Using Symmetry Transformations in Equivariant
Dynamical Systems for their Safety Verification

Hussein Sibai, Navid Mokhlesi, and Sayan Mitra
{sibai2,navidm2,mitras}@illinois.edu

University of Illinois, Urbana IL 61801, USA

Abstract. In this paper, we investigate how symmetry transformations of equiv-
ariant dynamical systems can reduce the computation effort for safety verification.
Symmetry transformations of equivariant systems map solutions to other solutions.
‘We build upon this result, producing reachsets from other previously computed
reachsets. We augment the standard simulation-based verification algorithm with a
new procedure that attempts to verify the safety of the system starting from a new
initial set of states by transforming previously computed reachsets. This new algo-
rithm required the creation of a new cache-tree data structure for multi-resolution
reachtubes. Our implementation has been tested on several benchmarks and has
achieved significant improvements in verification time.

1 Introduction

Symmetry plays an important role in analysis of physical processes by summarizing
the laws of nature independent of specific dynamics [?,?]. Symmetry related concepts
have been used to explain and suppress unstable oscillations in feedback connected
systems [?], show existence of passive gaits under changing ground slopes [?], and
design control inputs for synchronization of neural networks [?,?].

Symmetry has also played an important role in handling the state space explosion in
model checking computational processes. The idea of symmetry reduction is to reduce
the state space by considering two global states to be equivalent (bisimilar), if the states
are identical, including permuting the identities of participating components [?,?]. Equiv-
alently, symmetry can reduce the number of behaviors to be explored for verification
when one behavior can be seen as a permutation, or a more general transformation, of
another. Symmetry reduction was incorporated in early explicit state model checkers
like Mur¢ [?], but translating the idea into improved performance of model checking
has proven to be both fruitful and nontrivial as witnessed by the sustained attention that
this area has received over the past three decades [?,?].

In this paper, we investigate how symmetry principles could benefit the analysis of
cyberphysical systems (CPS). Not surprisingly, the verification problem for CPS inherits
the state space explosion problem. Autonomous CPS commonly work in multi-agent
environments, e.g., a car in an urban setting—where even the number of scenarios to
consider explodes combinatorially with the number of agents. This has been identified
as an important challenge for testing and verification [?]. The research program on data-
driven verification and falsification has recently been met with some successes [?,?,2,?].

2 Authors Suppressed Due to Excessive Length

The idea is to use simulation, together with model-based sensitivity analysis or property-
specific robustness margins, to provide coverage guarantees or expedite the discovery
of counterexamples. Software tools implementing these approaches have been used to
verify embedded medical devices, automotive, and aerospace systems [?,?,?,?]. In this
paper, we examine the question: how can we reduce the number of simulations needed to
verify a CPS utilizing more information about the model in the form of its symmetries?

Contributions The paper builds-up on the foundational results in symmetry transfor-
mations for dynamical systems [?,?,?] to provide results that allow us to compute the
reachable states of a dynamical from a given initial set K’, by transforming previously
computed reachable states from a different initial set K. Since the computation of
reachsets from scratch is usually more expensive than applying a transformation to a
set, this reduces the number of reachset computations, and therefore, the number of
simulations. Secondly, we identify symmetries that can be useful for analyzing CPS
including translation, linear transforms, reflections, and permutations.

Third, we present a verification algorithm symCacheTree based on transforming
cached reachtubes using a given symmetry transformation 7y of the system instead of
computing new ones. We augment the standard data-driven safety verification algorithm
with symCacheTree to reduce the number of reachtubes that need to be computed from
scratch. We do that by caching reachtubes as they are computed by the main algorithm
in a tree structure representing refinements. Before any new reachtube is computed from
a given refinement of the initial set, symCacheTree is asked if it can determine the safety
of the system based on the cached reachtubes. It will then do a breadth-first search (BFS)
over the tree to find suitable cached reachtubes that are useful under the transformation, 7.
It either returns a decision on safety or says it cannot determine that. In that case, the main
algorithm computes the reachtube from scratch. We prove that the symmetry assisted
algorithm is sound and complete. We further generalize symCacheTree to use a set of
symmetry transformations instead of one. We call the new algorithm symGrpCacheTree.

Finally, we implemented the algorithms on top of the DryVR tool [?]. We augmented
DryVR with symCacheTree and symGrpCacheTree. We tested our approach on several
linear and nonlinear examples with different symmetry transformations. We showed that
in certain cases, by using symmetry, one can eliminate several dimensions of the system
from the computation of reachtubes, which resulted in significant speedups (more than
1000 in some cases).

The paper starts with notations and definitions in Section 2. Examples of dynamical
systems and symmetry transformations are given in Section 3. The main theorems of
transforming reachtubes appear in Section 4. In Section 5, we present symCacheTree
and symGrpCacheTree along with the key guarantees. The results of experiments are in
Section 6 and conclusions and future directions are in Section 7.

