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Abstract—The results of recent studies in the theory of dynamical systems related to the motion of electrons
on complex Fermi surfaces in normal metals are presented. The problem considered is closely related to the
description of electron transport phenomena in strong magnetic fields and is therefore of great interest from
the viewpoint of topology and dynamical systems theory. We will try to give a brief overview of the state of the
art in this research area, as well as point out a number of interesting issues that are being actively studied at

present.
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1. INTRODUCTION

We would like to provide an overview of the state of
the art in the research field that emerged in the 1950s—
1960s in the scientific school of .M. Lifshitz, which in
those years had close links with the Landau Institute
for Theoretical Physics. Namely, we will consider
issues related to the features of transport phenomena
in metals with complex Fermi surfaces in the presence
of strong magnetic fields. As a rule, as the main exam-
ple of such phenomena, one considers galvanomag-
netic phenomena in normal metals, although every-
thing discussed below is also related to other types of
such phenomena (for example, thermal transport phe-
nomena). The kinetic description of electronic pro-
cesses based on the quasiclassical approximation for
electron dynamics in a crystal serves as the main
approximation to the description of the phenomena
under consideration. It turns out that the quasiclassi-
cal description of the dynamics of electronic states in
the quasimomentum space may be extremely nontriv-
ial for metals with complex Fermi surfaces. Here we
would like to present the results of investigations of the
corresponding dynamic problem, which have been
carried out over the past decades with the use of the
most modern methods of topology and dynamical sys-
tems theory. Below, we will see from the results pre-
sented that, currently, most of the most important
aspects of the problem have been studied in great
detail, which makes it possible to give a very detailed

description of the physical phenomena associated with
this problem. At the same time, we can also point out
a number of interesting problems that are related to the
problem under consideration and are being actively
studied.

Everything presented below applies to metals with
complex Fermi surfaces, and metal samples are
assumed to be single-crystal and sufficiently pure and
have a sufficiently low temperature, so that the elec-
tron mean free time T in a metal can be assumed to be
quite large. A metal sample is assumed to be placed in
a constant external magnetic field whose value satis-
fies the condition ®zT > 1, where ® = eB/m*c plays
the role of the electron cyclotron frequency in the
metal. We should say that, in fact, both quantities
m* = pp/vp and ®p have a somewhat formal meaning
here, since the electron spectrum in the crystal is gen-
erally defined by an arbitrary 3-periodic function € (p)
with periods equal to the periods of the reciprocal lat-
tice. A change in the electronic state in the presence of
a magnetic field is defined by an adiabatic system in
the quasimomentum space (see, for example, [1-3]),

b= f[vgr(mxB] = f[Ve@)xBl (1.1)

which has, generally speaking, trajectories of the most
diverse geometry (which is the main topic discussed in
this paper). One can say that the magnetic field B is
strong enough if the electron has time to pass many
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Fig. 1. (a) Closed (a) and (b) periodic trajectories of sys-
tem (1.1) arising on Fermi surfaces of various shapes.

times along typical closed trajectories of system (1.1)
or if it travels a sufficiently large distance (>>p;) along
open trajectories of the same system between two
impurity scattering events.

As is easy to see, system (1.1) preserves both the
value of the electronic state energy e (p) and the projec-
tion of the quasimomentum along the magnetic field.
As a consequence, the trajectories of systems (1.1) in
the p-space are defined geometrically by the intersec-
tions of surfaces of constant energy e (p) = const with
planes orthogonal to the magnetic field.

‘We can also write a quasiclassical system describing
the motion of an electron wave packet in the coordi-
nate space,

X = vg(p) = Ve(p). (1.2)

It is also easy to see that the trajectories of
system (1.2) are actually determined by the trajecto-
ries of system (1.1); in particular, their projections
onto a plane orthogonal to B are similar to the trajec-
tories of system (1.1) rotated through 90°. The trajec-
tories of system (1.2) are not generally planar and
describe also the motion along the direction of B,
which is determined by the corresponding values of
the group velocity v,,(p).

