand the effects of different values of each parameter on participants’ various attitudes
and their allow/reject decision, we conducted post-hoc tests using Tukey’s method to adjust p-
values to account for family-wise error. This subsection highlights the key insights from these
tests. For an overview of the differences between parameter values, the reader is invited to visually
inspect them by referring to Figures 24–28 in the Appendix.

Storage. Participants perceive more risk (d range = [0.568, 1.707], allps < .001), are less comfort-
able (d range = [0.538, 1.741], all ps < .001) and find it inappropriate (d range = [0.436, 1.550], all
ps < .001) when their information is shared to ‘third parties’ or ‘stored on a remote server’ as com-
pared to when it is stored ‘locally’. Participants also found it less useful to share their information
with third parties as compared to storing it locally or on a remote server (d range = [0.28, 1.02],
p < .001). Interestingly, participants expected it less that the information is stored locally rather
than stored on remote server or shared to third parties (d range = [0.212, 0.894], all ps < .001).
Finally, the odds of enabling a feature when information is stored locally were 1.96 times higher
than when information is stored on a remote server (p < .001) and 8.36 times higher than when
information is shared with third parties (p < .001).

Action. Participants were less comfortable (d range = [0.158, 0.348], all ps < .001) and found it
more risky (d range = [0.145, 0.262], all ps < .001) when their information is used to give them
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recommendations instead of optimizing services or giving them insight into their behavior. Shar-
ing information was also found less useful (d = 0.293, p < .001) and less appropriate (d = 0.256,
p < .001) for recommendation purposes as opposed to when the scenario did not specify any pur-
pose. Participants also expected it less (d = 0.123, p = .0021) when their information was being
shared for recommendation purposes as opposed to when the scenario did not specify any pur-
pose. Finally, the odds of enabling a feature for recommendation purposes were 1.53 times lower
as opposed to when the scenario did not specify any purpose (p < .001). Additionally, the odds
of enabling a feature for optimization purposes were 1.65 times higher than for recommendation
purposes (p < .001) and 1.26 times higher than for giving behavioral insights (p < .001).

Purpose. Participants found it inappropriate (d range = [0.343, 0.411], all ps < .001) when in-
formation is collected for the purpose of detecting their presence in the house as compared to
the purposes of automating operations or giving timely alerts, and it was even more inappro-
priate to collect information for the purpose of detecting their location in the house (d range =
[0.163, 0.574], all ps < .001). Participants also found it more risky when information is used for
location detection as compared to presence detection (d = 0.598, p < .001), but they found it less
risky to share information for the purpose of giving timely alerts or for automating operations
(d range = [0.550, 0.601], p range = [0.002, 0.004]). Participants also found it more useful when
information is collected for the purpose of providing alerts (d = 0.558, p < .001) or for automating
operations (d = 0.603, p < .001) compared to the purpose of detecting their location in the house.
Finally, the odds of enabling a feature were 1.29 times higher for detecting their presence in house
than for detecting their location (p = 0.0002). Moreover, the odds of enabling a feature for the pur-
pose of giving timely alerts and automating operations were 1.59 (p < .001) and 1.65 (p < .001)
times higher respectively.

Who. Participants expected it more that their smart security systems will access information as
compared to other devices such as their smart HVAC, TV, alarm, and washing machine (d range =
[0.267, 0.618], all ps < .001). Users perceived data access by their security systems as more useful
compared other devices like their smart refrigerator, washing machine, TV and HVAC (d range =
[0.386, 0.627], all ps < .001). Participants were more comfortable (d = 0.196, p = .002) and found
it less risky (d = 0.263, p < .001) for their security systems to access collected data as compared to
their smart lighting systems. Also, participants were more comfortable (d range = [0.173, 0.356],
all ps < .05) and found it less risky (d range = [0.256, 0.338], all ps < .05) for their lighting systems
to access collected data compared to their smart assistant, TV and alarm clock. Finally, the odds of
users enabling access to their smart security system were higher than to their smart refrigerator
andwashingmachine by 1.8 times (p < .001), their smart TV by 1.7 times (p < .001) and their smart
alarm clock by 1.6 times (p < .001).We found similar results for participants’ smart assistant which
had odds higher than their smart TV (1.76 times higher, p < .001), their smart alarm clock (1.68
times higher, p < .001), their smart washing machine (1.90 times higher, p < .001) and their smart
refrigerator (1.85 times higher, p < .001).

What. This parameter had twelve different values and there were numerous combinations that
were significant when we checked the post-hoc effects. We limit our discussion to the differences
between the ‘Smart Assistant’ and the other values of this parameter, because these specific dif-
ferences are consistently significant. The reader is invited to inspect Figure 27 in the Appendix for
other differences. Participants found it more appropriate (d range = [0.213, 0.756], all ps < .001)
and useful (d range = [0.365, 0.683], all ps < .01) when information collected by their smart assis-
tant was being accessed as compared to other devices like cameras or microphones. The partici-
pants also found it less risky (d range = [0.385, 0.759], all ps < .05) and were more comfortable
(d range = [0.430, 0.821], all ps < .01) to grant access to information collected by their smart
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assistant than their camera or microphone. Participants also expected more to share information
collected by their smart assistant as compared to other devices such as cameras (d = 0.62, p < .01),
microphones (d = 0.39, p < .01), or their smart alarm clock (d = 0.21, p = .027). The odds of giving
access to information collected by their smart assistant were higher than for cameras by 2.7 times
(p < .001), microphones by 1.8 times (p < .001), their Smart TV by 1.15 times (p < .001), and their
smart washing machine by 1.8 times (p < .001).

4.6 Defaults and Framing

As outlined in Section 3.2, the framing and default of the Decision question in our study were
manipulated between-subjects at three levels each: positive, negative, or neutral framing; com-
bined with a positive, negative, or no default. We analyze the effects of defaults and framing in a
separate article [4]. In short, the analysis shows that defaults and framing have direct effects on
disclosure: Participants in the negative default condition are less likely to enable the functionality,
while participants in the positive default condition are more likely to enable the scenario (a tradi-
tional default effect). Likewise, participants in the negative framing condition are more likely to
enable the functionality (a loss aversion effect).
Moreover, there are interaction effects between defaults/framing and attitudes on disclosure:

the effects of attitudes are generally weaker in the positive and negative default conditions than
in the no default condition, and they are also weaker in the negative framing condition.
Importantly, there are no interaction effects between defaults/framing and parameters on atti-

tude or disclosure. Hence, the main findings in this section regarding the structure and relative
importance of the effects of parameters remain the same, regardless of the effects of defaults and
framing. For a more thorough discussion of the effects of defaults and framing, we refer the reader
to [4].