2 Preliminaries

For any point x € R", we denote by x; the i’ component of x. For any § > 0 and x € R",
B(x,0) CR" is a closed hypercube of radius 6 centered at x. For a hyperrectangle
SCR"and § > 0, Grid(S,d), is a collection of 25-separated points along axis parallel

Title Suppressed Due to Excessive Length 3

planes such that the §-balls around these points cover S. Given a positive integer N, we
denote by [N] the set of integers {1,...,N}. Given an operator y: R" — R" and a set
X C R, with some abuse of notation we denote by y(X) the subset of R” that results
from applying 7 to every element on X. Let D € [N]. We denote by the set X |p= {x:
dx € X,V i€ D,x; = x, and x; = 0,otherwise}. A continuous function § : RT — R is
said to be a class-# function if it is strictly increasing and f3(0) = 0.

Consider a dynamical system:

x=f(x),)

where x € R" is the state vector and f : R” — R" is a Lipschitz continuous function which
guarantees existence and uniqueness of solutions [?]. The initial condition of the system
is a compact set K C R". A solution of the system is a function £ : R" x R — R” that
satisfies (1) and for any initial state xo € K, & (x0,0) = xo. For a bounded time solution
&, we denote the time domain by &.dom. Given an unsafe set U C R" and a time bound
T > 0, the bounded safety verification problem requires us to check whether there exists
an initial state xo € K and time ¢ < T such that & (xo,7) € U.

The standard method for solving the (bounded) safety verification problem is to
compute or approximate the reachable states of the system. The set of reachable states
of (1) between times #; and #,, starting from initial set K C R”" at time #y = 0 is defined as

Reach(K,[t1,12]) = {x e R" | Ixp €K, t € [t1,12] s.t. E(x0,7) = x}.

Thus, computing (or over-approximating) Reach(K, [0, T]) and checking Reach(K,[0,T])N
U = 0 is adequate for verifying bounded safety. Instead of Reach(K, [t,t]) we write
Reach(K,t) in short for the set of state reachable from K after exactly time units.

Sometimes we find it convenient to preserve the time information of reaching states.
This leads to the notion of reachtubes. Given a time bound T > 0, we define reachtube
Rtube(K,T) = {(X;,t;)}!_, to be a sequence of time-stamped sets such that for each
i, X; = Reach(K,[ti-1,1]), to = 0 and t; = T. The concatenation of two reachtubes
{(Xi,t) HL, ~ {(Xi,1;) 12, is defined as the sequence {{(X;,#;) }/L . {(Xisti +tmax) }2 1 }s
where t,,,4, is the last time stamp in the first reachtube sequence.

A numerical simulation of system (1) is a reachtube with Xy being a singleton state
xo € K. Tt is a discrete time representation of & (xg,-). Several numerical solvers provide
such representation of trajectories such as VNODE-LP! and CAPD Dyn-Sys library 2.

In this paper, we will find it useful to transform solutions and reachtubes using
operators ¥ : R" — R” on the state space. Given a solution & and a reachtube Riube(K,T),
we define the y-transformed solution y- £ and reachtube - Riube(K, T) as follows:

V1, (7-&)(x0,1) = ¥(§ (x0,1)) and y-Reube(K, T) = {(v(X:),1) }._,.

Notice that this transformation does not alter the time-stamps. Given a reachtube rt,
rt last is the pair (X,) with the maximum ¢ in r.

I'http://www.cas.mcmaster.ca/ nedialk/vnodelp/
2 http://capd.sourceforge.net/capdDynSys/docs/html/odes_rigorous.html

http://www.cas.mcmaster.ca/~nedialk/vnodelp/
http://capd.sourceforge.net/capdDynSys/docs/html/odes_rigorous.html

4 Authors Suppressed Due to Excessive Length

2.1 Data-driven verification

Data-driven verification algorithms answer the bounded safety verification question using
numerical simulation data, that is, sample of simulations. The key idea is to generalize
an individual simulation of a trajectory & (xo,-) to over-approximate the reachtube
Rtube(B(xp,0),T), for some 6 > 0. This generalization covers a 6-ball B(xg,d) of the
initial set K, and several simulations can then cover all of K and over-approximate
Rtube(K,T), which in turn could prove safety. If the over-approximations turn out to
be too conservative and safety cannot be concluded, then & has to be reduced, and
more precise over-approximations of Rtube(K,T) have to be computed with smaller
generalization radius 0 and more simulation data.

Thus far, the generalization strategy has been entirely based on computing sensitivity
of the solution & (xg,) to the initial condition xo. The precise notion of sensitivity needed
for the verification algorithm to have soundness and relative completeness is formalized
as discrepancy function [?].

Definition 1. A discrepancy function of system (1) with initial set of states K C R" is a
class- % function in the first argument 3 : R™ x RT™ — R™ that satisfies the following
conditions: (1) ¥V x,x' € K,t >0, ||&(x,t) — E(X,) || < B(|lx—X|],0), (2) B|E (x,2) —
E(X,D)],t) = 0as || x—X| — 0.

The first condition in Definition 1 says that 8 upper-bounds the distance between
two trajectories as a function of the distance between their initial states. The second
condition makes the bound shrink as the initial states get closer.

Algorithms have been developed for computing this discrepancy function for linear,
nonlinear, and hybrid dynamical models [?,?,?] as well as for estimating it for black-
box systems [?]. The resulting software tools have been successfully applied to verify
automotive, aerospace, and medical embedded systems [?,?,?].