The key role in the analysis of electron transport
phenomena in metals is played by the Fermi surface,
which is defined by the equation

€(p) =€,

and represents a 3-periodic surface in the p-space.
Thus, one can see that the complexity in the behavior
of transport phenomena in strong magnetic fields is
mostly determined by the complexity of the Fermi sur-
face of the metal. This quite important property of
transport phenomena in strong magnetic fields was
first pointed out in the pioneer work [4], where the
authors considered two fundamentally different types
of trajectories of system (1.1) on different Fermi sur-
faces. Namely, in [4], the authors considered contri-
butions to the magnetoconductivity from closed and
periodic trajectories of system (1.1) (Fig. 1) and
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showed that, in the leading order in the parameter
®zT > 1, they can be represented as

(@51 (07) (1)

ki _netT —1 -2 —1
o = @ @07 @y
(0pT)  (pT) *
O)BT —> o
(closed trajectories) and
(@507 (01 (0p7)
ki _ net -1 % *
o * (O‘)BT) 1 ) (14)
(0p7) ~  * *

WRT —> oo
(open periodic trajectories).

Formulas (1.3) and (1.4) represent the orders of
magnitude of 6¥(B) in the limit as wzT — oo. In par-
ticular, it is assumed that each matrix element has in
fact a certain constant dimensionless coefficient, just
as the notations “*” represent some dimensionless
quantities of the order of one. It is easily seen that the
main difference between the contributions of closed
and periodic trajectories in the limit as @zT — oo is the
strong anisotropy of conductivity in the plane orthog-
onal to B in the second case. Henceforth, we will
assume that the z axis is chosen along the magnetic
field direction. In formula (1.4) we also assume that
the x axis is chosen along the mean direction of peri-
odic open trajectories in the p-space.

In [5, 6], more general examples of open trajecto-
ries of system (1.1) were considered, which also pos-
sess strong anisotropic properties. Many issues con-
cerning the geometry of the Fermi surface and the
related physical phenomena considered in the above-
mentioned (as well as in a later) period were presented
in [7—10], as well as in the books [1-3, 11, 12].

In the present study, we provide an overview of later
results, which are based on detailed topological inves-
tigations of the structure of system (1.1) for arbitrary
dispersion law e (p) and magnetic field direction. The
problem of complete classification of all possible tra-
jectories of system (1.1) was first posed by Novikov in
[13], where he also carried out the first analyses of this
system in the general statement. During subsequent
decades, this problem was intensively investigated in
the topological school of Novikov (S.P. Novikov,
A.V. Zorich, S.P. Tsarev, and I.A. Dynnikov), which
produced a number of rather deep mathematical
results that have allowed one to answer most of
important questions related to the problem.

When describing the trajectories of system (1.1),
the most important role is played by the description of
its stable open trajectories, which was obtained in [ 14—
16]. Here an especially important role is actually
played by the topological structure of the Fermi sur-
Vol. 129
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face that arises upon the appearance of stable open
trajectories of system (1.1) and gives rise to the
remarkable geometric properties of such trajectories.
As pointed out in [17, 18], stable open trajectories of
(1.1) also possess important topological characteristics
(topological quantum numbers), which are directly
observed in transport phenomena in strong magnetic
fields. In this case, the corresponding topological
characteristics are expressed by integers and are locally
stable under small variations of the magnetic field
direction. In the most general case, all stable open tra-
jectories for a given Fermi surface (or for the whole
dispersion law [19]) can in fact be divided into families
corresponding to different values of the above-men-
tioned topological characteristics and represented by
certain stability zones on the diagram of magnetic field
directions. The general structure of the stability zones
on the angular conductivity diagram of a metal may be
quite nontrivial, which generally leads to a wide variety
of phenomena observed experimentally (see, for
example, [19—32]). In the next section, we will try to
present the possibly most detailed overview of ques-
tions related to the behavior of stable open trajectories
of system (1.1), as well as physical phenomena
attributed to the different structure of angular dia-
grams for metals with arbitrary Fermi surfaces.

However, stable open trajectories are not the only
example of nontrivial trajectories of system (1.1); on
sufficiently complex Fermi surfaces, there may appear
trajectories of absolutely different type, that exhibit
much more complex (chaotic) behavior both on the
Fermi surface and in the covering p-space. The first
example of such trajectories was constructed by Tsarev
[33]. It should be said that the trajectories con-
structed by Tsarev also have their specific features
and actually form a separate class of open trajectories
of system (1.1), which represents a significant part of
the general classification of its trajectories.