4.7 Discussion

We split this section in two parts: First, we discuss the consequences of our analyses—and espe-
cially our post hoc test results—for the development and adoption of household IoT devices. Sec-
ond, we discuss how our results can inform the design of household IoT privacy-setting interfaces.

4.7.1 Consequences for the Development and Adoption of Household IoT Devices. In the intro-
duction we mentioned that privacy risk is an increasingly important barrier to the adoption of
household IoT devices. Interestingly, though, in our study, Comfort, Usefulness, and Appropri-
ateness had a stronger effect on users’ allow/reject decisions than Risk. This suggests that IoT
devices with a trust-inspiring design, a strong value proposition, and a clear explanation of the
appropriateness of their data collection practices can overcome initial perceptions of privacy risk.
The tradeoff between Comfort, Usefulness, and Appropriateness embodies an interesting trade-

off: Usefulness is associated with the utility of a feature, whereas Appropriateness is a contex-
tual evaluation (Is this acceptable, given the situation?) and Comfort is a self-relevant evaluation
(Is this acceptable for me?).
The interaction between What, Who, and Purpose also suggests that users make context-

relevant evaluations: scenarios are not accepted based on the sum of their components; rather,
certain combinations of devices and purposes aremore acceptable than others.While this is outside
the scope of the current paper, future work could look into this context-dependency to find specific
synergistic combinations.
The Storage parameter had the most significant influence on the participants’ decision and all

attitudes, but most prominently on Risk. (chi2 = 47240.72, p < .001). This indicates that users’ risk
perceptions are mostly dependent on the way household IoT systems store and share their data.
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Household IoT device manufacturers who want to reduce risk perceptions may want to opt for
storing all data locally instead of on a remote server (something users are actually more likely to
expect).
Finally, the Action parameter had the least significant influence. Arguably, once users allow

information to be collected, they care less about how exactly it is being used (or possibly, they do
not expect to be able to control how it is being used).

4.7.2 Designing for IoT by Prioritizing Parameters. The results of our analyses uncover an in-
tuitive reality about our household IoT scenarios, namely, they consist of two somewhat separate
parts: On the one hand, there is a device (Who) that accesses information collected by another
device (What), for a purpose certain Purpose. At the same time, this collected information may
be stored somewhere (Storage) and some Action may be performed on it.
For the first aspect, we observed substantial interaction effects between all the three parameters,

indicating that users want to make intricate decisions about what information is going where
and for what purposes. Specifically, Unlike Bahirat et al. [5], we cannot use an interface with a
separate ‘layer’ for each parameter; the interaction effects suggest that when uses decide on one
parameter, they inherently take another parameter into account. Therefore the settings interface
for device/sensor management should show all three parameters at the same time to allow users
to make these decisions.
For the second aspect, data storage had a very strong impact, while the action had the weakest

impact. Additionally, there were no interactions between these two parameters, nor did they in-
teract with any of the other parameters. This suggests that data storage and use can be separated
in our privacy-setting interface.

5 PRIVACY-SETTING PROTOTYPE DESIGN

Designers of household IoT privacy-setting interfaces face a difficult challenge. Since there cur-
rently exists no centralized system for setting one’s household IoT privacy settings, designers must
rely on existing data (cf. [28]) or self-collected survey results (cf. this paper) to inform the design of
these interfaces. Moreover, these privacy-setting interfaces will likely be complex, as they require
users to navigate settings for the collection of various types of data for multiple purposes across
various devices.
Our dataset presents a simplified version of possible scenarios one might encounter in routine

usage of smart home technology. Still it is a daunting task to design an interface, even for these
simplified scenarios: We want to enable users to navigate their information collection and sharing
preferences across 12 different sources (What), 7 different devices trying to access this information
Who for 4 different Purposes. Additionally, this information is being stored/shared in three ways
(Storage) and being used for four different longer-term Actions.
In this section, we present our prototype, which is based on the observations made from our

statistical analysis. Section 7 extends this prototype to cover findings from our machine learning
analysis to create default privacy profiles, but before we do so, we first want to design an intuitive
interface that gives users manual control over their privacy settings. This interface should be able
to present a vast amount of settings information in a concise and understandable manner, and
allow some users to set their settings with little effort at a coarse level while still allowing others
to spend the effort to micro-manage their privacy settings in more detail.
Our statistical analysis (see Section 4) reveals what the most significant parameters are in our

dataset, as well as which parameters interact with each other. The results show that the Storage
parameter had by far the strongest effect on participants’ decision to enable/disable the smart
home feature described in the scenario. After Storage, Who, What, and Purpose had similar-sized
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effects. Moreover, we found fairly strong significant two-way interaction effects between these
parameters. Finally, the Action parameter had a weak but still significant effect.
Based on these results, we decided to split our settings interface into two separate sections:

‘Device/Sensor Management’ and ‘Data Storage & Use’. The landing page of our design (Screen 1
in Figure 3) gives users access to these two sections. The former section is based on Who, What,
and Purpose and allows users to “Manage device access to data collected in your home” (Screen
2-3). The latter section is based on Storage and Action, and allows users to “Manage the storage
and long-term use of data collected in your home” (Screen 4). Both sections are explained in more
detail below.

Device/Sensor Management. This screen (Figure 3, screen 2) allows users to control the Purposes
for which each device (Who) is allowed to access data collected by itself, other devices, and the
smart home sensors installed around the house (What). This screen has a collapsible list of data-
collecting devices and sensors (What). For each device/sensor, the user can choosewhat devices can
access the collected data (Who; in rows), and what it may use that data for (Purpose; in columns).
In the example of Figure 3, the user does not give the ‘Refrigerator’ access to information col-

lected by the ‘Smart Assistant’ for any of the four purposes, while they give the ‘Smart TV’ access
to this data for the purpose of giving ‘timely alerts’. In this example the ‘Smart Assistant’ is allowed
to use its own data to ‘automate operations’ and to ‘know your location in your home’.
ShowingWho,What, and Purpose at the same time allows users to enable/disable specific combi-

nations of settings—the significant interaction effects between these parameters suggest that this
is a necessity. The icons for the Purpose requirement allow this settings grid to fit on a smartphone
or in-home control panel. We expect that users will quickly learn the meaning of these icons, but
they can always click on ‘I want to know more’ to learn their meaning (see Figure 3, screen 3).