Algorithm 1 without the boxed parts describes data-driven verification for a dynam-
ical system (1). We refer to this algorithm as ddVer in this paper. Given the compact
initial set of states K C R”, a time bound 7 > 0, and an unsafe set U, ddVer answers
the safety verification question. It initializes a stack called coverstack with a cover of
K. Then, it checks the safety from each element in the cover. For a given B(xp,d) in
coverstack, ddVer simulates (1) from x(and bloats to compute an over-approximation
of Rtube(B(xp,6),T). Formally, the set sim @ 8 is a Minkowski sum. This can be
computed by increasing the radius in each dimension of sim at a time instant ¢ by
B(8,1). The first condition on 3 ensures that this set is indeed an over-approximation
of Rtube(B(xg,0),T). If this over-approximation is disjoint from U then it is safe and
is removed from coverstack. If instead, the over-approximation intersects with U then
that is inconclusive and B(xg, 8) is partitioned into smaller sets and added to coverstack.
The second condition on 3 ensures that this refinement leads to a more precise over-
approximation of Rtube(B(xy,0),T). On the other hand, if the simulation hits U, that
serves as a counterexample and ddVer returns Unsafe. Finally, if coverstack becomes
empty, that implies that the algorithm reached a partition of K from which all the
over-approximated reachtubes are disjoint from U, and then ddVer returns Safe.

Title Suppressed Due to Excessive Length 5

Algorithm 1 ddVer safety verification algorithm

1: input: K, 7,U,I", B
2: coverstack < finite cover U;B(x;,8) 2 K
3:| cachetree < 0

4: while coverstack # 0 do

5 B(xo,8) = coverstack.pop()

6: ans < SymmetryandRefine(U,I", cachetree, B(xg,)
7: if ans = Unsafe then return: ans

8: else if ans = Safe then continue

9: else
10: sim +simulate £ (xg,-) upto time T
11: rt < sim®
12: cachetree.insert(node(rt, sim))
13: if sim intersects with U then
14: return: Unsafe
15: else if r intersects with U then
16: Refine cover and add to the coverstack

17: return: Safe

2.2 Symmetry in dynamical systems

Symmetry takes a central place in analysis of dynamical systems [?]. The research line
pertinent to our work develops the conditions under which one can get a solution by
transforming another solution [?,2,?]. Symmetries of dynamical systems are modeled as
groups of operators on the state space.

Definition 2 (Definition 2 in [?]). Let I" be a group of operators acting on R". We say
that y € I is a symmetry of (1) if for any solution, & (xo,t), V- & (x0,t) is also a solution.
Furthermore, if y- & = &, we say that the solution & is y-symmetric.

Thus, if 7y is a symmetry of (1), then new solutions can be obtained by just applying 7y to
existing solutions. Herein lies the opportunity of exploiting symmetries in data-driven
verification.

How can we know that ¥ is a symmetry for (1)? It turns out that, a sufficient condition
exists that can be checked without finding the solutions (potentially hard problem), but
only by checking commutativity of y with the dynamic function f. Systems that meet
this criterion are called equivariant.

Definition 3 (Definition 3 in [?]). Let I" be a group of operators acting on R". The
dynamic function (vector field) f : R" — R" is said to be I'-equivariant if f(y(x)) =
Y(f(x)), forany y € I' and x € R".

The following theorem shows that for equivariant systems, solutions are symmetric.

Theorem 1 ([?,?]). If (1) is I"-equivariant and & is a solution, then so is y-E,VyeT.

6 Authors Suppressed Due to Excessive Length

3 Symmetries in cyber-physical systems

Equivariant systems are ubiquitous in nature and in relevant models of cyber-physical
systems. Below are few examples of simple equivariant systems with respect to different
symmetries. We start with a simple 2-dimensional linear system.

Example 1. Consider the circle system

X| = —x2,% = X. ()

where x1,x, € R. Let I' be the set of matrices of the form: B = [[a, -], [b,a]] where
a,b € R and B is not the zero matrix. Let o be the matrix multiplication operator, then
system (2) is I -equivariant.

Example 2. Lorenz attractor models the two-dimensional motion of a fluid in a container.
Its dynamics are as follows:

X=—px+py,y=—xz+rx—yz=xy—bz. (3

where p,r, and b are parameters and x,y and z € R. Let I" be the group that contains
y: (x,,2) = (—x,—y,z) and the identity map. Then, system (3) is I"-equivariant>.

Example 3. Third, a car model is equivariant to the group of all translations of its
position. The car model is described with the following ODE:s:

x:vcose,y':vsinB,qS:u,\}:a,é:%tan(d)). 4)

where u and a can be any control signals and x,y,v,0,and ¢ € R. We denote r =
(x,y,v,0,0) = (p,p), where p = (x,y). Let I" be the set of translations of the form
y:r=(p,p) =7 = (p+c,p), forall c € R?. Then, system (4) is ["-equivariant.

Example 4. Consider the system of two cars with states r; and r,. Let I'" be the set
containing the operator v : (r1,r2) — (r2,r1) and the identity operator. Moreover, assume
that # and a are the same for both cars. Then, the system is I -equivariant.