Still more complex examples of chaotic trajectories
appearing on sufficiently complex Fermi surfaces were
constructed by Dynnikov [34]. Dynnikov-type trajec-
tories exhibit the most complex behavior, which also
clearly manifests itself in electron transport phenom-
ena in strong magnetic fields (see [35, 36]). Today, the
general properties of Dynnikov’s chaotic trajectories,
as well as the structure of the sets on which they arise,
are the subject of intensive study in the theory of
dynamical systems (see [37—53]). Just as Tsarev’s tra-
jectories, Dynnikov’s trajectories can be related to a
special class of trajectories of system (1.1) that rep-
resents an important component in the general classi-
fication of all of its trajectories. In Section 3, we give
an overview of the results concerning the chaotic tra-
jectories of system (1.1) and the related physical phe-
nomena in strong magnetic fields.
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Fig. 2. Canonical compact surfaces having genera 0 (a),
1 (b), 2 (c), etc.

2. STABLE OPEN TRAJECTORIES
AND ANGULAR CONDUCTIVITY DIAGRAMS
OF METALS

We begin this section with the description of the
structure of the Fermi surface when stable open trajec-
tories of system (1.1) arise on it. Note, first of all, that
the Fermi surface can be considered in two ways.
Namely, on the one hand, the Fermi surface can be
considered as a 3-periodic surface in the p-space,

defined by the equation e(p) = €. Here we should
keep in mind, however, that the points of the Fermi
surface differing by reciprocal lattice vectors define
the same electronic state. On the other hand, the
p-space and the Fermi surface can be factorized with
respect to the reciprocal lattice vectors and considered
as compact manifolds. In this case, the complete Bril-

. . . 3
louin zone represents a three-dimensional torus T°,
and the Fermi surface represents a smooth compact

two-dimensional surface S embedded in T’. As an
abstract compact surface, the Fermi surface has a fixed
genus g > 0 and is diffeomorphic to the canonical two-
dimensional surface of appropriate genus (Fig. 2).

Moreover, the embedding of the Fermi surface in T
(or its representation as a periodic surface in the
p-space) can be characterized by a topological rank
that can take the values 0, 1, 2, or 3 (Fig. 3). Here we
will primarily focus on the most complex Fermi sur-
faces; therefore, we will assume, as a rule, that the
Fermi surface considered has rank 3. We can also show
that the genus of such a surface should satisfy the rela-
tion g > 3.

First of all, we remove all closed (singular and
nonsingular) trajectories of system (1.1) from the
Fermi surface and consider its remaining part, which
carries open trajectories. In the general case, all
nonsingular closed trajectories of (1.1) on the Fermi
surface form a finite number of (nonequivalent) cylin-
ders bounded by singular trajectories of (1.1) on their
bases (a particular case of such a base can be given by
a single singular point of system (1.1)). After such a
removal, the remaining part of the Fermi surface is
represented by a finite number of (nonequivalent)
components with holes, bounded by singular trajecto-
ries of system (1.1). We can call the set of two-dimen-
sional components with holes thus obtained a reduced
Fermi surface corresponding to a given direction of the
magnetic field.
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Fig. 3. Examples of Fermi surfaces in the p-space of rank 0
(@), 1 (b), 2 (c), and 3 (d).

Fig. 4. Connected component of the reduced Fermi sur-
face in the p-space, that carries stable open trajectories of
system (1.1).

Fig. 5. General structure of the Fermi surface in the p-
space, that carries stable open trajectories of system (1.1)
(schematically).

When describing stable open trajectories of sys-
tem (1.1), we can assume that the direction of B is
completely irrational, i.e., that a plane orthogonal to B
does not contain reciprocal lattice vectors. The most
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important property of the reduced Fermi surface in the
presence of stable open trajectories of system (1.1) is
the fact that each of its connected components rep-
resents a two-dimensional torus with holes, embedded

in T° [14, 16]. Returning to the extended p-space, we
can also formulate these properties as follows: Each
connected component of the reduced Fermi surface
represents an integral (generated by two vectors of the
reciprocal lattice) periodically deformed plane with

holes, embedded in R’ (Fig. 4).

On the whole, the complete Fermi surface in the
situation described can be represented in the general
case as a set of an even number of (nonequivalent)
integral planes in the p-space, connected by compo-
nents consisting of cylinders of closed trajectories of
system (1.1) of finite height (Fig. 5). Such a structure
of the Fermi surface is locally stable with respect to
small rotations of the direction of B, as well as with
respect to small variations of the Fermi level €. In this
case, the Fermi surface will have the above-described
different representations for the directions of B lying in
different stability zones on the angular diagram (on

the unit sphere S?).