Data Storage & Use. This screen (Figure 3, screen 4) allows users to control how their data is
stored and shared (Storage), as well as how stored data is used (Action). These settings are inde-
pendent from each other and from the Device/Sensor Management settings.
For ‘Storage & Sharing’, users can choose to turn storage off altogether, store data locally, store

data both locally and on a remote server, or store data locally and on a remote server and allow the
app to share the data with third parties. Note that the options for Storage are presented as ordered,
mutually exclusive settings. Our scenarios did not present them as such (i.e., participants were free
to reject local storage but allow remote storage). However, the Storage parameter showed a very
clear separation of levels (see Figure 24 in the Appendix), so this presentation is justified. For ‘Data
Use’, the users can choose to enable/disable the use of the collected data for various secondary
purposes: behavioral insights, recommendations, service optimization, and/or other purposes.
In the subsequent sections, we describe the results from our machine learning analysis and

further explain how these results impact the designs presented in this section. For this purpose,
Section 7 revisits the interface designs presented here.

6 PREDICTING USERS’ BEHAVIORS

In this section, we predict participants’ enable/disable decision using machine-learning methods.
Our goal is to find suitable default settings for our IoT privacy-setting interface. Consequently, we
do not attempt to find the best possible solution; instead we make a conscious tradeoff between
parsimony and prediction accuracy. Accuracy is important to ensure that users’ privacy prefer-
ences are accurately captured and/or need only few manual adjustments. Parsimony, on the other
hand, prevents overfitting and promotes fairness: we noticed that more complex models tended to
increase overall accuracy by predicting a few users’ preferences more accurately, with no effect on
other users. Parsimony also makes the associated default setting easier to understand for the user.
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Fig. 3. Screen 1 (top left) is the landing page of our manual settings interface, screen 2 (top right) is the
Device/Sensor Management page, screen 3 (bottom left) shows the explanation when you click on “I want to
learn more”, and screen 4 (bottom right) is the Data Storage & Use page.
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Table 9. Comparison of Clustering Approaches (Highest Parsimony and Highest Accuracy)

Approach
Inital
clusters

Final # of
profiles

Complexity (avg.
tree size/profile)

Accuracy

Naive (enable all) 1 1 1 46.74%
Naive (disable all) 1 1 1 53.26%
One Rule (Figure 4) 1 1 3 61.39%

Overall (Figure 7)
1 1 8 63.32%
1 1 264 63.76%

Attitude-based

clustering (Figure 9)

2 2 2 69.44%
2 2 121.5 72.66%
3 3 2.67 72.19%
3 3 26.67 73.47%
5 4 3 72.61%
5 4 26 73.56%

Agglomerative

clustering (Figure 12)

1133 4 2 79.4%
1133 5 2.4 80.35%
1133 6 3.17 80.60%

Fit-based clustering

(Figure 16)

2 2 2 74.43%
2 2 151.5 76.72%
3 3 7 79.80%
3 3 65.33 80.81%
4 4 9.25 81.88%
4 4 58.25 82.41%
5 5 4.2 82.92%
5 5 51.4 83.35%

Our prediction target is the participants’ decision to enable or disable the data collection de-
scribed in each scenario. The scenario parameters serve as input attributes. These are nominal
variables, making decision tree algorithms such as ID3 and J48 a suitable prediction approach. Un-
like ID3, J48 uses gain ratio as the root node selection metric, which is not biased towards input
attributes with many values. Moreover, by using J48 decision trees, the amount of pruning for the
model can be easily manipulated to investigate the tradeoff between the accuracy and parsimony.
We therefore use J48 throughout our analysis.
Using Java and Weka’s Java library [58] for modeling and evaluation, we implement progres-

sively sophisticated methods for predicting participants’ decisions. After discussing naive (en-
able/disable all) solutions and One Rule Prediction, we first present a cross-validated tree learning
solution that results in a single “smart default” setting that is the same for everyone. Subsequently,
we discuss three different procedures that create a number of “smart profiles” by clustering the
participants and creating a separate cross-validated tree for each cluster. For each procedure, we
try various numbers of clusters and pruning parameters. The solutions with the most parsimo-
nious trees and the highest accuracies of each approach are reported in Table 9; more detailed
results of the parsimony/accuracy tradeoff are presented in Figures 7, 9, 12, and 16 throughout the
article, and combined in Figure 20.

6.1 Naive Prediction Model

We start with the naive or “information-less” predictions. Compared to our previous work [5],
our current dataset shows that it is even less amenable to a ‘simple’ default setting: it contains
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Fig. 4. A “smart default” setting based on the “One Rule” algorithm (4 nodes, accuracy: 61.39%). Parameter
value abbreviations correspond to the “code” column in Table 1.

Table 10. Confusion Matrix for the
One Rule Prediction

Observed Prediction Total
Enable Disable

Enable 5,085 (TP) 1,270 (FN) 6,355
Disable 3,262 (FP) 3,979 (TN) 7,241
Total 7,192 6,404 13,596

6,335 enable cases and 7,241 disable cases, which means that predicting enable for every setting
gives us a 46.74% prediction accuracy, while making a disable prediction for every setting gives
us an accuracy of 53.26%. In other words, if we disable all information collection by default, only
53.26% users will on average be satisfied with this default settings. Moreover, such a default setting
disallows any ‘smart home’ functionality by default—arguably not a solution the producers of
smart appliances can get behind.

6.2 One Rule Prediction

Next, we use a “One Rule” (OneR) algorithm to predict users’ decision using the simplest prediction
model possible. OneR is a very simple but often surprisingly effective learning algorithm [18]. It
creates a frequency table for each predictor against the target, and then find the best predictor
with the smallest total error based on the frequencies.
As shown in Figure 4, the OneR model predicts users’ decision solely based on the Storage

parameter with an accuracy of 61.39%. Based on this model, if we enable all information-sharing
except with third parties, we will on average satisfy 61.39% of users’ preferences—a 15.3% im-
provement3 over the naive “disable all” default. Note, though, that this default setting is overly
permissive, with 3,262 false positive predictions (see Table 10).