Example 5. Let I' be the group generated by the set of transformations of the form
v:(ri,r2) = ((p1,P1): (P2, 2)) = (r1,75) = ((p1+c1,P1), (P2 +¢2, P2)), where ¢ and
c> € R?, along with the group described in example 4. Then, the system is I"-equivariant.
Hence, it is equivariant to translations in the positions and permutation of both cars.

4 Symmetry for verification

In this section, we present new results that use symmetry ideas of Section 2.2 towards
safety verification. We show how symmetry operators can be used to get new reachtubes
by transforming existing ones. This is important for data-driven verification because
computation of new reachtubes is in general more expensive than transforming ones. We
derived similar theorems for switched systems in the extended version of the paper. For
convenience, we will fix a set of initial states K C R”, a time bound 7 > 0, a group I" of
operators on R”, and an operator y € I" throughout this section. The following theorem
formalizes transformation of reachtubes based on symmetry. It follows from Theorem 1.

3 http://www.scholarpedia.org/article/Equivariant_dynamical_systems

http://www.scholarpedia.org/article/Equivariant_dynamical_systems

Title Suppressed Due to Excessive Length 7

Theorem 2. If (1) is I"-equivariant, then Vy € I', y(Rtube(K,T)) = Rtube(y(K),T).

Proof. By Theorem 1, given any solution & (xg, -) of system (1), where xo € K, y(& (xo,-))
is its solution starting from y(xo), i.e. Y(&(xo0,-)) = &(y(x0),")-

Y(Rtube(K,T)) C Rtube(y(K),T) Fix any pair (X;,t;) € Rtube(K,T) and fix an x €
X;. Then, there exists xo € K such that & (xo,t) = x for some ¢ € [1;_1,1]. Hence, by
Theorem 1, £(y(xg),t) = v(x). Therefore, y(x) € Rtube(y(K),T). Since x is arbitrary
here, y(Rtube(K,T)) C Rtube(y(K),T).

Riube(y(K),T) C y(Rtube(K,T)) Fix any pair (X;,1;) € Rtube(y(K),T) and fix an
x € X;. Then, there exists xo € Y(K) such that & (xo,#) = x for some ¢ € [t;,_;,#]. Since
xo € Y(K), there exists x{, € K s.t. y(x() = xo. By Theorem 1, y(&(x{,7)) = x. Hence,
x € Y(Rtube(K,T)). Again, since x is arbitrary, Rtube(y(K),T) C y(Rtube(K,T)).

Corollary 1 shows how a new reachtube from a set of initial states K’ C R" can be
computed by y-transforming an existing Rtube(K,T).

Corollary 1. If system (1) is I -equivariant, and K' C R", then if there exists Y € I such
that K' C y(K), then Rtube(K',T) C y(Rtube(K,T)).

Remark 1. Corollary 1 remains true if instead of Rrube(K,T), we have a tube that over-
approximates it. Moreover, Theorem 2 and Corollary 1 are also true if we replace the
reachtubes with reachsets.

S Verification algorithm

In this section, we add to the ddVer procedure the symCacheTree one for caching,
searching, and transforming reachtubes. The result is the new ddSymVer algorithm.
symCacheTree uses symmetry to save ddVer from computing fresh reachtubes in line 11
in case they can be transformed from already computed and cached reachtubes. Later we
will replace symCacheTree with the more general symGrpCacheTree procedure.

The idea of symCacheTree (and symGrpCacheTree) is as follows: given a tree
cachetree storing reachtubes as they are computed by ddVer, an initial set of states
initset, that ddVer needs to compute the reachtube for, a symmetry operator y (or a
group of them I") for system (1) and the unsafe set U, it checks if the safety of the system
starting from initset, can be decided by transforming reachtubes stored in cachetree.

Before getting into symCacheTree and symGrpCacheTree, we note the simple addi-
tions to ddVer (shown by boxes) that lead to ddSymVer. First, cachetree is initialized to
an empty tree (line 3). Then, symCacheTree (or symGrpCacheTree) is used for the safety
check (lines 6-9) and fresh reachtube computation is performed only if the check returns
inconclusive answer (lines 10-11). In the last case, fresh reachtube rt gets computed in
line 11 and inserted as a new node in cachetree (line 12).

Tree data structure Each node node in symCacheTree stores an initial set initset, a
simulation sim of duration T from the center of initset, and an over-approximation rt of

8 Authors Suppressed Due to Excessive Length

Rtube(initset, T). The key invariants of symCacheTree for non Null nodes are:

root.initset = K, (&)
Y node, node.left.initset C node.initset, 6)
V node,node.right.initset C node.initset, @)
V node,node.left.initset N\ node.right.initset = 0, ®)
Y node,node.left.initset U node.right.initset = node.initset. ©)]

That is, the initset of the root node is equal to K; each child’s initset is contained in the
initset of the parent; the disjoint union of the initsets of the children partition the initset
of the parent. Hence, by property (2) of the discrepancy function 8 (Definition 1) it
follows that the union of the reachtubes of children is a tighter over-approximation of
the reachtube of the parent, for the same initial set. Since the refinement in ddSymVer is
done depth-first, symCacheTree is also constructed in the same way.