As regards the stable open trajectories of system (1.1),
one can see that, in the situation described, these tra-
jectories should have the following two remarkable
properties:

(1) each stable open trajectory of system (1.1) (in
the p-space) lies in a straight strip of finite width in a
plane orthogonal to B and passes through it (Fig. 6)
(see also [15]);

(2) the mean direction of all stable open trajecto-
ries is the same for a given direction of B and is given
by the intersection of the plane orthogonal to B with
some (locally) fixed integral plane I" in the p-space.

The geometrical properties of stable open trajecto-
ries of system (1.1) are directly related to transport
phenomena in a metal in strong magnetic fields. Just
as in the case of periodic open trajectories, the con-
ductivity tensor in the plane orthogonal to B possesses
a strong anisotropy in the limit of ®zt — 1. The gen-
eral property of the complete conductivity tensor

‘ , (o) o(l) o(l)
o =T o) *
m o(1) * *

WyT — o,

’ 2.1)

allows one to determine the mean direction of open
trajectories in the p-space as the direction of the great-
est suppression of conductivity (in the x-space) in the
limit of mzT — oo. The stability of open trajectories
with respect to small rotations of the direction of B
allows one to determine also the integral plane I" as the
plane containing the directions of the greatest sup-
pression of conductivity for all directions of B that lie
No. 4
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Fig. 6. View of a stable open trajectory in the plane orthog-
onal to B in the extended p-space.

in the appropriate stability zone 2 (on the unit
sphere).

The experimentally observed plane I is generated
by some two vectors of the reciprocal lattice and, in
particular, should not necessarily coincide with some
crystallographic plane. Instead, it is orthogonal to a
crystallographic direction of a sample and thus can be
defined by an irreducible triple of integers (M', M?,

M?). The integral parameters (M(lx, M;, M;) of the
planes I', for each stability zone were introduced in
[17] as important topological characteristics observed
in the conductivity of normal metals. The complete set

of topological numbers (M, é, Mé, M ;), as well as the
geometry of the corresponding stability zones, rep-
resents important characteristics of the electron spec-
trum in a crystal. Note that a stability zone €2, can be

defined either as a connected domain (on Sz) corre-
sponding to a given family of stable open trajectories of
(1.1) or as a complete set of all such domains corre-

sponding to the same integer triple (M(lx, Mé, M;).
Quite often, it is convenient to use the second defini-
tion, which, in particular, assigns diametrically oppo-
site domains on the unit sphere to the same zone.

Returning to the complete structure of the Fermi
surface in the presence of stable open trajectories of
system (1.1) on it, we can state that, as already men-
tioned, for the directions B/B € € of general posi-
tion, the Fermi surface can be represented as an even
set of (nonequivalent) deformed integral planes with
holes, connected by components of finite height that
carry closed trajectories of system (1.1). One can also
see that, in a physically realistic situation, each such
component should represent a simple cylinder con-
sisting of closed trajectories and bounded by singular
trajectories on their bases (Fig. 5). Such a structure
allows one to say somewhat more about the trajecto-
ries of system (1.1) for the directions of B lying inside
some of the stability zones, as well as near it (see, for
example, [19, 29—31]).

Indeed, we can note, first of all, that the given
structure on the Fermi surface should give rise to peri-
odic open trajectories for B/B € , every time when
the intersection of a plane orthogonal to B with the
corresponding plane I', has a rational direction in the
p-space. As a consequence, in each zone €, one can
point out an everywhere dense set (consisting of seg-
ments of large circles) of directions of B that corre-
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Fig. 7. Experimentally observed stability zones in experi-
ments on direct measurements of conductivity in strong
magnetic fields.

sponds to the appearance of periodic open trajectories
of system (1.1). In contrast to the trajectories of gen-
eral position, periodic trajectories are not everywhere
dense on the carriers of open trajectories, which
results in somewhat different values of conductivity for
the corresponding directions of B in the limit of ®;T —
oo, As a consequence, the angular dependence of the
conductivity tensor for B/B € ), has a certain irregu-
larity, which may introduce an element of randomness
to the experimental data when measuring conductiv-
ity. Moreover, one can also show that, for the above-
described structure of the Fermi surface, periodic
open trajectories of system (1.1) also exist on the
extensions of the above-mentioned segments of large
circles beyond the stability zone. The latter circum-
stance, together with the appearance of long closed
trajectories for close directions of B, leads to the fact

that the experimentally observed stability zone f)a
turns out to be somewhat greater in direct measure-
ments of conductivity than the exact mathematical
zone even in sufficiently strong magnetic fields
(Fig. 7). On the whole, the analytic properties of the
conductivity tensor in the experimentally observed
stability zone may be sufficiently complex (see [29]).