6.3 Overall Prediction

Moving beyond a single parameter, we create a “smart default” setting by predicting the en-
able/disable decision with all scenario parameters using the J48 decision tree algorithm. The re-
sulting tree has an accuracy of 63.76%. As shown in Figure 5, this model predicts users’ decision on
Storage first. It predicts disable for every scenarios with collected data stored on a remote server

361.39 / 53.26 = 1.153.
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Fig. 5. A “smart default” setting with 264 nodes (accuracy: 63.76%). Parameter value abbreviations corre-
spond to the “code” column in Table 1.

Table 11. Confusion Matrix for the
Overall Prediction

Observed Prediction Total
Enable Disable

Enable 4,753 (TP) 2,488 (FN) 7,241
Disable 2,439 (FP) 3,916 (TN) 6,355
Total 7,192 6,404 13,596

and shared with third party. For scenarios that store collected data on remote server without shar-
ing, the default settings will depend on the ‘purpose’ of information sharing. There is a further
drill down based on ‘who’ and ‘what’. For scenarios that store collected data locally, the default
settings will depend on the ‘what’. There is a further drill down based on ‘who’, ‘what’, and ‘ac-
tion’. With this default setting, users would on average be satisfied with 63.76% of these settings—a
19.7% improvement over the naive “disable all” default.
On the downside, this “smart default” setting is quite complex—the “smart default” in our previ-

ous work [5] contained only 49 nodes, whereas the “smart default” for our current dataset has 264
nodes. Compared to One Rule algorithm, which only has four nodes in its decision tree and is thus
much easier to explain, the accuracy improvement of Smart Default is only 3.8%. This highlights
the tradeoff between parsimony and prediction accuracy that we have to make when developing
“smart default” settings. On the upside, though, the prediction of the J48 decision tree algorithm is
more balanced, with a roughly equal number of false positives and false negatives (see Table 11).
To better understand the parsimony/accuracy tradeoff, we vary the degree of model pruning to

investigate the effect of increasing the parsimony (i.e., more trimming) on the accuracy of the re-
sulting “smart default” setting. The parameter used to alter the amount of post-pruning performed
on the J48 decision trees is called Confidence Factor (CF ) in Weka, and lowering the Confidence
Factor will incur more pruning. We tested the J48 classifier with a Confidence Factor ranging from
0.01 to 0.25 (the default setting in Weka) with an increments of 0.01.
Figure 6 displays the accuracy and the size of the decision tree as a function of the Confidence

Factor. The X-axis represents the Confidence Factor; the left Y-axis and the orange line represent
the accuracy of the smart default setting; the right Y-axis and the dotted blue line represent the size
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Fig. 6. Accuracy and parsimony (tree size) of the smart default change as a function of Confidence Factor.

of the decision tree for that setting. The highest accuracy, 63.75%, is achieved with the 264-node
decision tree produced by CF = 0.25. The lowest accuracy, 62.9%, is achieved with the 44-node
decision tree produced by CF = 0.19. When CF ≤ 0.16, the decision tree contains only 8 nodes.
The 8-node profile with the highest accuracy is produced byCF = 0.10 with an accuracy of 63.32%.
Figure 7 summarizes accuracy as a function of parsimony. The X-axis represents the number

number of nodes in the decision tree (more = lower parsimony); the Y-axis represents the accuracy
of the decision tree. The figure shows the most accurate J48 solution for any given tree size, and
includes the One Rule and Naive predictions for comparison. Reducing the tree from 264 to 8 nodes
incurs a negligible 0.67% reduction in accuracy. This decision tree is shown in Figure 8, and is still
3.1% better than the One Rule predictionmodel and 18.9% better than the naive “disable all” default.
This more parsimonious “smart default” setting can easily be explained to users as follows:

• All sharing with third parties will be disabled by default.
• Remote storage is allowed for automation and alerts, but not for detecting your presence or

location in the house.
• Local storage is allowed for all purposes.

While the “smart default” setting makes a considerable improvement over a naive default, there
is still a lot of room for improvement—even our best prediction model only correctly models on
average 63.76% of the user’s desired settings. This should come at no surprise, as one of the most
consistent findings in the field of privacy is that people differ substantially in their privacy pref-
erences [25]. As a result, our “one-size-fits-all” default setting—smart as it may be—is not very
accurate. Recent work in the field of privacy suggest to tailor the privacy settings to the user to
accommodate for these interpersonal differences [23]. Our previous work therefore moved beyond
“smart default” settings by clustering participants with similar privacy preferences and creating a

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 10. Publication date: September 2019.



A Data-Driven Approach to Designing for Privacy in Household IoT 10:23

Fig. 7. Parsimony/accuracy comparison for Naive, One Rule, and Overall Prediction.

Fig. 8. A “smart default” setting with only 8 nodes (accuracy: 63.32%). Parameter value abbreviations corre-
spond to the “code” column in Table 1.

set of “smart profiles” covering each of the clusters [5]. The idea is that the accuracy of the tree
for each cluster will likely exceed the accuracy of our overall prediction model.
In the remainder of this section, we apply existing and new clustering methods with the aim of

creating separate “smart profiles” for each cluster. As our goal is to develop simple, understandable
profiles, we keep the parsimony/accuracy tradeoff in mind during this process.

6.4 Attitude-Based Clustering

As shown in Figure 1, our statistical results indicate that the effects of scenario parameters on
users’ decisions are mediated by their attitudes (Risk, Comfort, Appropriateness, Expectedness
and Usefulness). Therefore, our first attempt to develop “smart profiles” is to cluster participants
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Fig. 9. Parsimony/accuracy comparison for attitude-based clustering.