In brief, symCacheTree (symGrpCacheTree) uses symmetry to save ddVer from
computing the reachtube Rtube(initset,,T) afresh in line 11 from initial set initset, in
the case that safety of Riube(initset,,T) can be inferred by transforming an existing
reachtube in cachetree. That is, given an unsafe set U, a tree cachetree storing reachtubes
(previously computed), and a symmetry operator ¥y (a group of symmetries I") for
system (1), symCacheTree (Algorithm 2) or symGrpCacheTree (Algorithm 3) checks if
the safety of the system when it starts from initset, can be decided by transforming and
combining the reachtubes in cachetree.

5.1 The symCacheTree procedure

The core of the symCacheTree algorithm is to answer queries of the form: can safety be
decided from a given initial set initset,, by transforming and combining the reachtubes
in cachetree?

They are answered by performing a breadth first traversal (BFS) of cachetree.
symCacheTree first checks if the y-transformed initset of root contains initset,. If not,
the transformation of the union of all initsets of all nodes in cachetree would not
contain initset,. In this case we cannot use Corollary 1 to get an over-approximation
of Rtube(initset,,T) and symCacheTree returns SymmetryNotUseful (line 4). If the
v-transformed initset of the root does contain initset,, we have at least one tube that
over-approximates it which is y(root.rt) by Corollary 1. Then, the root is inserted to the
queue traversalQueue that stores the nodes that need to be visited in the BFS.

Then, the algorithm proceeds similar to ddVer. There are two differences: first, it
does not compute new reachtubes, it just uses the transformations of the reachtubes
in cachetree. Second, it refines in BFS manner instead of DFS. In more detail, at
each iteration, a node is dequeued from traversalQueue. If its transformed initial set
initset. using 7y does not intersect with initset,, that means that y(Rube(initset.,T)) and
Rtube(initset,, T) do not intersect. Hence, the node is not useful for this initial set. Also,
if the transformed reachtube y(node.rt) does not intersects U, the part of initset, that
is covered by y(node.initset) is safe and no need to refine it more. In both cases, the
loop proceeds for the next node (line 10). If the transformed simulation of the node
starts from initset, and hits U, then we have a counter example by Theorem 1. Hence, it

Title Suppressed Due to Excessive Length 9

returns Unsafe (line 12). If the transformed reachtube y(node.rt) intersects U, it cannot
know if that is because of the overapproximation error, or because of a trajectory that
does not start from initset,, or because of one that does. Hence, it needs to refine more.
Before refining, it checks if the union of the transformed initsets of the children of the
current node covers the part of initset, that was covered by their parent. If that is NOT
the case, then part of initset,, cannot be covered by a node with a tighter reachtube. That
is because 7 is invertible and nodes at the same level of the tree are disjoint. Hence,
no node at the same level can cover the missing part. Thus, it returns Compute, asking
ddVer to compute the over-approximation from scratch (line 15). Otherwise, it enqueue
all the children nodes in traversalQueue (line 14).

If traversalQueue gets empty, then we have an over-approximation of the reachtube
starting from initset,, that does not intersect with U. Hence, it returns Safe (line 16).

The following two theorems show the correctness guarantees of symCacheTree. The
proofs are in the extended version of the paper. Theorem 3 shows that if cachetree has
reachtubes that can prove that the system is safe using 7, it will return Safe. If it has
a simulation that can prove that the system is unsafe using 7, it will either ask ddVer
to compute the reachtube from scratch or will return Unsafe. Theorem 4 shows that if
symCacheTree returns Safe, then the reachtube of the system starting from initset, does
not intersect U. Moreover, if it returns Unsafe, then there exists a trajectory that starts
from initset,, and intersects U.

Algorithm 2 symCacheTree

1: input: U, v, cachetree, initsety

2: initset. := cachetree.root.initset

3: if initset, Y(initset.) then

4: return: SymmetryNotUseful

5: traversalQueue := {cachetree.root }

6: while traversalQueue # 0 do

7: node «+ traversalQueue.dequeue()

8: initset. := node.initset; {(R;,t;)*_y} = node.sim

9: if y(initset.) Ninitset, = 0 or yY(node.rt) N\U = @ then
10: continue
11: if 3| y(R;) N U # 0 and y(Ry) € initset, then
12: Return Unsafe
13: else if y(node.initset) Ninitset, CJ; Y(node.children[i].initset) then
14: traversalQueue .enqueue({node.left,node.right})
15: else return: Compute

16: return: Safe

Theorem 3 (Completeness). If there exists a set of nodes S in cachetree with
initset,, C Uses¥(s.initset) and U NUgegy(s.rt) = 0,

symCacheTree will return Safe. Also, if there exists a node s in cachetree where y(s.sim) N
U # 0 and starts from initset,, then symCacheTree will return SymmetryNotUseful,
Unsafe, or Compute.

10 Authors Suppressed Due to Excessive Length

Theorem 4 (Soundness). symCacheTree is sound: if it returns Safe, then the reachtube
Rtube(initset,,T) does not intersect U and if it returns Unsafe, then there exists a
trajectory starting from initset, that enters the unsafe set.

In summary, symCacheTree shows that a single symmetry 7y could decrease the num-
ber of fresh reachtube computations needed for verification. Next, we revisit Example 2
to illustrate the need for multiple symmetry maps.