At the same time, the boundaries of exact mathe-
matical stability zones €2, are also experimentally
observable for an appropriate setting up of the experi-
ment. This circumstance is due to the fact that the
boundary of a zone €, is related to a certain recon-
struction of the trajectories of system (1.1) and to the
destruction of the structure shown in Fig. 5 for the
corresponding directions of B. Namely, on the bound-
ary of any zone €, the height of one of the cylinders
of closed trajectories connecting the carriers of open
trajectories vanishes, and this cylinder subsequently
disappears after the intersection with the boundary of
Q.. The disappearance of any such cylinder of closed
trajectories can be detected experimentally, for exam-
ple, when investigating (classical or quantum) oscilla-
tory phenomena in a metal in strong magnetic fields
(see, for example, [30]). Below we will see that it is the
structure of exact mathematical stability zones that is
the most interesting for metals with complex Fermi
No. 4
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Fig. 8. (Color online) The shape of the Fermi surface of gold, experimentally measured stability zones [54], and stability zones

obtained as a result of high-precision calculations [25, 26].

surfaces from the viewpoint of its mathematical
description.

Another important feature of the structure shown
in Fig. 5 is the fact that the intersection of the bound-
ary of a zone €, actually leads only to its partial
destruction. Indeed, one can see that the disappear-
ance of only one of the cylinders of closed trajectories
does not lead to the complete disappearance of this
structure, because the Fermi surface remains divided
into pairs of merged-together former carriers of open
trajectories separated by the remaining cylinders of
closed trajectories. Thus, for the structure shown in
Fig. 5 to disappear completely, it is necessary that at
lest one more cylinder of closed trajectories should
disappear, which makes possible the jumps of trajecto-
ries between the pairs of merged-together former car-
riers. Thus, one can see that, for each zone Q,, it is
natural to introduce another (second) boundary
(which, generally speaking, does not coincide with the

boundary of the experimentally observed zone Qa)
corresponding to the complete disappearance of the

above-described structure. In the domain Q)
bounded by the first and second boundaries of the
zone €, the trajectories of system (1.1) also admit an
effective description on the basis of the structure aris-
ing in the zone ), which also allows one to provide a
description of the main physical phenomena related to
the geometry of the trajectories of system (1.1) [31].
Note that, in contrast to the zones Q,, different zones

Q. and Qis may intersect with each other.

The described structure of system (1.1) on the
Fermi surface in the presence of stable open trajecto-
ries also provided a basis for constructing numerical
methods for the analysis of this system in the general
case and calculating the structure of the stability zones
in especially complex examples (see, for example, [20,
24-26]). Namely, the study of the topology of the
cycles defined by closed trajectories (1.1) on the Fermi
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surface allows one to effectively describe the global
structure of trajectories even for a quite complex
geometry of the Fermi surface and the presence of
quite small stability zones. Figures 8 and 9 demon-
strate the stability zones for the Fermi surfaces of gold
and silver, obtained experimentally and calculated on
the basis of the above topological methods. We can see
that the numerical methods significantly improve the
experimental data on the stability zones, in particular,
the boundaries of experimentally measured zones. On
the diagram of Fig. 8, one can see, in addition to exact
stability zones determined experimentally, (very
small) additional zones, which were not detected ear-
lier in experiments.

Taking into account the possible complexity of
angular conductivity diagrams, we can specially note
that all nontrivial (containing stability zones) angular
diagrams for normal metals can be classified into two
different types [31, 32]. The type of a diagram is deter-
mined by the behavior of the Hall conductivity for the
directions of B lying outside the stability zones; how-
ever, it is this behavior that has, as a rule, the most
important impact on the general complexity of the
angular diagram. More precisely, the diagrams for
which the Hall conductivity has the same value every-
where outside the stability zones (for a given value of
B, wgTt> 1) can be assigned to type A. Conversely, the
diagrams on which there exist domains outside the sta-
bility zones with different values of the Hall conduc-
tivity (often with different, electron and hole, types of
conductivity), are assigned to type B (Figs. 10 and 11).
Presumably, diagrams of type A are more widespread
among all diagrams for real substances; however, they
are a priori simpler than diagrams of type B. In partic-
ular, a diagram of type B contains, in the general case,
an infinite number of stability zones with arbitrarily
large values of topological numbers, whereas, for dia-
grams of type A, the presence of an infinite number of
stability zones is an exceptional case (see [32]).

