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Abstract From teaching in labs to training for assembly,
a role that robots are expected to play is to instruct their
users in completing physical tasks.While instruction requires
a range of capabilities, such as use of verbal and nonver-
bal language, a fundamental requirement for an instructional
robot is to provide its students with instructions in a way that
maximizes their task performance. In this paper, we present
an autonomous instructional robot and investigate how dif-
ferent instructional strategies affect user performance and
experience.Our analysis of human instructor–trainee interac-
tions identified two key instructional strategies: (1) grouping
instructions together and (2) summarizing the outcome of
subsequent instructions. We implemented these strategies
into a humanlike robot that autonomously instructed its users
in a pipe-assembly task. To achieve autonomous instruction,
we also developed a repair mechanism that enabled the robot
to correct mistakes and misunderstandings. An evaluation
of the instructional strategies in a human–robot interaction
study showed that employing the grouping strategy resulted
in faster task completion and increased rapportwith the robot,
although it also increased the number of task breakdowns.
A comparison of our results with the human instructor–
trainee interactions revealed many similarities, areas where
our model for robot instructors could be improved, and
the nuanced ways in which human instructors use training

This is one of several papers published in Autonomous Robots
comprising the “Special Issue on Robotics Science and Systems”.

B Allison Sauppé
asauppe@cs.wisc.edu

Bilge Mutlu
bilge@cs.wisc.edu

1 Department of Computer Sciences, University of
Wisconsin–Madison, Madison, WI, USA

strategies such as summarization. Our findings offer strong
implications for the design of instructional robots and direc-
tions of future research.
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1 Introduction

As robots enter instructional roles such as teaching in class-
rooms, training for assembly on a shop floor, and teaching
medical students surgical procedures, they will need to effec-
tively present task instructions, providing clarifications and
corrections when needed, to improve task outcomes and user
experience. Robots’ success in instruction will depend on
their effectiveness first in their use of language, including
linguistic and nonverbal cues (Andrist et al. 2013; Boucher
et al. 2012; Huang and Mutlu 2012; Staudte and Crocker
2009), and second in their presentation of task information,
including what information they disclose at a given moment,
how they present task information, and how they correct
misunderstandings. This paper focuses on the latter prob-
lem of effectively presenting task information and explores
how robots might adopt the strategies that human instructors
use to present task information and what strategies might be
most effective.

Human instructors carefully plan instructions to maxi-
mize their students’ ability to integrate the material, such as
first choosing a subgoal to address in a task and plan future
instructions to address the chosen subgoal to help contextu-
alize the instructions (Blaylock et al. 2003; Grosz and Kraus
1996). To aid participants in completing the step, instruc-
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tions are iteratively refined until they are atomic. Instructors
might also engage the student in the instruction, encouraging
“learning by doing” to enable the student to achieve a deeper
understanding of the instructions by performing them (Alfieri
et al. 2011). These discourse strategies might inform how
a robot should order instructions and engage participants.
While some strategies are known, formalizations suitable to
implementation on a robot do not yet exist.

In addition to an effective method of delivery, task-based
instruction requires instructors to monitor student under-
standing and progress and to provide feedback and correc-
tions. As the instructor and student progress in the task, they
may encounterbreakdowns—misunderstandings ormiscom-
munication concerning the task goals—that can impede task
progress. Instructors need to repair these breakdowns by
resolving such differences in understanding. Failure to repair
breakdowns might lead to compounded breakdowns later in
the interaction, further hinderingprogress. This repair is often
context-specific in that it requires knowledge of prior actions
and current expectations in order to succeed. Additionally,
humans use a variety of techniques to repair breakdowns
(Hirst et al. 1994) and adapt their use of these techniques to
the context of the interaction (Reigeluth et al. 1980).

In this paper, we build a better understanding of these
instructional and repair strategies by collecting and ana-
lyzing data from human instructor–trainee pairs on task
instruction. We then implement models of these strategies
on an autonomous robot system that guides users through
a pipe-assembly task, mimicking real-world assembly tasks
in which robots are expected to participate (Fig. 1). This
system enables the robot to use each of the teaching strate-
gies employed by human instructors to provide students
with task instructions and to autonomously handle repair
when breakdowns arise. Using this system, we conducted
an exploratory human–robot interaction study to assess
the tradeoffs between different instructional strategies in
measures such as the number of repairs conducted, task com-
pletion time, and user experience with the robot.We compare

Fig. 1 The robot autonomously guiding a participant in assembling
pipes

our results to those found from the human instructor–trainee
pairs, highlighting similarities and areas for improvement in
developing robot instructors. In summary, our work makes
the following contributions:

1. A better understanding of human–human instruction.
2. Models for planning instructions and repairing break-

downs and their implementation in a robot system.
3. The validation of our models and their implementation

in an instructional scenario and an understanding of the
effectiveness of different instructional strategies.

4. A “gold standard” comparison of our models and their
implementation against the human instructor–trainee
data in order to identify components of the model which
could be improved.

5. The demonstration of an integrated process for designing
effective robot behaviors that involves modeling human
behaviors, implementing the resulting model in robots,
and evaluating implemented behaviors in a user study.

2 Background

In order to enable robots to successfully fulfill instructional
roles, it is necessary to understand what instructional strate-
gies would be best for robots to follow. We draw inspiration
from how humans give task instruction to model and imple-
ment teaching strategies that maximize task outcomes and
student experience in human–robot instruction. This section
reviews prior work on strategies that humans use in present-
ing task information and on the development of instructional
robots.

2.1 Instruction in human–human interaction

Effectively communicating a series of instructions is a com-
plex task that has been studied at a number of levels,
including how human instructors develop and communicate
instructions for their students. Prior work has suggested that
instructors follow a discourse planning process based on
iterative refinement, where the instructor first picks a sub-
goal to complete and then further decomposes the subgoal
into atomic actions (Blaylock et al. 2003; Grosz and Kraus
1996). Instructions are then ordered based on logical seg-
mentations of steps to help students contextualize the task
(Grosz and Sidner 1986). These models provide important
insights into how instructors break task goals into a set of
instructions.

Successfully directing a student in a task also relies on
feedback from the student. Despite the best efforts of instruc-
tors, there will inevitably be instances of breakdowns—
misunderstandings or miscommunication concerning task
goals—that can either impede ongoing progress or lead to
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breakdowns in the future (Zahn 1984). To correct break-
downs, humans engage in repair, a process that allows
participants to correct misunderstandings and helps ensure
that all participants have a similar understanding of the
relayed information (Hirst et al. 1994; Zahn 1984). The
process of engaging in repair is often context-sensitive (Seed-
house 1999). For example, when a topic is being discussed
in a classroom, the instructor frequently initiates repair to
clarify students’ statements. However, when the classroom
is engaged in a task, students are more likely to offer repair
to or seek repair from their peers. Additionally, the likeli-
hood of initiating repair can also be dependent on context.
While earlier studies suggested that people have a preference
for noticing and correcting mistakes on their own (Schegloff
et al. 1977), more recent work indicates that a preference for
others to engage in repair existswhen the conversational part-
ner is better equipped to handle the repair. Such a situation
often arises in groups with disparate levels of knowledge,
such as parent–child or instructor–student groups (Norrick
1991; Tomasello et al. 1990).