Circular orbits and scaling symmetry The linear system in Example 2 has circular
orbits. Consider the initial set K = [[21.5,21.5],[24.5,24.5]], the unsafe set x, > 32 after
t = 1.4s, and the time bound T = 1.5s. Any matrix B that commutes with A, the RHS
of the differential equation, is a symmetry transformation. However, once this matrix is
fixed, we do not change it as per symCacheTree. Any diagonal matrix that commutes
with A has equal diagonal elements. Such a matrix would scale x; and x, by the same
factor. Hence, applying B to any axis aligned box would either scale the box up or down
on the diagonal. That means applying B to K wouldn’t contain the upper left or bottom
right partitions, but only possibly the bottom left corner. With B = [[0.95,0],[0,0.95]],
only one out of 7 reachtubes is obtained via transformation (first row of Table 1).

That is because we are using a single transform which leaves symCacheTree useless
in most of the input cases. Figure 1a shows the reachtube (colored green to yellow)
computed using ddVer, unsafe set (brown). Figure 1b shows the reachtube computed
using ddVer and symCacheTree. The part of the reachtube that was computed using
symmetry is colored between blue and violet. The other part is still between yellow and
green. Only the upper left corner has been transformed instead if being computed. Next,
we present symGrpCacheTree, a generalization of symCacheTree that uses a group of
symmetries aiming for a bigger ratio of transformed to computed reachtubes.

circle_nosym.pdf
circle_sym.pdf

(a) Reachtube using ddVer. (b) Reachtube using ddSymVer.

5.2 The symGrpCacheTree procedure
Procedure symGrpCacheTree (Algorithm 3) is a generalization of symCacheTree using
a group of symmetries. The symGrpCacheTree procedure still does BES over cachetree,
keeps track of the parts of the input initial set initset, that are not proven safe (line 11);
returns Unsafe with the same logic (line 13), and return Compute in case there are parts
of initset, that are not proven safe nor have refinements in cachetree (line 17).

The key difference from symCacheTree is that different transformations may be
useful at different nodes. This leads to the possibility of multiple nodes in cachetree,
that are not ancestors or descendants of each other, covering the same parts of initset,

Title Suppressed Due to Excessive Length 11

under different transformations. Recall that in symCacheTree, only ancestors cover the
parts of initset, that are covered by their descendants since 7 is invertible. Hence, it was
sufficient to not add the children of a node to traversalQueue to know that the part it
covers, by transforming its initial set, from initset, is safe (line 10). However, it is not
sufficient in symGrpCacheTree since there may be another node that cover the same
part of initset,, which has a transformed reachtube that intersects U, hence refining what
already has been proven to be safe. The solution is to remove explicitly from initset,
what has been proven to be safe (line 11). The resulting set may not be convex but can be
stored as a set of polytopes. Moreover, it cannot return Compute when the transformed
reachtube of a visited node intersects U and its children initial sets do not contain the part
it covers from initset,, as in line 15 of symCacheTree. That is because other nodes may
cover that part because of the availability of multiple symmetries. Hence, it cannot return
Compute unless it traversed the whole tree and still parts of initset, could not be proven
to be safe. We show that symGrpCacheTree has the same guarantees as symCacheTree

Algorithm 3 symGrpCacheTree

1: input: U, I', cachetree, initset,,

2: initset, := cachetree.root.initset

3: if initset, Uyery(initset.) then

4: return: SymmetryNotUseful

5: leftstates <— initset,

6: traversalQueue := {cachetree.root}

7: while traversalQueue # 0 and leftstates # O do

8: node < traversalQueue.dequeue()

9: initset. := node.initset; {(R;,t;)*_,} = node.sim
10: X ={x:3yeTI,x e y(initset.) and y(node.rt) NU = 0}
11: leftstates < leftstates\X
12: ifdyel,j|y(R;) N U#0and y(Ry) € leftstates then
13: Return Unsafe
14: if len(node.children) > 0 then
15: traversalQueue .enqueue(node.children)
16: if leftstates # 0 then
17: return: Compute

18: return: Safe

in the following two theorems with the proof being in the extended version of the paper.

Theorem 5 (Completeness). If there exists a set of nodes S in cachetree, where each
s € S has a corresponding set of transformations I; C I', such that

initset, C Uses yer; ¥s(s-initset) and U NUgeg yer; Vs (s.11) = 0,

symCacheTree will return Safe. Also, if there exists a node s in cachetree and a y € T,
where Y(s.sim) intersects U and starts from initset,, then symGrpCacheTree will return
SymmetryNotUseful, Unsafe, or Compute.

Theorem 6 (Soundness). symGrpCacheTree is sound: if it returns Safe, then the reach-
tube Rtube(initset,,T) does not intersect U and if it returns Unsafe, then there exists a
trajectory starting from initset, that enters the unsafe set.

12 Authors Suppressed Due to Excessive Length

The new challenge in symGrpCacheTree is in computing the union at line 3, com-
puting X in line 10 and in the 3 in line 12. These operations depend on I" if it is finite or
infinite and on how easy is it to search over it. We revisit the arbitrary translation from
Section 3 to show that these operations are easy to compute in some cases.