with similar attitudes towards the 12 scenarios they evaluated.We averaged the values per attitude
across each participant’s 12 answers, and ran a k-means clustering algorithm to divide them into
2, 3, 4, 5, and 6 clusters. We then added the participants’ cluster assignments back to our original
dataset, and ran the J48 decision tree algorithm on the dataset with this additional Cluster attribute
for each number of clusters, varying the Confidence Factor from 0.01 to 0.25 with increments of
0.01. The results are summarized in Figure 9, which displays the most accurate solution for any
given tree size and number of clusters.
All of the resulting decision trees have Cluster as the root node. This justifies our approach,

because it indicates that the Cluster parameter is a very effective for predicting users’ decisions.
It also allows us to split the decision trees at the root node, and a create different “smart profile”
for each subtree/cluster. Note that for some solutions two clusters end up with the same decision
tree, which effectively reduces the number of profiles by 1.
For the 2-cluster solutions (the blue line in Figure 9), the highest accuracy is 72.66%, which

is a 14.0% improvement over the best single “smart default” setting. However, this tree has an
average of 121.5 nodes per profile. In comparison, the most parsimonious solution has only one
node (“disable all”) for one of the clusters, and three nodes (“disable sharing with third parties”)
for the other cluster (see Figure 10). This solution still has an accuracy of 69.44%, which is still an
8.9% increase over the best single “smart default” setting.
For the 3-cluster solutions (the orange line in Figure 9), the highest accuracy of 73.47% is

achieved by a set of trees with 26.67 nodes on average (a minimal improvement of 1.1% over the
best 2-cluster solution, but with simpler trees), while the most parsimonious solution has a “disable
all” and an “enable all” tree, plus a tree that is the same as the most parsimonious smart default
setting (see Figure 8). This solution has an accuracy of 72.19%, which is a 4.0% increase over the
most parsimonious 2-cluster solution.
The 4-cluster solutions (the grey line in Figure 9) all result in “over-clustering”: All solutions

based on the 4-cluster Cluster parameter result in two profiles with the same subtree, effectively
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Fig. 10. The most parsimonious 2-profile attitude-based solution (2 nodes/profile, accuracy: 69.44%). Param-
eter value abbreviations correspond to the “code” column in Table 1.

Fig. 11. A 3-profile solution example of attitude-based clustering (18.33 nodes/profile, accuracy: 73.26%).
Parameter value abbreviations correspond to the “code” column in Table 1.

resulting in a 3-profile solution. The accuracy of these solutions is actually lower than the accuracy
of similar 3-cluster solutions, so we will not discuss them here.
The 5-cluster solutions (the yellow line in Figure 9) are also “over-clustered”, resulting in 4

profiles. The highest accuracy of 73.56% is achieved by a set of trees with 26 nodes—this is about
the same accuracy and parsimony as the most accurate 3-cluster solution. The same holds for the
most parsimonious 5-cluster solution, which has a similar accuracy and parsimony as the most
parsimonious 3-cluster solution.
The accuracy of the 6-cluster solutions (which result in either 4- or 5-profile solutions) is lower

than the accuracy of similar 5-cluster solutions. Therefore, wewill not discuss these results further.
Reflecting upon the attitude-based clustering results, we observe in Figure 9 that there is indeed

a tradeoff between accuracy and parsimony: The most parsimonious results are less accurate, but
the most accurate results are more complex. Moreover, the 2-profile solutions are about 5% less
accurate than the 3-profile solutions at any level of complexity. The 4-profile solutions do not
improve the solution much further, though.
The 3-profile solution with an average of 18.33 nodes per profile and 73.26% accuracy provides a

nice compromise between accuracy and parsimony. Part of this decision tree is shown in Figure 11:
it contains one “disable all” profile, one “enable all” profile, and a more complex profile with 55
nodes that disallows sharing with third parties and allows remote and local storage depending on
the purpose (not further shown).
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Fig. 12. Parsimony/accuracy comparison for agglomerative clustering.

6.5 Agglomerative Clustering

The attitude-based clustering approach requires knowledge of users’ attitudes towards the house-
hold IoT information-sharing scenarios, which may not always be available. We developed an
alternative method for finding “smart profiles” that follows a hierarchical bottom-up (or agglomer-
ative) approach, using users’ decisions only. This method first fits a separate decision tree for each
participant, and then iteratively merges these trees based on similarity. In our previous work [5],
only 10 out of the 200 users in the dataset had unique trees fitted to them (all others had an “enable
all” or “disable all” tree), making the merging of trees a rather trivial affair. Our current dataset
has many more participants, and is more complex, making the agglomerative clustering approach
more challenging but also more meaningful.
In the first step, 283 participants’ decision trees predict “enable all”, 414 participants’ decision

trees predict “disable all”, while the remaining 436 participants have a multi-node decision tree.
In the second step, a new decision tree is generated for each possible pair of participants in the

“multi-node group”. The accuracy of the new tree is compared against the weighted average of the
accuracies of the original trees. The pair with smallest reduction in accuracy is merged, leaving
435 clusters for the next round of merging. If two or more candidate pairs have the same smallest
reduction in accuracy, priority is given to the pair with the most parsimonious resulting tree (i.e.,
with smallest number of nodes). If there are still multiple pairs that tie on this criterion, the first
pair is picked. The second step is repeated until it reaches the predefined number of clusters, and
the entire procedure is repeated with 20 random starts to avoid local optima.
To fit the trees, we use the J48 classifier with a Confidence Factor ranging from 0.01 to 0.25

with increments of 0.01. Surprisingly, smaller tree sizes result in a higher accuracy for agglomera-
tive clustering (see Figure 12). This suggests that without extensive trimming, our agglomerative
approach arguably overfits the data, resulting in a lower level of cross-validated accuracy.
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Fig. 13. The best 4-profile agglomerative clustering solution (2 nodes/profile, accuracy: 79.40%). Parameter
value abbreviations correspond to the “code” column in Table 1.

Fig. 14. The best 5-profile agglomerative clustering solution (2.4 nodes/profile, Accuracy: 80.35%). Parameter
value abbreviations correspond to the “code” column in Table 1.

The best 4-cluster solution has an average of 2 nodes per profile and an accuracy of 79.40%—
a 24.53% improvement over the “smart default”, and a 7.9% increase over the most accurate 5-
cluster/4-profile attitude-based clustering solution. The decision trees are shown in Figure 13:
Aside from the “enable all” and “disable all” profiles, there is a “disable sharing with third par-
ties” profile and a “local storage only” profile.
The best 5-cluster solution has an average of 2.4 nodes per profile and an accuracy of 80.35%—

a 26.02% improvement over the “smart default”, but only a 1.2% improvement over the 4-cluster
agglomerative solution. The decision trees are shown in Figure 14: It has the same profiles as the
4-cluster solution, plus an “allow automation and alerts, but don’t track my presence or location
in the house” profile.
Finally, the best 6-cluster solution4 has an average of 3.17 nodes per profile and an accuracy

of 80.68%—a 26.54% improvement over the “smart default”, but no substantial improvement over

4There is another solution with slightly fewer nodes per profile (2.67) and a slightly lower accuracy (80.60%).