2.2 Instruction in human–robot interaction

Prior research in robotics has explored how robots might
function in instructional settings, such as daycare facilities
and classrooms (Kanda et al. 2007; Tanaka andKimura 2009;
Tanaka andMovellan 2006), and aid in task instruction, such
as offering assistance in a hand washing task (Hoey et al.
2005) and giving directions in a cooking task (Torrey et al.
2007). In addition to enabling robots to accurately convey
instructions, researchers have also explored how a robot’s
use of social cues, such as gaze and gestures, can aid stu-
dents in performing a task (Huang and Mutlu 2012). To
effectively achieve task goals in the range of instructional set-
tings robots are expected to participate in, robots might adapt
their instructions to accommodate the user’s task expertise
and recall of task steps. For instance, Torrey et al. (2006)
explored how adapting the comprehensiveness of the robot’s
instructions to its user’s expertise might affect task outcomes
and user experience. They found that more comprehensive
instructions resulted in fewer mistakes among novices, while
experts rated the robot as more effective, more authoritative,
and less patronizing when it provided brief descriptions. Fos-
ter et al. (2009) studied the effects of the order in which the
robot provided task goals along with instructions on student
recall of task steps, showing that providing task goals prior
to issuing task steps resulted in fewer requests for repetition
by the student later in the task.

Just as repair is necessary in human instruction, robots
must also be capable of identifying breakdowns and offer-
ing repair for effective human–robot instruction. Prior work
has explored a variety of techniques to alleviate the need for
repair, such as taking into account the speaker’s perspective

(Trafton et al. 2005) or mitigating the negative impact of
breakdowns through framing (Lee et al. 2010). While these
studies point to instructional and repair strategies as key ele-
ments of the design of instructional robots, enabling robots
to use strategies that maximize task outcomes and student
experience requires a better understanding and models of
effective task instruction. The following section details our
work on developing such models.

3 Modeling

To better understand human teaching strategies, we collected
video data of human–human interactions during an instruc-
tional pipe-assembly task that resembled assembly tasks in
which robots might guide humans, such as furniture assem-
bly. Below, we discuss our data collection process, analysis,
and the instruction models we constructed from the data.

3.1 Data collection

We collected video data from eight instructor–trainee dyads
during a pipe-assembly task. In eachof these interactions, one
participant (the instructor) first learnedhow to connect a set of
pipes into a particular formation from a pre-recorded video.
Instructors were given as much time as necessary to re-watch
the video and were provided use of the pipes during train-
ing. Upon learning the instructions, the instructor trained the
second participant (the trainee) on how to correctly assemble
the pipes without the aid of the video (Fig. 2).

Eight males and eight females aged 18 to 44 (M =
23.75, SD = 8.56)were recruited from the local community.
Each interaction was recorded by a video camera equipped
with a wide-angle lens to capture the participants and the
task space. The instructional portion of the task, excluding
the time the first participant spent learning how to construct
the pipes, ranged from 3:57 to 6:44min (M = 5:11, SD =
2:19).

Fig. 2 The instructor (participant on the left) directing the student
(participant on the right) in assembling a predetermined pipe configu-
ration
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3.2 Analysis

The analysis of our data helped us to better understand
different strategies instructors use to deliver instructions
and confirmed examples for our understanding of repair
gained from the literature. In our data, we observed instruc-
tors organizing their instructions along two major factors:
how many instructions they gave at once, and whether or
not they gave a high-level summary of what the next few
instructions would accomplish. We coded our videos with
these two factors, and examined the effects these factors
had on two outcomes: time spent per step in the task and
the number of breakdowns encountered. To ensure relia-
bility of the coding, a second coder analyzed the videos,
with the inter-rater reliability showing substantial agreement
between the primary and secondary coders (79% agreement,
Cohen’s κ = .74) (Landis and Koch 1977). The coding
resulted in 104 data points, including 54 data points with
no grouping or summarization from eight instructors (71%
agreement), 32 data points with grouping and no summa-
rization from another eight instructors (72% agreement),
nine data points with no grouping and summarization from
six instructors (78% agreement), and nine data points with
grouping and summarization from five instructors (89%
agreement).

Further analysis of the data involved a two-way analysis
of variance (ANOVA), including grouping, summarization,
and the interaction between them as fixed-effect factors. For
main and interaction effects, we used α levels of .050 and
.10 for significant andmarginal effects, respectively.We con-
ducted four contrast tests to understand the effects of each
factor in the absence or presence of the other factor. These
contrast tests were evaluated using a Bonferroni-adjusted α

level of .0125 (.05/4) for significance. Results from this
analysis showed that grouping significantly reduced time
spent per step, F(1, 4.18) = 17.61, p = .013, η2 = .808,
while significantly increasing the number of breakdowns,
F(1, 6.09) = 7.96, p = .03, η2 = .567. Summariza-
tion had only a marginal effect on time spent per step,
F(1, 22.66) = 3.89, p = .061, η2 = .147, and no effect
on the number of breakdowns, F(1, 5.67) = .707, p =
.434, η2 = .111. Contrast tests across conditions showed
that, when the instructor did not provide a summary, group-
ing instructions significantly reduced the time spent per step,
F(1, 8.86) = 21.97, p = .001, η2 = .713, but had no effect
on breakdowns, F(1, 7.87) = 4.25, p = .074, η2 = .351.

In addition to insights gained into how instructors orga-
nized their instructions, our analysis showed that instructors
always initiated repair verbally when a breakdown occurred,
regardless of whether they became aware of the breakdown
verbally, such as a question by the trainee, or visually, such
as noticing that the task space was not configured correctly.

We found that 65% of these repairs were trainee-initiated,
while 35% of repairs were instructor-initiated.

Trainee-initiated repair—also called requests—always
involved verbal statements that clarified or confirmed instruc-
tor expectations when the trainee either did not understand or
misunderstood an instruction. These statements ranged from
brief queries (e.g., “What?”) to more detailed requests, such
as “Where should the pipe go?” Consistent with prior work
that associated confusion with not understanding and clar-
ification with misunderstanding (Gonsior et al. 2010; Hirst
et al. 1994; Koulouri and Lauria 2009), we classified requests
into the categories confusion, confirmation, and clarification.

Where trainee-initiated repair was directed towards bet-
ter understanding expectations, instructor-initiated repair
clarified or corrected the trainee’s perceptions of the task.
Instructors initiated repair under one of two circumstances:
mistake detection and hesitancy. When instructors noticed
the trainee performing an action that the instructor knew
not to be consistent with the goals of that instruction, such
as picking up the wrong piece, they verbally corrected the
trainee. When instructors noticed that the trainee was hesi-
tating to take action, whichwas indicated by an average delay
of 9.84 s in following an instruction, they asked if the trainee
needed help.

3.3 Model

Our analysis informed the development of a model with two
components: instructional strategies and repair.