No. 4
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Fig. 9. (Color online) The shape of the Fermi surface of silver, experimentally measured stability zones [55], and stability zones

obtained as a result of high-precision calculations [25, 26].

Fig. 10. (Color online) Example of an A-type diagram
(very schematically) with the same (electron) type of
behavior of the Hall conductivity outside the stability
zones.

When considering stable open trajectories of sys-
tem (1.1) and the corresponding stability zones in the
space of directions of B, one should not neglect the
possibility of introducing the general angular diagram
for the whole dispersion relation € (p) describing the
behavior of open trajectories of (1.1) on all energy lev-
els e (p) = const simultaneously [19]. The possibility of
introducing such a diagram is based on the following
important assertions on the trajectories of system (1.1),
which were proved in [19].

Consider an arbitrary 3-periodic dispersion rela-
tion e(p) and the corresponding systems (1.1) that
arise for different directions of B. Then the following
statements hold:
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Fig. 11. (Color online) Example of a B-type diagram (only
a finite number of stability zones and chaotic directions of
B are shown very schematically) with different (electron
and hole) types of the Hall conductivity in different
domains outside the stability zones.

(1) for each direction of B, open trajectories of sys-
tem (1.1) exist either in a closed energy interval € €

[e,(B/B), €,(B/B)] or on a single energy level e =
€)(B/B) = €,(B/B) = €,(B/B);

(2) every time when open trajectories of system (1.1)
arise in a finite energy interval [€,(B/B), €,(B/B)], all
nonsingular open trajectories lie in straight strips of
finite width in the planes orthogonal to B and pass
through these strips;

(3) for generic directions of B, the values of the
functions €,(B/B) and €,(B/B) coincide with the val-
ues of some continuous functions §&(B/B) and
€,(B/B) that are defined everywhere on the unit
Vol. 129
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Fig. 12. (Color online) Example of a complex angular
diagram for the dispersion relation e(p) = cosxcosy +
cosycosz + coszcosx (only a finite number of stability
zones are shown (in color)) in the order of increasing cor-
responding topological numbers [51].

sphere S®. For special directions of B such that the
plane orthogonal to B contains a reciprocal lattice vec-
tor, the values of €,(B/B) and €,(B/B) may not coin-
cide with &€ (B/B) and &,(B/B) (if a given direction of
B corresponds to the appearance of periodic trajecto-
ries of system (1.1)). In this case, we always have the
relations

€(B/B)<&(B/B), and e(B/B)> & (B/B).

(4) For generic directions of B, such that € (B/B) <
€,(B/B), all nonsingular open trajectories of (1.1) have
the same mean direction in the p-space that is defined
by the intersection of the plane orthogonal to B with
some integral plane I" (generated by two vectors of the
reciprocal lattice) that is invariant under small rota-
tions of the direction of B. Thus, the plane IT" is con-

stant for any connected domain on S? in which the
relation & (B/B) < &,(B/B) is satisfied. Maximal
(open) connected domains €2, satisfying the above
condition can be called stability zones for the whole
dispersion law e(p). Each stability zone €, has a
piecewise constant boundary on which the relations
€,(B/B) =&,(B/B) are satisfied. Each stability zone Q,
corresponds to some integral plane I', defined by the
above conditions.

(5) The family of all stability zones €2, forms an
everywhere dense open set on the unit sphere S

We can also note that all angular diagrams for the
dispersion relation can be divided into two classes.
Namely,
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Fig. 13. (Color online) Fractal structure of the set of cha-
otic directions of B (the complement of the stability zones)
on the angular diagram.

(1) complex diagrams containing an infinite num-
ber of stability zones (Fig. 12) and

(2) simple diagrams containing a single stability
zone that fills the whole sphere S

For complex angular diagrams described above, of
great interest is also the structure of the set

SHN\uQ,.

This set represents the set of directions of B for
which there appear chaotic trajectories of system (1.1),
which we will discuss in the next chapter. The struc-
ture of this set is in fact quite complex (fractal, Fig. 13).
According to the Novikov conjecture [23], for disper-

sion laws of general position, the Hausdorff dimension
of this set is strictly less than 2.

We can see that the structure of angular diagrams
for the whole dispersion law is in most cases much
more complex than the structure of angular diagrams
for a fixed Fermi surface. It is interesting to notice,
however, that there exist special Fermi surfaces for
which angular diagrams coincide with the angular dia-
grams for the whole dispersion law [20]. For example,
such a surface is given by the surface cosx + cosy +
cosz = 0, whose angular diagram is (partially) repre-
sented in Fig. 14.