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 1, Article 10. Publication date: September 2019.



10:28 Y. He et al.

Fig. 15. The best 6-profile agglomerative clustering solution (3.17 nodes/profile, Accuracy: 80.68%). Parame-
ter value abbreviations correspond to the “code” column in Table 1.

the 5-cluster agglomerative solution. The decision trees are shown in Figure 15: It has the same
profiles as the 5-cluster solution, plus a profile that allows local storage for anything, plus remote
storage for any reason except for user profiling (i.e., to recommend other services or to give the
user insight into their behavior).

6.6 Fit-Based Clustering

We now present a “fit-based” clustering approach that, like the agglomerative approach, clusters
participants without using any additional information. Instead, it uses the fit of the tree models to
bootstrap the process of sorting participants into different clusters. The steps of our algorithm are
as follows:

• Random Starts: We randomly divide participants into k separate groups, and learn a tree
for each group. This is repeated until a non-trivial starting solution (i.e., with distinctly
different trees per group) is found.

• Iterative Improvements: Once each of the k groups has a unique decision tree, we test for
each participant which of the k trees best represents their 12 decisions. If this is the tree of a
different group, we switch the participant to this group. Once all participants are evaluated
and put in the group of their best-fitting tree, the tree in each group is re-learned with the
data of the new group members. This then prompts another round of evaluations, and this
process continues until no further switches are performed.

• Repeat: Since this process is influenced by random chance, it is repeated 1,000 times in
its entirety to find the optimal solution. Cross-validation is performed in the final step to
prevent over-fitting.

We perform this approach to obtain 2-, 3-, 4-, and 5-cluster solutions. To fit the trees, we use the
J48 classifier with a Confidence Factor ranging from 0.01 to 0.25 with increments of 0.01. The best
results are summarized in Figure 16.
For the 2-cluster solutions (the blue line in Figure 16), the highest accuracy is 76.72%—a 20.33%

improvement over the “smart default” setting and a 5.6% improvement over the most accurate 2-
cluster attitude-based solution. However, this tree has an average of 151.5 nodes per profile. The
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Fig. 16. Parsimony/accuracy comparison for fit-based clustering.

Fig. 17. The most parsimonious 3-profile fit-based solution (7 nodes/profile, accuracy: 79.80%). Parameter
value abbreviations correspond to the “code” column in Table 1.

most parsimonious solution is exactly the same as the most parsimonious 2-cluster attitude-based
solution (see Figure 10), but with a higher accuracy (74.43%).
For the 3-cluster solutions (the orange line in Figure 16), the highest accuracy of 80.81% is

achieved by a set of trees with 65.33 nodes on average. This is a 26.74% improvement over the
“smart default”, a 10.0% improvement over the most accurate 3-cluster attitude-based solution (but
at a cost of lower parsimony), and a 5.2% improvement over the best 2-cluster fit-based solution.
The most parsimonious solution, on the other hand, has seven nodes on average, with an accu-
racy of 79.80%, thereby still outperforming all other 3-profile solutions. The decision trees for this
solution are shown in Figure 17.
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Fig. 18. The most parsimonious 4-profile fit-based solution (9.25 nodes/profile, accuracy: 81.88%). Parameter
value abbreviations correspond to the “code” column in Table 1.

For the 4-cluster solutions (the grey line in Figure 16), the highest accuracy of 82.41% is achieved
by a set of trees with 58.25 nodes on average. This is a 29.25% improvement over the “smart default”,
a 3.8% improvement over the 4-cluster agglomerative solution (but at a cost of lower parsimony),
and a 2.0% improvement over the best 3-cluster fit-based solution. Themost parsimonious solution,
on the other hand, has 9.25 nodes on average, with an accuracy of 81.88%. It still outperforms all
other 4-profile solutions, but the agglomerative solution is more parsimonious. The decision trees
for this solution are shown in Figure 18.
For the 5-cluster solutions (the yellow line in Figure 16), the highest accuracy of 83.35% is

achieved by a set of trees with 51.4 nodes on average. This is a 30.05% improvement over the
“smart default”, a 3.8% improvement over the 5-cluster agglomerative solution (but at a cost of
lower parsimony), and a 1.1% improvement over the best 4-cluster fit-based solution. The most
parsimonious solution, on the other hand, has 4.2 nodes on average, with an accuracy of 82.92%.
It still outperforms the 5-profile agglomerative solution, but it is slightly less parsimonious. The
decision trees for this solution are shown in Figure 19.

6.7 Discussion of Machine-Learning Results

Figure 20 shows a comparison of the presented approaches. The X-axis represents the parsimony
(higher average tree size per profile = lower parsimony); the Y-axis represents the accuracy. While
the “smart default” setting makes a significant 15.3% improvement over the naive default setting
(“disable all”), we observe that having multiple “smart profiles” substantially increases the pre-
diction accuracy even further. The fit-based clustering algorithm performs the best out of all the
approaches, followed by agglomerative clustering and attitude-based clustering.
The most parsimonious 2-profile fit-based solution (with an accuracy of 74.43%) is the simplest

of all “smart profile” solutions: one profile is simply “disable all”, while the other profile is the same
as our OneR solution: “disable sharing with third parties”. In fact, these profiles are so simple, that
one might not even want to bother with presenting them to the user: In our current interface (see
Figure 3), these defaults are incredibly easy for users to implement by themselves.
The same is true for the 4-profile agglomerative clustering solution (see Figure 13) and the 5-

profile agglomerative clustering solution (see Figure 14): these profiles involve little more than a
single high-level setting, which users can likely easily make by themselves.
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Fig. 19. The most parsimonious 5-profile fit-based solution (4.2 nodes/profile, accuracy: 82.92%). Parameter
value abbreviations correspond to the “code” column in Table 1.