3.3.1 Instructional strategies

As noted in our analysis, instructor strategies for organizing
instructions involved two factors: grouping and summariza-
tion. In grouping, instructors vary the number of instructions
given from 1 . . . i before the student completes the instruc-
tions. Instructors may provide one instruction at a time and
allow the student to carry it out before providing the next
instruction or offer grouped instructions by conveying i
instructions, given that i > 1, prior to the student fulfilling
the instructions. When instructors provide instruction sum-
marization, they preface their instructions with a high-level
summary of the goal of the subsequent k instructions. For
example, when the next four steps will result in a set of pipes
forming aU-shape, the instructormay say “Now,we’ll be tak-
ing a few pipes and connecting them into a U-shape” prior
to giving the first step. While we categorized instructional
strategies into the grouping and summarization factors, our
analysis demonstrated that all four possible combinations of
these factors were exhibited, as illustrated in Table 1. Algo-
rithm 1 outlines how the robot integrated summarization and
grouping in its instructions.
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Table 1 Examples of how the two strategies that we identified in our modeling study, instruction grouping and instruction summarization, can be
jointly used in instruction

Instruction summarization Instruction grouping

Not grouped Grouped

Not summarized Instructor: Now take this [points toward pipe] and
just attach it like that [makes connecting motion]
<student acts>. Then take this one [points toward
joint] and put it here. <student acts>

Instructor: You will now connect these two and then
connect them to this piece [points toward piece] so
they will be pointing straight up. <student acts>

Summarized Instructor: So you are going to use these two to
connect them in and form a U-shape. So take one
of these [points toward pipe] <student acts>, and
then one of those [points toward washer] <student
acts>, and you will want the skinny side facing
out. <student acts>

Instructor: OK and you want to start with one arm.
So the arms are going to screw onto the smooth
side, so they will go onto the top of the t-piece. So
you are going to want to take a washer first, and
you will want to put the fat side towards the curve
of the washer and then put the washer on top of
that, and then put the t-piece there. <student acts>

3.3.2 Repair

Regardless of the instructional strategy utilized, we observed
instructors engage in three forms of repair: requests, hes-
itancy, and mistake detection. Below, we describe these
behaviors and present model components for determining
whether repair is needed and, if so, how it might be per-
formed.

Requests: All trainee requests, including questions and
statements, were considered as requests for repair. To enable
the model to determine the appropriate response, we clas-
sified requests into semantic categories using semantic-
language modeling. For example, “Which piece do I need?”
and “What piece should I get?” were recognized as the same
question.

Algorithm1Pseudocode for how the robot integrated group-
ing and summarization into its instruction-giving.
current ← x
bool summarize?
bool grouping?
if summarize? then

summarize(current, current + k)
end if
for y ← 0; y < i do

instruction(current)
if !grouping? then
action(current)
end if
y ← y + 1
current ← current + 1

end for
if grouping? then

for z ← 0; z < i do
action(z)
z ← z + 1
end for

end if

Hesitancy: Depending on the task, indicators such as time
elapsed since the last interaction or time elapsed since the
workspace was last changed can signal hesitancy in perform-
ing instructions. For the pipe-assembly task, we chose to use
the time elapsed since the workspace was last changed as
a conservative predictor of hesitancy-based breakdowns, as
using time elapsed since the last interaction could result in
incorrectly inferring hesitancy while the trainee is still work-
ing.Based onour observations of how longhuman instructors
waitedbefore offering repair,we considered10s of no change
to the workspace to indicate a hesitancy-based breakdown.

Mistake detection: While requests and hesitancy-based
breakdowns are triggered by the student’s action or inac-
tion, mistake detection requires checking the student’s work.
In our proposed model, we chose a simulation-theoretic
approach to direct the robot’s behavior in relation to the
participant. This approach posits that humans represent the
mental states of others by adopting their partner’s perspective
to better understand the partner’s beliefs and goals (Gallese
and Goldman 1998; Gray et al. 2005). This approach has
been used in designing robot behaviors and control archi-
tectures to allow robots to consider their human partner’s
perspective (Bicho et al. 2011; Nicolescu andMataric 2003).
In the context of an instructional task, the instructor has a
mental model of an action that they wish to convey to the
trainee. Following instruction, the instructor can assess gaps
in the trainee’s understanding or performance by comparing
the trainee’s actions to their mental model of the intended
action and noting the differences that occur.

The majority of the breakdowns we observed were highly
dependent on the ongoing context and thus could be unique
to assembly tasks. For example, if a participant selected the
wrong piece for the structure, an instructor may reiterate or
rephrase the description for the correct piece. This response
to the breakdown may only be suited to tasks that can be
broken down into individual components. Only requests for
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repetition were independent of task context. To ensure that
our model is applicable to other task types, we included an
abstraction that allows designers to implement the algorithm
according to their own task needs (e.g., breakdowns that are
unique to their task).

Following the simulation-theoretic approach, we defined
a set of instruction goals P = {p1, . . . , pn} for the robot
regarding the result of the participant’s action or inaction
given the current instruction. Depending on the task, P may
vary at each step of the instruction, as some instruction
goals may no longer be applicable, while others may become
applicable. As the participant engages in the task, the robot
will evaluate whether the current state of the workspace is
identical to the set of instruction goals P∗. If any of the indi-
vidual task goals pk do not match p∗

k , then there is a need for
repair.

How repair is carried out depends on which task goal pk
has been violated. As we observed in our analysis of the
human–human interactions, the instructor repaired only the
part of the instruction that was currently incorrect. Addition-
ally, there is an inherent ordering to the set P that is informed
by the participant’s perception of the task. The participant’s
ordering of P is informed by elaboration theory, which states
that people order their instructions based on what they per-
ceive as being themost important and then reveal lower levels
of detail as necessary (Reigeluth et al. 1980). By imposing
an ordering of decreasing importance on the set P based on
these principles for a given task, we can ensure that each pk
takes precedence over any pk+n for n > 0. If multiple pk
are violated, then the task goal with the lowest k is addressed
first. An example of this ordering can be seen if a participant
has picked up the wrong piece and attached it in the wrong
location. The instructor first repairs the type of piece needed
and then the location of that piece.

Although we discuss the model for detecting mistakes in
terms of task steps and goals, this model can also be extended
to understanding and repairing verbalmistakes. For example,
if the participant mishears a question and responds in a way
that is inconsistent with the answers expected, then repair
is needed. The appropriate answers of the intended question
can be formalized as pk , and any answer that does not fulfill
pk can be considered as a cause for repair.

4 System

To create an autonomous system that implements our mod-
els, we contextualized our task in the same scenario used
for modeling human–human interactions. Using our findings
from the previous stage, we designed our system to—upon
user request—process both verbal and visual information in
order to check the participant’s workspace and to detect and
repair breakdowns.

4.1 Hardware

We implemented our model on a Wakamaru humanoid
robot (Fig. 1). Our model uses information provided by
both video and audio using a Microsoft Kinect stereo
camera and microphone-array sensor. Video is captured at
12 frames/second. The camera and microphone were sus-
pended three feet above the participant’s workspace, as
shown in Fig. 5. This camera setup provided a visible range
of the workspace of 43 in. by 24 in. A second stereo camera
was placed behind the robot to track the participant’s body
and face.

4.2 Architecture

The architecture for ourmodel involved fourmodules: vision,
listening, dialogue, and control. The vision and listening
modules capture and process their respective input channels.
The control module uses input from these modules to decide
the need for repair and relays the status of the workspace to
the dialogue module if feedback from the robot is needed.

The pipe-assembly task used in our implementation
involved multiple copies of five types of pieces: three types
of pipes (short, medium, and long) and two types of joints
(elbow and t-joints). In order for the workspace camera to
identify these pieces, we used eight unique augmented real-
ity (AR) tags: two tags for the elbow joints, three tags for
the t-joints, and one tag each for the short, medium, and long
pipes. The orientation of each tag was used to identify object
type, location, and rotation. The location and orientation of
tags on pipes and joints were consistent across each type of
object, and tag locations on each object were known to the
system.