5.3 Revisiting arbitrary translations

Recall that the car model in example 3 in Section 3 is equivariant to all translations in
its position. In this section, we show how to apply symGrpCacheTree not just for it, but
to arbitrary differential equations. Let D be the set of components of the states that do
not appear on the RHS of (1) and I" be the set of all translations of the components in
D. To check the if condition at line 3, we only have to check if initset, projected to the
[7]\D contains initset, projected to the same components. Since if it is true, initset, can
be translated arbitrarily in its components in D so that the union contains initset,,.

Given two initial sets K and K’ and the reachtube starting from K’, we compute
B C R" such that K’ |p @8 = K |p. Then, if K C K’, by Corollary 1, we can use that
B to compute an overapproximation of Riube(K,T) by computing Riube(K',T) & .
Then, let B be such that initset, |p ©f = leftstates | p, in line 10. We set X to be equal
to initset, @ B if node.rt & fNU = 0 and to 0, otherwise. To check the 3 operator
in line 12, we can treat the simulation as node.rt and compute 3 accordingly. Then,
compute node.sim @ f3. The new condition would be then: if R; & B NU. Notice that we
dropped Y(Ry) € leftstates from the condition since we know that Ry € leftstates and 3
is bloating it to the extent it is equal to leftstates.

Optimized symGrpCacheTree for arbitrary translations The size of K’ |p above does
not matter, i.e. even if it is just a point, one can compute f so that it covers K | p. Hence,
instead of computing Rtube(K,T), we compute only Rtube(K’,T) and then compute
B from K and K’ and then bloat it. This decreases the number of dimensions that the
system need to refine by |D|. This is in contrast with what is done in symGrpCacheTree
where the reachtubes are computed without changing the initial set structure. This
improvement resulted in verifying models in 1s when they take an hour on DryVR as
shown in Section 6. We call this algorithm TransOptimized and refer to it as version 2
of symGrpCacheTree when applied to arbitrary translation invariance transformations.

6 Experimental evaluation

We implemented symCacheTree and symGrpCacheTree in Python 2.7 on top of Dry VR #.
DryVr implements ddVer to verify hybrid dynamical systems. We augmented it and im-
plemented ddSymVer. In our experiments, we only consider the (non-hybrid) dynamical
systems. DryVR learns discrepancy from simulations as it is designed to work with un-
known dynamical models. This learning functionality is unnecessary for our experiments,
as checking equivariance requires some knowledge of the model. For convenience, we
use DryVR’s discrepancy learning instead of deriving discrepancy functions by hand.
That said, some symmetries can be checked without complete knowledge of the model.
For example, we know that dynamics of vehicles do not depend on their absolute position
even without knowledge of precise dynamics.

4 https://github.com/qibolun/DryVR_0.2

https://github.com/qibolun/DryVR_0.2

Title Suppressed Due to Excessive Length 13

In this section, we present the experimental results on several examples using
symCacheTree and symGrpCacheTree. The transformations used are linear. Two of
the systems are linear and one is non-linear. The results of the experiments are shown
in table 1. The experiments were ran on a computer with specs shown in the extended
version of the paper. In the reachtube plots we use the green-to-yellow colors if it was
computed from scratch, the blue-to-violet colors if it was computed using symmetry
transformations, and the white-to-red colors for the unsafe sets.

Verifying non-convex initial sets ddVer assumes that the initial set K of (1) is a single
hyperrectangle. However, this assumption hinders the use of some useful transformations
such as permutation. For example, consider the two cars system in example 4 moving
straight and breaking with the same deceleration, i.e. u is zero and a is the same for both.
Recall that this system is equivariant with respect to switching r, with r;. The system
is unsafe if the cars are too close to each other. Assume that initially (y,y,) belongs
to K = [[l1, 2], [u1,uz]]. If the two intervals [/;,u] and [y, u3] do not intersect, ¥ would
not be useful since for any X C K, y(X) N K = 0. However, if K = [[I}, 1], [u1,u2]] U
(111, 8], [y, uh]], where [I{,u}] N [l2,uz] # 0 and [I5,ub] N [I1,u1] # 0. Then, the reachtube
starting from (1}, u}] N [I2, uy] for the first car and 1, u5] N [I1,u;] for the second one can be
computed from the one starting from [1},u5] N [, u;] for the first car and [I],u}] N[, uz]
for the second one. This can also be done for (x;,x;) and a combination of both.

We implemented ddVer for the disjoint initial sets case as follows: We first ran ddVer
to compute the reachtube of the system starting from the first hyperrectangle and cached
all the computed reachtubes in the process in a cachetree. Then, we used that cachetree
in ddSymVer to check the safety of the system starting from the second hyperrectangle.

Cars and permutation invariance For the car example (example 4), we ran ddVer on
an initial set where (x1,y1,x2,y2) € [[0,—2.42,0,—22.28],[2,3.93,0.1, —12.82]] and run-
ning for 5s and the unsafe set being |y; — y2| < 5 and cached all the tubes in a cachetree
and saved it on the hard-drive. It returned Safe. Then, we used it in symCacheTree
to verify the system starting from [[0, —22.28,0,—2.42],[0.1,—12.82,2,3.93]]. The re-
sulting cachetree was around 20 GB, and traversing it while transforming the stored
reachtubes takes much longer than computing the reachtube directly. We halted it manu-
ally and tried a smaller initial set: [[0.01,—14.2,0.01,1.4],[0.1,—13.9,2,3.9]] using the
same cachetree which returned Safe from the first run after 93s; the output is shown in
Figures 2a and 2b. Figure 2a shows the tube when computed by ddVer and Figure 2b
when computed by ddSymVer. Figure 2b has only blue-to-violet colors since it was all
computed using a symmetry transformation.