The 5-profile fit-based solution is the most accurate of all “smart profile” solutions. The most
parsimonious 5-profile fit-based clustering solution (Figure 19) has an accuracy of 82.92%. It has
the following five profiles:

• Enable all
• Enable local and remote storage, but disable third-party sharing
• Enable local storage only
• Enable local storage for everything except location-tracking, enable remote storage for ev-

erything except location- and presence-tracking, and disable third-party sharing
• Disable all

The fourth profile in this list specifies an interaction between between Storage and Purpose—
something that is not possible in our current manual settings interface (which only allows in-
teractions between Who, What, and Purpose). The next section will present a slightly altered
interface that accommodates these profiles.
There is another 5-profile fit-based solution with a slightly higher accuracy (83.11%) and a rea-

sonably simple tree (5 nodes/profile on average). This solution is shown in Figure 21. In this solu-
tion, the third profile (“enable local storage only”) is replaced by a slightly more complex profile
(“enable local storage only, but not to recommend other services”). This profile specifies an addi-
tional interaction between Storage and Action. The next section will present a settings interface
that accommodates this profile as well.
Other usable solutions are the 3-profile fit-based solution (Figure 17) or the 4-profile fit-based

solution (Figure 18). However, like almost all of the less parsimonious solutions, these profiles in-
volve higher-order interaction effects, e.g., between Storage, Purpose, and Action and between
Storage, Purpose, andWho. Consequently, a rather more complex interface is needed to accom-
modate these default profiles.

7 PRIVACY-SETTING PROTOTYPE DESIGN USING MACHINE-LEARNING RESULTS

In Section 5, we developed a prototype interface that household IoT users can use to manually
set their privacy settings (see Figure 3). Our machine-learning analysis (Section 6) resulted in a
number of interesting solutions for “smart profiles” that would allow users of this interface to set
their privacy settings with a single click (i.e., a choice of profile). While some of these profiles can
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Fig. 20. Summary of all our approaches.

be integrated in our prototype (e.g., the most parsimonious 2-profile fit-based solution and the
4-profile and 5-profile agglomerative solutions) other profiles have an interaction effect between
variables that are modeled as independent in our current prototype interface (e.g., the two 5-profile
fit-based solutions presented in Figures 19 and 21).
In this section, we therefore present two modified prototypes that are designed to be compatible

with these two 5-profile solutions. These two solutions are not the most accurate, but they produce
a parsimonious set of profiles that require only minimal alterations to our interface design. They
thus provide the optimal tradeoff between reduction accuracy, profile parsimony, and interface
complexity.

7.1 Interface for the 5-Profile Fit-Based Solution with an Accuracy of 82.92%

This machine-learning solution (Figure 19) requires an interaction between the Storage parameter
and the Purpose parameter—two parameters that are controlled independently in the prototype in
Figure 3. Our solution is to slightly alter the interface, and add the profile selection page at the
beginning of the interface (see Figure 22):
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Fig. 21. A good 5-profile fit-based clustering solution (5 nodes/profile, Accuracy: 83.11%). Parameter value
abbreviations correspond to the “code” column in Table 1.

• Screen 1: On this screen, users choose their most applicable default profile. For some users,
the selected profile accurately represents their preferences, while others may want to adjust
the individual settings manually.

• Screen 2: After clicking ‘Next’, users are given the option to select ‘Storage/Sharing & De-
vice/Sensor Management’ or ‘Data Use’.

• When users select either ‘Storage/Sharing & Device/Sensor Management’ they first get to
set their sharing preferences for ‘local storage’, ‘remote server’ and ‘third party sharing’
(Storage). Each of these can independently be set to enabled or disabled, but users can also
click on ‘More’.

• Screen 4: When users select ‘More’, they can manage Who-What-Purpose combinations for
that particular storage/sharing option.

• Screen 5:When users select ‘Data Use’ on screen 2, they get to enable/disable the use of the
collected data for various secondary purposes (Action).

7.2 Interface for the 5-Profile Fit-Based Solution with an Accuracy of 83.11%

The alternative machine learning solution presented in Figure 21 requires an additional interaction
between the Storage parameter and the Action parameter. This requires us to slightly alter the
interface again (see Figure 23):

• Screen 1: The profile selection screen remains unchanged, with the exception that the ‘Local
Storage Only’ profile is replaced by the more complex ‘Local Storage & No Recommenda-
tions’ profile.

• Screen 2: After clicking ‘Next’, users first get to set their sharing preferences for ‘local stor-
age’, ‘remote server’, and ‘third party sharing’ (Storage). Each of these can independently
be set to enabled or disabled, but users can also click on ‘More’.

• Screen 3:When users select ‘More’, they are given the option to select either ‘Device/Sensor
Management’ or ‘Data Use’.

• Screen 4: When users select ‘Device/Sensor Management’, they can manage Who-What-
Purpose combinations for that particular storage/sharing option.

• Screen 5: When users select ‘Data Use’, they get to enable/disable the use of the collected
data for various secondary purposes (Action) for that particular storage/sharing option.
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Fig. 22. Design for 5-Profile solution presented in Section 7.1. From top left, screen 1 is the profile selection
page, screen 2 is the slightly altered landing page of our manual settings interface, screen 3 is the slightly
altered Data Storage page, screen 4 (bottom left) is the Device/Sensor Management page, and screen 5 is the
Data Use page.

7.3 Reflection on Design Complexity

The interfaces presented in this section have an additional ‘layer’, compared to the original in-
terface presented in Section 5. This additional layer makes setting the privacy settings manually
more difficult, but it is necessary to accommodate the complexity of the smart profiles uncov-
ered by our machine learning analysis. On the one hand, this demonstrates the value of develop-
ing a parsimonious machine learning model—the more accurate but more complex profiles that
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Fig. 23. Design for 5-Profile solution presented in Section 7.2. From top left, screen 1 is the profile selection
page, screen 2 is the slightly altered Data Storage page, screen 3 follows the ‘More’ button to offer access to
screen 4 (bottom left, the Data Use page) and screen 5 (bottom right, the Device/Sensor Management page).