Note also that the angular diagrams for the whole
dispersion law are, in some extent, abstract from the
viewpoint of the theory of normal metals. It is not
unlikely, however, that there is a certain possibility to
observe such diagrams in semiconducting single crys-
tals in the presence of superstrong magnetic fields
[56].
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3. CHAOTIC OPEN TRAJECTORIES
OF SYSTEM (1.1)

Here we consider open trajectories of system (1.1)
that are different from those considered in the previ-
ous section and the related physical phenomena. As
we already pointed out in the Introduction, the first
examples of this kind were constructed by Tsarev in
1992. Here we describe only the general properties of
Tsarev’s trajectories; more detailed description of
these trajectories can be found, for example, in [34,
52]. Note at once that Tsarev-type trajectories repre-
sent a separate class of unstable open trajectories of
system (1.1), these trajectories arise for “partially irra-
tional” directions of B (the plane orthogonal to B con-
tains a reciprocal lattice vector). We can mention at
once that the carrier (closure) of each trajectory con-
structed by Tsarev represents a topologically more
complex part of the Fermi surface than the two-
dimensional tori with holes described in the previous
section. As a consequence, the behavior of Tsarev’s
trajectories on the Fermi surface is more chaotic, and
the trajectories themselves can now be assigned to the
class of “chaotic” trajectories.

As regards the shape of Tsarev-type trajectories in
the extended p-space, they actually possess, to some
extent, both the properties of stable open trajectories
and the properties that are not inherent in stable open
trajectories. For example, an open Tsarev’s trajectory
cannot be enclosed in any straight strip of finite width
in the plane orthogonal to B. At the same time, for a
given direction of the magnetic field, all open Tsarev’s
trajectories have the same asymptotic direction in the
planes orthogonal to B, which makes them somewhat
similar to stable open trajectories of system (1.1). This
property is in fact inherent in all unstable open trajec-
tories arising for partially irrational directions of B
[34], which allows one to assign all such examples to a
class of trajectories of the same type. Moreover, the
above-mentioned property of Tsarev’s trajectories
leads to the fact that the contribution of a part of the
Fermi surface carrying such trajectories is also
strongly anisotropic in the limit of @zt > 1, just as in
the case of open trajectories of system (1.1). In partic-
ular, here we also have relation (2.1) for the conductiv-
ity tensor in a properly chosen coordinate system.
Note, however, that relations (1.4) are no longer satis-
fied in this case, and the behavior of the conductivity
tensor in the case of Tsarev’s trajectories becomes
somewhat more complex. Note also that, in view of
the instability of the trajectories described, the struc-
ture of the conductivity tensor is not related here to the
topological numbers analogous to those introduced
above for stable open trajectories of system (1.1).

The second class of chaotic open trajectories of sys-
tem (1.1) is given by unstable open trajectories arising
for directions of B of maximum irrationality. Such tra-
jectories were first constructed by Dynnikov in [34];
these trajectories exhibit maximally chaotic behavior
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Fig. 14. (Color online) The shape of the surface cosx +
cosy + cosz = 0 (of genus 3) and the corresponding stability
zones on the angular diagram [25, 26].

both on the Fermi surface and in the covering p-space
(Fig. 15). This property of Dynnikov’s trajectories
leads to quite nontrivial behavior of the magnetocon-
ductivity tensor in the limit of @zt > 1 when such tra-
jectories appear on the Fermi surface. One of the most
interesting features of such behavior is the sharp sup-
pression of conductivity along the magnetic field
direction as mzT — oo [35]. Another specific feature is
the appearance of fractional powers of the parameter
4T in the asymptotics of the conductivity tensor com-
ponents [35, 36], which also reflects the specific char-
acter of the chaotic dynamics of such trajectories. On
the whole, the contribution of the carriers of Dyn-
nikov’s chaotic trajectories to all the components of
Vol. 129

No. 4 2019



THEORY OF DYNAMICAL SYSTEMS

719

Fig. 15. The form of Dynnikov’s chaotic trajectory in the plane orthogonal to B in the extended p-space.

the conductivity tensor tends to zero in the limit of
W5T —> ©,

In a somewhat simplified way, we can distinguish
two main directions in the study of the chaotic regimes
arising in system (1.1), namely, the study of the set of
parameters of system (1.1) for which such regimes
arise, and the study of specific features of the dynam-
ics of the corresponding chaotic trajectories and the
related features of transport phenomena in metals.