In our model, we defined a set P that describes which
possible expectations can be violated by the participant.
Consistent with elaboration theory, our study of human
instructor–trainee interactions revealed the following order-
ing of task expectations:

– Timely action (p0): The participant acted in a timely fash-
ion.

– Correct piece (p1): Theparticipant used the correct piece.
– Correct placement (p2): The participant placed the piece

in the correct location relative to the current workspace.
– Correct rotation (p3): The participant rotated the piece
correctly relative to the current workspace.

The first expectation, p0, ensures that the participant does
not hesitate for too long—which might indicate confusion—
when adding the next piece. Based on our previous analysis,
we considered a 10 s delay in changing the workspace
after the last instruction to indicate hesitancy. The remain-
ing expectations, p1, p2, and p3, ensure that the participant
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Fig. 3 Examples of the three
types of repair. In
action-triggered repair, the
student’s configuration of pieces
does not match what the robot
knows to be the correct
configuration. Request-triggered
repair is initiated when the
student directs a question or
statement to the robot that
requires the robot to respond
appropriately. In
hesitation-triggered repair, the
workspace remains unchanged
for more than 10s, prompting
the robot to offer assistance

Human Student

Robot Instructor

Action-Triggered Repair

Perceived State
P' = {p1' , . . . , pn'}

p1' – p1

mismatch

Goal State
P = {p1 , . . . , pn}

Request-Triggered Repair

“Can you repeat that?”
Repetition

Hesitation-Triggered Repair

“Is this the right pipe?”

“Where should the pipe go?”

Pt' = Pt+1'
Perceived State

at time t
Perceived State

at time t+1 

chooses the correct piece to add, adds the piece in the correct
location, and rotates the piece correctly. Figure 3 illustrates
these expectations.

4.2.1 Vision module

The vision module was designed to achieve two goals: to
detect the status of the participant’s workspace and to process
information on the participant’s location. Sensing necessary
for achieving each of these goals was managed by a separate
camera.

To achieve the first goal, the vision module builds a graph
of pipe connections, C , following a three-step process: find-
ing the AR-tag glyphs in the frame, associating these glyphs
with pieces, and detecting which pieces are connected based
on a set of heuristics. In the first step, at the completion of
the participant’s turn, the frame is searched for AR glyphs
using a modified version of Gratf1 to create a set of glyphs
G, where each glyph in G is defined by its type t , its position
(x, y), and its rotation θ . Upon discovering a glyph, the algo-
rithm searches known pieces of which type t belongs (i.e.,
if the glyph belongs to a t-joint, all t-joints are searched) for
any pieces that are missing that particular glyph. The glyph
is associated with a piece if the algorithm matches the glyph
to the piece based on its proximity and rotation properties.
If no piece is found, a new piece is created, and the glyph is
associated with the new piece. This process results in a set
of pieces P where each piece p is characterized by a set of
glyphs that are associated with that piece. All of the glyphs
for a piece p form a bounding box that gives a rough estimate
of the physical boundaries of that piece. Using these coordi-
nates, we can confirm whether any two pieces are connected
and subsequently build a graph structure C that reflects the

1 Gratf: http://www.aforgenet.com/projects/gratf/.

workspace. This structure is organized such that each pipe
is represented by a row, and each joint is represented by a
set of columns, each of which corresponds to a place on the
joint where a pipe can be connected. For example, a t-joint,
which has three connectors, would be represented by three
columns.When a pipe and a joint are connected, a 1 is placed
in the cell at the intersection of that pipe’s row and the joint’s
column for that particular connector. The remaining cells
would be 0s in order to express no connection. Figure 4a
illustrates an example matrix, C∗, that represents the correct
graph structure of two pipes (short and long), an elbow joint
(etop and eright for the top and right connector, respectively),
and a t-joint (tle f t , tcenter and tright for the left, top, and right
connector, respectively).

When the user completes a turn, the correct graph structure
C∗ is compared against the structure C of the workspace. If
the two graphs are isomorphic, then the user has successfully
completed the instruction. If the graphs are not isomorphic,
however, the robot will discover an inconsistency between
pk and p∗

k during the isomorphism check. The lowest p∗
k

which is violated is then passed to the control module. The
system determines the lowest p∗

k violated using two pieces
of information: the number of each type of piece present in
the workspace and a comparison of C against C∗. Counting
each type of piece and comparing these counts to the expected
counts is used to check violations of p1. If the check for p1
passes, then the system continues to determine the lowest
p∗
k between p2 and p3 that was violated. To identify which

p∗
k were violated, the isomorphism check continually saves

the observed graph C
′
that contains the fewest number of

errors when compared to the correct graph structure C∗. At
the end of the isomorphism check, theC

′
that was the closest

permutation to C∗ encountered is considered as C . When
comparing C to C∗, a violation of p2 is observed when a
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a b c

Fig. 4 Illustrations of and graph structures that represent three different pipe configurations that include two pipes (short and long), an elbow joint
(etop and eright for the top and right connector, respectively), and a t-joint (tle f t , tcenter and tright for the left, top, and right connector, respectively)

1 is misplaced either across rows, indicating that the joint
is attached to the wrong pipe, or across sets of columns,
indicating that the pipe is connected to the wrong joint. For
example, in the matrix C in Fig. 4b, because the t-joint is
connected to pipeshort instead of pipelong , the 1 indicates
that the connection of the t-joint is in thewrong row for thisC .

A violation of p3 is observed when the 1 is in the correct
set of columns for that particular joint but is in the wrong
column within the set of columns, indicating that the joint is
in the correct place but rotated incorrectly. In the example C
in Fig. 4c, the t-joint is connected to the correct pipe but is
rotated incorrectly, connecting at the center connector instead
of the left connector. As a result, the 1 is placed in the correct
set of columns, i.e., in one of the t-joint columns, but is in the
wrong column for that set, i.e., tcenter instead of tle f t . Note
that this rule is true both for adding a pipe to the incorrect
connector of a joint or for adding an incorrectly rotated joint
to a pipe.

If the system needs to check multiple instructions at once,
the set of pipe connections C is built incrementally, starting
with the first instruction that needs to be checked. Because
each instruction involves the addition of a new piece to a
specific location and with a particular rotation, checking the
workspace for the first instruction s1 will result in the detec-
tion of too many pieces, as pieces for instructions through sn
are also on the table. In this case, the module is responsible
for systematically eliminating extraneous pieces from C . A
piece is defined as extraneous if its removal does not result
in a disjoint graph in C and does not reduce the count of that
particular piece belowwhat is needed to complete the instruc-
tion. Once a modified version of C that results in a correct
check of s1 is found, pieces are added incrementally back to
C such that they maintain connectivity between all pieces in
C and maintain a set P that is equivalent to the number of
each type of piece needed to complete the instruction sm .

The second goal of the vision module—detecting the par-
ticipant’s location—is checked at every frame. When the
participant is within 1 ft. of the workspace, the robot repo-

sitions its head so that it is gazing at the table, monitoring
the workspace. When the participant is further away (e.g.,
standing back to check their work, retrieving the piece), the
robot raises its head and gazes toward the participant’s face.
However, if the participant or the robot is talking, or if the
robot is checking theworkspace in response to a prompt from
the user, the robot looks toward the participant or where on
the workspace changes have been made, respectively.