comprise some of the solutions in Section 6 are not only more difficult to explain to the user, they
also contain more complex interactions between decision parameters, forcing the manual settings
interface to become even more complex. A simple smart profile solution avoids such complexity
in the interface.
On the other hand, one should not over-simplify the profiles, lest they become overly generic

and inaccurate in representing users’ privacy preferences. Indeed, whenwemake our smart profile
solutions more accurate, fewer users will need to make any manual adjustments at all, so we can
allow some additional complexity in the interface.
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8 LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of our work, our plans to evaluate the presented inter-
faces, and other future work.
One limitation of our work concerns our ethical approach to privacy support. The decisions

regarding the scenarios presented in our work encompass a tradeoff between privacy and utility.
Our article adheres to a philosophy that considers neither privacy nor utility a morally superior
goal: it is up to the end user to decide upon the balance between these two goals. We acknowledge
that end users vary widely in how they evaluate this balance; hence, the goal of our work is to help
each user find the optimal balance that is right for them. From this perspective, we believe that
consistent and coherent privacy profiles are a better starting point for users than taking an “every-
thing off” or “everything on” approach. We acknowledge, though, that other (more paternalistic)
moral standpoints exist, and that our work does not adhere to these standpoints.
We also note that participants in our study made decisions about hypothetical rather than “real-

life” scenarios. However, compared tomost other privacy studies, our study asks participants about
very specific IoT scenarios, measuring their attitudes and behaviors in the context of these scenar-
ios. The hypothetical nature of the scenarios is thus a conscious tradeoff here: it is impossible to
measure privacy in 4,000+ scenarios without presenting them on a screen.
Another limitation is that the effectiveness of our approach is contingent upon on the benev-

olence of the IoT infrastructure provider, and that it is easy for an “evil” provider to tweak the
profiles in their favor (cf. [26]). To that point, we note that the provider of the IoT infrastruc-
ture may very well be a separate entity from the device vendors (similar to how smartphone OS
providers are often separate from smartphone app developers). In that case, it is not in the infras-
tructure provider’s interest to “oversell” the IoT functionality, but rather to increase users’ comfort
with the use of their platform.
A limitation regarding our machine-learning approach is that it assumes a perfect assignment of

users to profiles. However, in our current approach, users of the profile-based interface make their
own choice as to which profile they want to apply. If they do not make the correct choice, then
this introduces additional uncertainty, and the accuracy of our approachwill be substantially lower
than described in our article. This limitation highlights the importance of the parsimony/accuracy
tradeoff: Users benefit from parsimony in the context of our study, because parsimony makes for
simpler profiles, which are easier to understand and hence easier to choose from. At the same time,
though, these more parsimonious profiles are likely going to be less accurate, which means that
users need to make more manual adjustments to the profile-based settings.
To further explore this tradeoff between parsimony and accuracy, and also to evaluate the us-

ability of the proposed privacy-setting interface prototypes in this article, we are in the process of
developing a user study to test these interface prototypes. In this study, we compare several de-
fault/profile solutions: all disabled by default, all enabled by default, two variants of a single smart
default (Figure 4 and Figure 8), two variants of smart profiles (Figure 14 and Figure 23). The study
will also consider different levels of complexity for the manual settings interface.
Aside from this user study, we also intend to expand our work in the direction of conducting a

cross-platform study on IoT privacy. This studywould aim at understanding how user perspectives
about privacy differ across different IoT platforms, such as wearable IoT, household IoT, and public
IoT.

9 CONCLUSION

The motivation behind our research was to reduce the information and choice overload associ-
ated with the plethora of choices that users might face while setting their privacy settings in a
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household IoT environment. While our work is certainly not the first to propose a new interface
for privacy settings (cf. [40] and [54]), our work is unique in its development of a novel data-driven
process that leveraging an understanding of user decision making from a contextual perspective of
a technology to aid the design of more efficient privacy-setting interfaces.
Specifically, whereas it is standard practice to develop privacy-setting interfaces based on user

feedback from user testing on existing interfaces, we gather users’ feedback on IoT scenarios before
developing the interface, and employ statistical and machine learning analyses to develop a set-
tings interface and a series of ‘smart profiles’ to aid users in their privacy-setting task. The use of
scenarios solves the challenge of creating a privacy-setting interface for technologies that are still
under development. Moreover, in using scenarios, the presented procedure avoids typical decision
externalities such as default effects, framing effects [6], and decision-context effects [26] that tend
to obfuscate users’ behaviors in more naturalistic studies.
Beyond our previous work [5], the current article describes a more thorough method for ana-

lyzing potential solutions that span a variety of perspectives on the balance between the number
and accuracy of shortcut solutions (profiles), the complexity of the manual settings interface, and
users’ ability to comprehended and control these systems. Our approach provides several options,
but it is up to the designer to decide what the best option is. In some cases, this may involve imple-
menting several potential solutions and comparing them in a user test or a controlled experiment.
We argue that the exploration of this balance is just as important for many other settings inter-

faces as well. Indeed, future work could apply the proposed procedure to other privacy-setting do-
mains, such as healthcare privacy, drone privacy, and nanotech privacy. To do this, the researchers
have to identify the parameters that are potentially relevant in the domain under investigation.
“Who” (e.g., for healthcare privacy: primary-care physician, specialist, first-aid worker, health in-
surer, employer) and “what” (e.g., for healthcare privacy: demographics, physical data, chronic
illnesses, medications, past illnesses, past surgeries, allergies) and “purpose” (e.g., for healthcare
privacy: general care, emergency care, epidemic prevention, health research, insurance fraud pre-
vention, billing) are par for the course, but their actual values will of course differ per domain.
Moreover, each domain will have its own unique considerations (e.g., for healthcare privacy, who
has agency over the data when the user is incapacitated).
Our proposed procedure uses “smart profiles” because IoT privacy decisions are often made

upon installation of the IoT system, and rarely revisited. In contrast, in many of the potential
application domains for our proposed procedure the privacy decisions are repeated and spread
out in time (e.g., in healthcare privacy, privacy decisions have to be made upon each doctor visit).
In those domains, fully “adaptive” privacy mechanisms that use “active tracking” (cf. [22], and
[30]) are more suitable. Regardless, our approach is still beneficial in these situations, since such
an active tracking system still needs a manual interface to make corrections to the settings, as well
as a (set of) default setting(s) that is applied upon first use of the system. This would thus still
require our static, profile-based approach.

APPENDIX

The legend associated with abbreviations is explained in Table 1.
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Fig. 24. Plots of various values of Storage vs different Attitudes and Decision.

Fig. 25. Plots of various values of Action vs. different Attitudes and Decision.
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Fig. 26. Plots of various values of Purpose vs. different Attitudes and Decision.

Fig. 27. Plots of various values ofWho vs. different Attitudes and Decision.
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Fig. 28. Plots of various values ofWhat vs. different Attitudes and Decision.

Fig. 29. Open-ended questions asked to participants in order to gauge their familiarity with IoT.
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Fig. 30. Attention check questions asked to participants.
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Fig. 31. Transcript of video shown to participants if they failed attention checks.
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Fig. 32. Attention check question asked to participants.

Fig. 33. Attention check question shown while participants are answering questions per scenario.
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Fig. 34. Example of one of the thirteen scenarios presented to the participants.
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