To the space of parameters of system (1.1), we can
assign the parameters of the dispersion relation € (p),

the Fermi energy €, and the direction of the magnetic
field B. For the most complete theoretical description
of system (1.1) for a given dispersion relation e (p), it is
natural to raise the question of the set of directions of
B corresponding to the appearance of chaotic trajec-
tories on any energy level. As we have already men-
tioned in the previous section, this set is rather com-
plex and can be described by some fractal structure on

the sphere S®. As we have also already pointed out,
according to the Novikov conjecture, the (upper) frac-
tal dimension of this set is strictly less than 2 for
generic dispersion relations. The studies of the struc-
ture of this set (both analytical and numerical) are cur-
rently rather intensive, and one can say that the
Novikov conjecture has been largely confirmed at
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present (see, for example, [41, 42, 44, 50, 53]).
Returning to the theory of normal metals, we should
also raise the question of the structure of this set for a

fixed Fermi level €. One can show [19] that the Leb-
esgue measure of such a set vanishes for a generic
Fermi surface. According to the Novikov conjecture
[21, 22], the upper Hausdorff dimension of this set in
this case is strictly less than one for a generic Fermi
surface (although it may be greater for special Fermi
surfaces). We can also note that the appearance of
chaotic trajectories on the Fermi surface is generally
typical of angular diagrams of type B (Fig. 11) men-
tioned in the previous section, whereas, for angular
diagrams of type A, these trajectories may arise only in
exceptional cases (see [32]). As we have already said,
the studies of the structure of the set of directions of B
corresponding to the appearance of chaotic trajecto-
ries both on a fixed Fermi surface and on any surface
of constant energy for a given dispersion law currently
represent a rather actively developing branch of topol-
ogy and the theory of dynamical systems.

The study of the specific features of the dynamics
of chaotic trajectories is the most topical in the case of
Dynnikov-type trajectories, which exhibit the most

complex behavior both on the Fermi surface (in T3)
and in the extended p-space. Special examples of such
trajectories may have very remarkable properties. For
No. 4
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example, the trajectories constructed in [34] have the
property of self-similarity in the p-space. Namely,
each such trajectory coincides with itself after dilation
along some two vectors in the appropriate plane
orthogonal to B with some eigenvalues, followed by a
finite deformation of the trajectory obtained after dila-
tion (isotopy of a trajectory in the plane under which
the distance between the initial point of the trajectory
and any of its images under the isotopy does not
exceed a fixed constant).

Unfortunately, the above-described remarkable
property is not inherent in Dynnikov’s chaotic trajec-
tories in the general case. However, methods that were
initially developed in the abstract theory of dynamical
systems and foliations on two-dimensional surfaces
(see, for example, [36, 38—40, 45—49]) turned out to
be quite effective in the study of the dynamics of such
trajectories. In particular, the so-called Zorich—Kon-
tesvich—Forni indices (see, for example, [40])
describing important aspects of the behavior of cha-
otic trajectories both on the Fermi surface and in the
extended p-space proved to be quite important char-
acteristics of such trajectories. Here we cannot present
a detailed description of the above characteristics;
however, we note that they actually play a very import-
ant role in the emergence of fractional powers of the
parameter ®zT in the asymptotics of the conductivity
tensor components when Dynnikov-type chaotic tra-
jectories appear on the Fermi surface in the general
case (see [36]). We can also note that the most com-
prehensive possible description of the behavior of
Dynnikov’s chaotic trajectories from the viewpoint of
the general theory of dynamical systems is currently a
very topical problem, which is of interest for many
researchers.

4. CONCLUSIONS

We have presented the latest results of investiga-
tions of the problem of dynamics of electronic states
on complex Fermi surfaces in the presence of an exter-
nal magnetic field and their relation to electron trans-
port phenomena in metals in strong magnetic fields.
The analysis of transport phenomena in metals has
been mainly carried out in the leading (quasiclassical)
approximation, which directly relates the specific fea-
tures of electron dynamics to different regimes of elec-
tron transport in the limit of ®zT > 1. The results are
based on the general theorems of topological character
and include the description of all possible types of
electron dynamics and the corresponding electron
transport regimes in a metal under quite general
assumptions about the electron spectrum. At the same
time, we have also discussed the problems that are
interesting for the further development of this field of
research.
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