4.2.2 Listening module

The listening module detects and categorizes requests from
the participant into semantic meanings using the capabili-
ties of the Microsoft Kinect sensor and speech-recognition
API. We provided the API with a grammar that included
speech acts from our data on human–human instruction that
we marked as one of the following semantic meanings:

– Request for repetition: (e.g., “What did you say?” “Can
you repeat the instructions?”)

– Check for correctness: (e.g., “Is this the right piece?”
“I’m done attaching the pipe.”)

– Check for options: (e.g., “Which pipe do I need?” “Where
does it go?”)

Utterances that did not belong to one of these categories,
such as confirmation of an instruction, were ignored by the
system.

Weuse a dialoguemanager to coordinate responses to each
type of query. Each recognized utterance has an associated
semantic meaning that indicates the purpose of the utterance.
For example, the phrase “What did you say?” is assigned the
semantic meaning of “recognition request.” These semantic
meanings allow the control module to understand the type of
utterance processed and to reply to the utterance appropri-
ately given the current state of the participant’sworkspace. To
process requests that refer to the workspace, the system first
checks the state of the workspace through the vision module.
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For example, asking “Did I do this right?” requires the robot
to determine whether the current workspace is correct.

4.2.3 Control module

Decisions regarding the robot’s next actions are deter-
mined by the control module. It uses input from the vision
and dialogue modules and, following a simulation-theoretic
approach,makes decisions by comparing this input to actions
that the robot expects in response to its instructions. At a
high level, the robot provides instruction(s) according to its
teaching strategy, waits for user input, either in the form
of a question about the instruction(s) or a request for the
robot to provide feedback, and then responds to the user’s
input.

When the robot provides instruction(s), the control mod-
ule takes into consideration whether summarization and/or
grouping will be employed. When neither strategy is used,
the robot provides a single instruction and then waits for
user input. If using grouping, the robot provides a predeter-
mined number of instructions that range between two and
four. When using summarization, the robot provides a sum-
mary of the goal of a predefined number of instructions prior
to giving these instruction.

The above process is outlined in Algorithm 2. The state
variable denotes the robot’s current state. This variable is
frequently updated by the listening module, which provides
information on the semantic meaning of the user’s speech,
and occasionally by the controlmodule. For example, “Could
you repeat that?” would transition the state variable to “rep-
etitionRequest.” For brevity, Algorithm 2 illustrates how a
state would be executed under the grouping and/or sum-
marization conditions only for the first state “instruction.”

4.2.4 Dialogue module

After evaluating input from the vision and listening mod-
ules, the control module passes three pieces of information
to the dialogue module: current instruction, the seman-
tics associated with the speaker’s last utterance (if any),
and the control module’s evaluation of the workspace (if
any).

Given this information, the dialogue module initiates the
appropriate verbal response, choosing from among prede-
fined dialogue acts based on which task instruction the par-
ticipant is completing, the current layout of the workspace,
and the type of question the participant asked. Not all
responses depend on all three pieces of information; for
example, requests for repetition of the last instruction are
independent of how the workspace is currently configured,
and responses to hesitancy are independent of the current
workspace and interaction with the participant. However, a

Algorithm 2 Pseudocode for controlling the robot to give
instructions, check the workspace, or answer questions from
the user
bool summarize?
bool grouping?
int stepNum ← 0
String state ← “instruction”
Step[] instructions
if state == “instruction” then

if summarization? and
instructions[stepNum].summary != null then

give instructions[stepNum].summary
end if
int count ← 1
if grouping? then

int count ← instructions[stepNum].groupingCount
end if
for i ← 0; i < count ; i + + do
give instructions[stepNum].instruction
stepNum + +
end for
state ← “wait”

else if state == “checkWorkspace” then
enum visual ← checkWorkspace()
if visual == “correct” then
give correct Answer
stepNum + +
state ← “instruction”
else if visual == “wrongPiece” then
give instructions[stepNum].pieceNeeded
state ← “wait”
else if visual == “wrongLocation” then
give instructions[stepNum].locationNeeded
state ← “wait”
else if visual == “wrongRotation” then
give instructions[stepNum].rotationNeeded
state ← “wait”
end if

else if state == “pieceQuestion” then
give instructions[stepNum].pieceNeeded
state ← “wait”

else if state == “locationQuestion” then
give instructions[stepNum].locationNeeded
state ← “wait”

else if state == “rotationQuestion” then
give instructions[stepNum].rotationNeeded
state ← “wait”

else if state == “repetitionRequest” then
give instructions[stepNum].instruction
state ← “wait”

end if

request to check if an instruction has been correctly com-
pleted requires knowledge of both the instructions completed
and the current layout of the workspace.

5 Evaluation

To evaluate the effectiveness of the strategies that we iden-
tified from our analysis in human–robot instruction, we
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conducted a study that followed the same task setup as
our modeling study. Due to a lack of sufficient theory that
would predict the effects of these instructional strategies on
trainee performance and experience, we chose not to pose
any hypotheses and performed an exploratory evaluation.
Our analysis aims to provide guidelines as to how future
instructional robots should be designed and highlight dif-
ferences and similarities between the human–human and
human–robot instruction.

5.1 Study design

To assess the effectiveness of and tradeoffs between various
teaching strategies, we designed a between-participants-
design study to compare four different models of teaching
strategies that fell along two factors: grouping and summa-
rization. Grouping defines how many instructions are issued
during the instructor’s turn. For the purposes of our study,
grouping has two levels: no grouping, where a single instruc-
tion is given during the round, and grouping, where a set of
two or more instructions are given at once. Summarization
defines whether or not the instructor gives a summary of
the objective of the next few instructions. In our study, we
created two levels of this factor: no summarization, where
the instructor does not give summaries, and summariza-
tion, where the instructor offers summaries. We observed
the instructor–trainee pairs in our modeling study to exhibit
all four combinations of these two factors and created four
conditions for our study: (1) no grouping, no summarization,
(2) grouping, no summarization, (3) no grouping, summa-
rization, and (4) grouping, summarization.

The architecture detailed in the previous section was used
in all conditions. Differences between conditions were con-
trolled in the control module that managed decisions on how
to structure instructions. Additionally, the dialogue module
responded to requests in the grouping level that did not exist
in the no grouping level (e.g., repeating multiple instruc-
tions).

5.2 Task

All participants were autonomously guided through assem-
bling a set of pipes by the robot in the setup shown in Fig. 5.
Participants were given two bins—one for pipes and one for
joints—that contained only the pieces necessary for complet-
ing the task, mimicking the setup in which different types of
parts might be kept at a workshop. Following an introduc-
tion, the robot directed the participant in the assembly task by
issuing instructions according to the condition to which the
participant was assigned, varying the number of instructions
provided and whether or not high-level summaries of future
instructions were provided. The robot also provided repair
as necessary. Following completion of the task, the robot

Fig. 5 The setup used in our experimental evaluation. After the robot
gave an instruction, the participant retrieved the necessary pieces from
behind them and assembled the pieces on the workspace in front of the
robot. A camera above the workspace captured the configuration of the
pieces

thanked the participant. Completing the task took between
3:57 and 9:20min (M = 6:44, SD = 1:23).

In the no grouping, no summarization and no grouping,
summarization conditions, the robot provided one instruction
at a time. Instructions in the grouping condition involved two-
to-four instructions at a time, based on the average number
of instructions (M = 3.1) human instructors gave when they
employed grouping. Following grouped instructions always
involved assembling spatially connected pieces, such that
each instruction in the group asked the user to attach the
new piece to the previously added piece. In the no grouping,
summarization and the grouping, summarization conditions,
the robot provided a high-level summary of the next few
steps prior to giving instructions, while it provided no sum-
mary in the other conditions. Summaries were provided at
the beginning of each set of grouped instructions, regardless
of whether or not grouping was employed, in order to ensure
that summarization and grouping applied to the same set of
instructions in the grouping, summarization condition.

Following instructions, the participant retrieved the pieces
to complete the steps and assembled the pieces on the table. If
the participant requested repetition or clarification, the robot
answered. When the participant asked the robot to check the
workspace, it confirmed correct actions or provided repair
according to our model. If no repair was needed, it congrat-
ulated the participant on completing the task and proceeded
to the next instruction or set of instructions.

The resulting pipe-structure included a total of 15 con-
nected pipes and joints. While the resulting structure was a
tree that had no cycles, it had no predefined “root” piece,
making the computational complexity of checking for iso-
morphism against the correct structure an NP-hard problem.
We significantly reduced the runtime of this operation by
exploiting domain knowledge in our data structure in the
form of an incidence matrix of connected joints versus pipes.
Once all the pipes were connected, checking for graph
isomorphism required approximately 10K permutations of
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the incidence matrix—far fewer than the hundreds of tril-
lions of checks required without knowledge of the incidence
matrix.

Participants started the study standing three feet away
from the robot, with a two foot long table between them.
A second table was placed five feet behind where the par-
ticipant started. A single video camera captured the entire
interaction for additional data analysis.

5.3 Procedure

Following informed consent, participants were guided into
the experiment room. The experimenter explained the task
and introduced the participant to the pieces used in the task.
After the experimenter exited the room, the robot started the
interaction by explaining that it would provide step-by-step
instructions for assembling the pipes. The robot then pro-
vided instructions until the participant completed the entire
structure. At the end of the task, the robot thanked the par-
ticipant. The participant then completed a questionnaire and
received $5.

5.4 Participants

A total of 32 native English speakers between the ages of
18 and 34 (M = 23, SD = 4.9) were recruited from the
local community. These participants had backgrounds in a
range of occupations and majors. All conditions were gender
balanced.

5.5 Measures & analysis

We used two objective measures to evaluate participant per-
formance in the task: number of breakdowns and time spent
per step. Number of breakdowns was defined as the number
of times theparticipantmade amistake in fulfilling an instruc-
tion or asked for repetition or clarification of the instruction.
We also measured the time spent per step, expecting a lower
number of repairs to indicate a faster time spent per step.
These measures were coded from video recordings of the
trials. To ensure reliability of the measures, a second exper-
imenter coded for repairs. The inter-rater reliability showed
substantial agreement (87% agreement, Cohen’s κ = .83)
(Landis and Koch 1977).

We also used subjective measures that collected data on
the participant’s impressions of the robot, including likabil-
ity, naturalness, and competency, the participant’s experience
with the task, and their rapport with the robot. Participants
rated each item in our scales using a seven-point rating
scale. A confirmatory factor analysis showed high reliability
for all scales, including the likability (10 items, Cronbach’s
α = .846), naturalness (6 items, Cronbach’s α = .842),
competency of the robot (8 items, Cronbach’s α = .896),

participant experience (8 items, Cronbach’s α = .886), and
rapport with the robot (6 items, Cronbach’s α = .809).

Our analysis of data from these measures involved a two-
way analysis of variance (ANOVA), including grouping,
summarization, and the interaction between them as fixed-
effect factors. For main and interaction effects, we used α

levels of .050 and .10 for significant and marginal effects,
respectively. We conducted four contrast tests to understand
the effects of each factor in the absence or presence of the
other factor using a Bonferroni-adjusted α level of .0125
(.05/4) for significance.

5.6 Results

We primarily report marginal and significant effects of the
instructional strategies used by the robot on objective and
subjective measures and summarize them in Fig. 6.

To ensure that possible errors in the robot’s autonomous
behavior did not introduce any biases to our data that would
jeopardize our ability to distinguish the differential effects
of the teaching strategies that the robot used, we examined
video recordings of the study for mistakes by the system. Our
criteria for removing data included (1) whether or not the
robot offered incorrect instruction or repair and (2) whether
or not the robot failed more than once to understand a sin-
gle speech act by the participant. Our examination found
no instances of system error regarding the configuration of
the pipes in the instructions it gave or the repair it offered,
indicating no instances of an incorrect instruction or repair.
While the robot failed to understand 21% of the participants
at least once during their entire interaction, no single speech-
act was misunderstood more than once, as participants either
more clearly reiterated or rephrased their statement. We
included the data from this second speech act in our analy-
sis.

To evaluate the effectiveness of the instructional strategies,
wemeasured the number of breakdowns that occurred during
the task and the time taken to complete the task.

All of the 13 instances of repair where the participant
asked the robot a question, such as “What piece do I
need,” involved the participant asking the robot to repeat
the instruction. The analysis of the data showed that group-
ing instructions significantly reduced the time spent per step,
F(1, 28) = 13.35, p = .001, η2 = .313, while significantly
increasing the number of breakdowns, F(1, 28) = 8.87, p =
.006, η2 = .213. Summarization had no overall effect on
the time spent per step, F(1, 28) = 0.07, p = .793, η2 =
.002, or the number of breakdowns, F(1, 28) = 1.25, p =
.274, η2 = .030. The analysis also showed a marginal inter-
action effect between grouping and summarization over the
number of breakdowns, F(1, 28) = 3.47, p = .073, η2 =
.083, but no interaction effects were found over the time
spent per step, F(1, 28) = 1.29, p = .266, η2 = .030. Con-
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Fig. 6 Results fromour evaluation. Significant andmarginal resultswere found for total task time, number of breakdowns encountered, participants’
perceived rapport with the robot, and their overall experience with the task

trast tests across conditions showed that, when the robot did
not provide a summary, grouping instructions significantly
reduced the time spent per step, F(1, 28) = 11.47, p =
.002, η2 = 269, but resulted in a significant increase in the
number of breakdowns, F(1, 28) = 11.71, p = .002, η2 =
.282. This increase was alleviated to some extent by sum-
marization, as participants encountered noticeably fewer
breakdowns when the robot also provided a summary along
with grouping, F(1, 28) = 4.44, p = .044, η2 = .107,
although this effect was not significant at α = .0125.

The subjective measures captured the participants’ per-
ceptions of the robot, including likability, naturalness, and
competency, their rapport with the robot, and their overall
experience with the task. The analysis showed an interac-
tion effect between grouping and summarization over the
participants’ rapport with the robot, F(1, 28) = 8.76, p =
.006, η2 = .211. When the robot provided no summary,
grouping instructions improved participant rapport with the
robot, F(1, 28) = 10.81, p = .003, η2 = .260. When the
instructions were not grouped, summarization also improved
rapport with the robot, F(1, 28) = 9.54, p = .005, η2 =
.230. Consistent with the results on participant rapport, we
also found a marginal interaction effect between grouping
and summarization over participants’ ratings of their overall
experience with the task, F(1, 28) = 3.68, p = .065, η2 =
.115. Contrast tests showed that when the robot did not group
its instructions summarization resulted in an improvement in
participants’ overall task experience, F(1, 28) = 2.91, p =
.099, η2 = .091, although this effect was also not significant
at α = .0125.

6 Discussion

The data from our objective and subjective results provided a
number of findings to guide the design of instructional robots,
the implications of which we highlight below.

Our objective results showed that grouping instructions
resulted in a tradeoff between the time spent per step and
the number of breakdowns that the participants encountered.
We found that participants completed the steps in the task
significantly faster when the robot grouped its instructions
than when the robot provided instructions one-by-one. We
observed that when participants received multiple instruc-
tions, they retrieved all parts necessary to complete these
instructions from the bins at once, proceeded with assem-
bling multiple pieces in a sequence, and sought confirmation
of the correctness of the whole sequence from the robot,
completing the overall assembly significantly faster. When
participants received instructions one-by-one, they instead
retrieved pieces one-by-one and proceeded to the next
instruction only when the robot confirmed the successful
completion of an assembly, which resulted in overall longer
time spent per step. Contrary to the improvement in the time
spent per step, participants encountered significantly more
breakdowns when the robot grouped its instructions than
when the robot provided individual instructions. We spec-
ulate that grouped instructions required participants to retain
a greater amount of information, which might have impaired
their understanding or recall of the instructions, resulting in
mistakes in the assembly that had to be repaired by the robot.

Further analysis into breakdowns that occurred with
grouped instructions showed that 60% of breakdowns
occurred in the first set of instructions, which contained four
instructions, 25% occurred in the second, third, and fifth
set of instructions, which all contained three instructions,
and 15% occurred in the fourth set of instructions, which
contained two instructions. This distribution of breakdowns
indicates an increase in the number of breakdowns as the
number of grouped instructions increases, which might indi-
cate a greater cognitive load placed on the participant by
the introduction of more pieces into an instruction (Sweller
1988). Additionally, participants may have demonstrated
selective attention when the robot provided grouped instruc-
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tions, causing them to miss information (Sweller 1988).
Our data on the number of breakdowns provided limited
support for this explanation; in carrying out grouped instruc-
tions, participants encountered fewer breakdowns when the
robot provided a summary of subsequent steps (M =
0.88, SD = 0.99) than when no summary was provided
(M = 1.88, SD = 1.36), although this effect was not sig-
nificant at α level .0125. The summary provided by the robot
might have consolidated the participants’ understanding of
the grouped instructions. However, some of the breakdowns
that occurred early in the interaction may have been caused
by the participant acclimating to the task or the task involving
a greater variety of pieces to choose from at the beginning.

Our analysis of the subjective measures showed a signif-
icant interaction effect between grouping and summarizing
on participant rapport with the robot. We found that partici-
pants reported higher rapport with the robot when it grouped
instructions with no summary than when the robot used nei-
ther grouping nor summarization. This improvement might
be due to the quicker, less monotonous experience that the
robot offered when it delivered instructions all at once and
spent no time on summarizing them. The results also showed
that participants reported higher rapport with the robot when
the robot provided a summary of subsequent steps along
with individual instructions than when it neither grouped its
instructions nor provided a summary. Consistent with the
interaction effect on participant rapport with the robot, we
also found a marginal interaction effect between grouping
and summarizing on their overall experience with the task,
although the contrast tests did not show significant differ-
ences at α level .0125. We speculate that, when the robot
provided a summary of what was ahead in the task, as a
summary involved information on upcoming steps, partici-
pants might have felt more informed and perceived the robot
as more invested, although this information did not improve
task performance.

6.1 Comparison to the human–human data

In this section, we compare the results of our human–robot
and human–human evaluations in order (1) to build a more
complete model to which future robot implementations can
aspire and (1) to establish a basis to better compare and
discuss findings from the human–robot study. Although dif-
ferences in the specifics of the pipe-building task, the task
setup, and the capabilities of the robot versus the human
instructor prevents us from performing statistical tests across
data sets, we are able to compare the effects identified by our
analyses in the two studies as well as qualitatively examine
the human–human data in order to gain additional insights.

Our comparison revealed many similarities in the results
from the human–human and human–robot evaluations. In
both scenarios, grouping was significant in reducing the

time spent per step, but it still increased the total number
of breakdowns. In both the human–human and human–robot
analyses, summarization had no effect on the time spent per
step.However,while summarization had no effect on the total
number of breakdowns in the human–robot evaluation, sum-
marization did marginally reduce the number of breakdowns
in the human–human study.

The similarities in the findings from the two studies sug-
gest that our system is capable of autonomously leading
trainees through the pipe building task in a way that is
similar to how a human instructor offers instruction. This
autonomous system also includes models that enable the
robot to recognize progress through each step of the task and
to detect and correct breakdowns in the task or in the inter-
action. Additionally, results from each data set indicate that
our system successfully utilizes the grouping strategy in the
way that human instructors do, but that our characterization
and/or implementation of summarization is not yet as effec-
tive as human instructors’ use of this strategy. Summarization
appears to be a more complex strategy than what our system
demonstrated; we observed that human instructors offered
summaries as they felt necessary during the task, while the
robot instructor employed summarization in the same way
for all participants. We speculate that the summaries were
more effective with the human dyads due to the higher com-
plexity of the task and the more nuanced instructions human
instructors provided; human instructors effectively generate
useful summarizations as needed during the task in reaction
to challenges the trainee is having or based on challenges they
themselves may have faced in learning the task. We specu-
late that human instructors were more effective in providing
useful summarizations due to the higher complexity of the
task, requiring them to respond to challenges that the trainee
may be facing or to provide more nuanced instructions based
on challenges they themselves may have faced in learning
the task. Future work should examine when human instruc-
tors decide to offer summaries and how they formulate their
summaries in order to inform the development of a model
for deciding when and how a robot should summarize future
task steps.

6.1.1 Additional insights from the human–human data

In addition to our statistical analyses, a qualitative inspec-
tion of the human–human video data revealed additional
instructional strategies and mannerisms employed by human
instructors. We did not incorporate these behaviors into our
current system, because they either occurred infrequently in
our human–human data or were difficult to replicate with
the simplified pipe-building task that we developed for the
human–robot evaluation. We discuss each of these behaviors
and their potential for future work below.
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Reference to subtasks: The pipe task used in the human–
human data collection involved a number of repeated sub-
tasks. These subtasks ranged from actions with multiple
steps, such as the addition of a pipe always involving the use
of a washer and nut, to repeated structural components, such
as a symmetrical structure where sides mirror one another.
Over the course of the task, participants developed an implicit
understanding of the subtasks required to complete a step. For
example, the instructor might tell the trainee to attach two
pipes later in the training, and the trainee would know that
the washer and nut must be attached before the pipes were
joined. Future work should consider the role that subtasks
play in completing the task and explore how task planning
algorithms may represent subtasks in task models and utilize
them in instruction.

Use of gestures: Instructors occasionally employed ges-
tures to supplement their verbal communication with the
trainee. For example, if the trainee was unsure of which
piece was needed or the placement of the piece, the instructor
pointed toward either the piece or the location in question.
Additionally, instructors on occasion used iconic gestures—
gestures that represent concrete objects or events in discourse
(McNeill 1992)—when providing guidance about the ori-
entation or placement of a pipe. For example, if a trainee
was unsure of how a pipe should be oriented relative to
the existing structure and was currently holding the pipe
vertically, the instructor shaped their hand in a way that
mimicked the orientation of the piece that trainee was using
and then rotated their hand to indicate the correct orien-
tation, similar to the “poising” gesture described by Clark
(2005). Our prior work explored the rich space for the use of
pointing gestures under different environmental conditions
and demonstrated that pointing improves common ground
in human–robot interaction in task settings (Sauppé and
Mutlu 2014b). Future work should consider when gestures
may be beneficial during instruction and how appropriate
iconic gestures can be used given the task and communica-
tive goals.

Detection of intent: During the task, we observed instruc-
tors to preemptively offer additional instruction or correction
to the trainee on the current step. For example, when the
trainee appeared confused about which piece to acquire next,
the instructor gestured toward the needed piece. Prior work
onhuman–robot interaction explored howhuman social cues,
such as gaze, can be used by partners to infer cognitive state
or intent (Sakita et al. 2004). While we utilized information
on how long instructors waited before offering correction
to build our model of hesitation-triggered repair, future work
should consider how to accurately infer intent from a broader
set of visible social cues andwhen to interrupt and aid the user
in order to enable a more “proactive” form of repair found
in previous research on human–human interactions (Clark
1996).

Identification of pieces: While grouping and summariza-
tion were the most common strategies instructors used in
delivering instructions, a less common strategy was the
instructor verbally identifying all of the pieces necessary
to complete the task step before giving the instruction. For
example, the instructor might mention six pieces, indicating
that the trainee should separate those pieces from the rest,
and then provide instructions for one or more task steps that
use only this subset of pieces. We speculate that instructors
utilized this strategy in order to simplify their instructions
by reducing the number of clarifications they would have to
offer to identify the pieces from a larger set. Future work
should collect additional data on this strategy and examine
its effectiveness.

Incremental task guidance: For some of the steps in the
task, instructors did not give all the information necessary
to complete the step correctly. For example, we observed
instructors to give information on where a joint belongs but
not the proper orientation of the joint. These instructors then
waited until the joint was attached and then gave orientation
information. From our data, it was unclear whether or not
instructors intentionally omitted details that may be revealed
later in the process, believed the detail to be unnecessary, or
forgot about the detail until the resulting structure did not
match their expectation. Future work might examine these
and other possible motivations for withholding instruction
details and whether this approach has any impact on task
outcomes.

Student controlling interaction: When instructors emplo-
yed summarization in the delivery of instructions, trainees
occasionally continued the structure assembly beyond the
instructions given by the instructor, relying only on the sum-
mary in performing task steps. For example, because the
structure assembled by the human dyads was symmetrical,
we observed some instructors to first explain the overall
construction and the symmetrical form of the completed
structure. These instructors then guided the trainee through
the assembly of one side of the structure who then on occa-
sion continued through to the completion of the other side on
their ownwithout prompts or instructions from the instructor.
This behavior required instructors to continuously monitor
their trainees for any potential errors to be able to interrupt
the trainee and provide correction in a timely manner.

6.2 Design implications

These results have a number of implications for the design of
instructional robots. Our results suggest that, despite result-
ing in more mistakes, grouping significantly improves task
completion times, making it ideal for settings in which faster
task completion are critical and mistakes are not costly. Fur-
thermore, coupling summarization with grouping alleviates
some of the mistakes caused by providing multiple instruc-
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tions at once. However, there are many scenarios where
providing instructions one-by-one might be preferable. For
example, with more complex tasks or students who might
have trouble keeping up with the robot’s instructions (e.g.,
novices), providing instructions one-by-one might help the
student complete the task with fewer breakdowns. Addi-
tionally, in situations where mistakes could be dangerous
or costly, individual instruction might reduce the chance of
these mistakes occurring. In these scenarios, including sum-
maries of upcoming instructions might also improve student
rapport with the robot.

The analysis of the human–human data suggests that
robots will need to be equipped with fast and accurate
methods for assessing trainee status and adapting to their
needs. This analysis also demonstrated that summariza-
tion, when contextualized appropriately, has the potential
to alleviate some of the breakdowns caused by grouping.
To implement this behavior, robots will need to be capa-
ble of gauging the difficulty of task steps as well as the
trainee’s ability to complete them. Our qualitative analysis
of the human–human data highlights additional strategies,
such as references to subtasks or the use of gestures, that
may be employed at opportune moments to aid in conveying
instructions.

6.3 Limitations

The work presented here has three key limitations. First,
although our model considers two structural components
of instruction-giving, there are other elements that we did
not observe or that occurred infrequently in our modeling
study and thus did not include in our model. Analyses of
human interactions in a more diverse set of instructional
scenarios may enable the development of richer models of
instruction. Second, while our repair model offered repair
when prompted, the system did not proactively offer repair
due to the difficulty of accurately discerning when mistakes
occurred. The structure of the task and available methods for
perceptionmade it difficult to continuously update amodel of
the workspace and determine whether it was being modified,
as participants obstructed the camera’s view when modi-
fications were occurring. Third, our evaluation focused on
testing only the immediate effects of the proposed instruc-
tional strategies on student performance and perceptions.We
plan to extend our work to explore a more diverse set of
instructional scenarios, instructions that are distributed over
time, and long-term effects of the proposed strategies on task-
based instruction.

6.4 Future work

The limitations of the work presented here highlight oppor-
tunities for future research into how robots should give

instructions. Two immediate extensions are (1) enhanc-
ing instructions by integrating nonverbal behaviors and (2)
enabling the robot to provide proactive help. While we chose
to focus our current investigation on speech, prior work
demonstrated the important role nonverbal behaviors can
play in conveying information or intent, such as using ges-
tures to identify objects (Brooks and Breazeal 2006; Sauppé
and Mutlu 2014b) or spaces (Hato et al. 2010). These behav-
iors can enhance the robot’s verbal instructions and improve
its effectiveness as an instructor. Additionally, proactively
offering help can significantly improve trainee performance
and experience. Achieving proactive repair will require the
system to integrate several additional cues from the trainee,
such as the trainee’s gaze cues, and the task space, such as
what pieces are being manipulated, with a data-driven model
of common mistakes trainees make in order to predict errors
before they occur.

In addition to building enhanced instructional capabilities
for the robot, futureworkmay explore how the design process
we followed in this work can be improved. For example,
many of themodels presented here, such as ourmodel of how
different types of task breakdowns triggered different forms
of repair, can be learned from data on human instructor–
trainee interactions. Similarly, user states such as hesitation
can be recognized using predictive models trained on a richer
set of cues from the user and the task space.

7 Conclusion

As robots move into roles that involve providing users
with task guidance, such as teaching in labs and assisting
in assembly, they need to employ strategies for effective
instruction. In this paper, we described two key instruc-
tional strategies—grouping and summarization—based on
observations of human instructor–trainee interactions in a
pipe-assembly task. We implemented these strategies on a
robot that autonomously guided its users in this task and
evaluated their effectiveness in improving trainee task per-
formance and experience in human–robot instruction. Our
results showed that, when the robot grouped instructions,
participants completed the task faster but encountered more
breakdowns. We also found that summarizing instructions
increased participant rapport with the robot. However, com-
parisons with results from the human instructor–trainee
interactions indicates that summarization is a more nuanced
strategy than our system implemented. Future work should
further explore summarization strategies for robots. Our find-
ings show that grouping instructions results in a tradeoff
between task time and breakdowns and that summarization
has some benefits under certain conditions, suggesting that
robots selectively use these strategies based on the goals of
the instruction.
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