Lorenz attractor and Circle revisited We used the disjoint initial sets verification
implementation to use the symmetry transformation for the nonlinear lorenz attractor
in its safety verification. Recall from Section 3 that its symmetry map is (x,y,z) —
(—x,—,2). So for any given initial set K = [[Iy, [y,], [uy, uy,u;]] and a corresponding
overapproxiation of the reachtube, we automatically get an overapproximation of the
reachtube with the initial set [[—uy, —uy,], [—l, —1,,u;]]. We generated the cachetree
from the initial set [[14.9,14.9,35.9],[15.1,15.1,36.1]], unsafe set x > 20 and T = 10s
that returned Safe and used that cachetree in symCacheTree to verify the system starting
from [[—15.09,—15.09,35.91],[—14.91,—14.91,36.09]]. The resulting statistics are in

14 Authors Suppressed Due to Excessive Length

bb_nosym.pdf
bb_perm_subset.pdf

(a) Cars reachtube using ddVer. (b) Cars reachtube using ddSymVer.

table 1. Lorenz1 is the one corresponding to the first initial set and Lorenz2 to the for
which we use permutation symmetry.

We revisit the circle example from Section 5 and test symCacheTree performance
with the transformation being: ¥ : (x,y) — (—y,x) instead of the scaling one. Then,
we compute the reachtube starting from the same initial set as before and created its
cachetree. After that, we used ddSymVer with symCacheTree to get the one starting
from [[—24.49,21.51], [-21.51,24.49]] and running for 1.5s. The statistics are shown in
table 1. The figures of the reachtubes are in the extended version of the paper. Again, the
whole tube is blue-to-violet since it is computed fully by transforming parts of cachetree.

In all of the previous examples, ddVer was faster than ddSymVer since a single sym-
metry was used and the refinements are not large enough so that the ratio of transformed
reachtubes to computed ones is large enough to account for the overhead added by the
checks of symCacheTree. This can be improved by using a group of transformations, i.e.
using symGrpCacheTree, storing compressed reachtubes, and optimizing the code.

Cars and general translation Finally, we ran ddSymVer with the two versions of
symGrpCacheTree for translation invariance described in Section 5.3 on three different
scenarios of the 2-cars example 4: both are braking (bb), both are at constant speed (cc),
and one is breaking and the other at constant speed (bc). In all of them, the time bound is
T = 5s and the unsafe set is [y; — y2| < 5. The first two cases were safe while the third
was not. DryVR timed out on the cc case as mentioned previously in the permutation
case while both versions of translation invariance algorithms were able to terminate in
few seconds. The two versions of the algorithm gave the same result as DryVR while
being orders of magnitude faster on the bb and bc cases. Moreover, the second version,
where the initial set is a single point in the components in D, is an order of magnitude
faster than the first version, where symGrpCacheTree is used without modifications.

7 Conclusions

Equiavariant dynamical systems have groups of symmetry transformations that map so-
lutions to other solutions. We use these transformations to map reachtubes to other reach-
tubes. Based on this, we presented algorithms (symCacheTree and symGrpCacheTree)
that use symmetry transformations, to verify the safety of the equivariant system by
transforming previously computed reachtubes stored in a tree structure representing
refinements. We use these algorithms to augment data-driven verification algorithms to
reduce the number of reachtubes need to be computed. We implemented the algorithms

Title Suppressed Due to Excessive Length 15

Table 1: Results. Columns 3-5: number of times symCacheTree (or symGrpCacheTree) returned
Compute, Safe, Unsafe, resp. Number of transformed reachtubes used in analysis (SRefs), time
(seconds) to verify with DryVR+symmetry (DryVR+sym), total number reachtubes computed by
DryVR (NoSRefs), time to verify with DryVR.

Model |Transformation (y)|Compute|Safe|Unsafe|SRefs|DryVR+sym|NoSRefs| DryVR
Circlel | (0.95x1,0.95x5) 5 1 0 6 1.78 7 0.54
Circle2 (—x2,x1) o 1 0 7 8.23 3 0.21
Lorenzl (—x,—,2) N/A|N/A| N/A| N/A N/A 3 4.67
Lorenz2 (—x,—y,2) o 1 0 1 33.28 1 4.63
bb2 | Perm. Inv. subset 0 1 0| 467 88.35 120| 34.47
bb (vl) Trans. Inv. 10| 10 0| 165 26.28| 12621(4034.55
cc(vl) Trans. Inv. 19| 21 0| 545 64.36 N/A| OOM
be(vl) Trans. Inv. 24 19 1| 639 80.48 3428|1027.18
bb (v2) Trans. Inv. 0 1 0 1 1.16] 12620|4034.55
cc (v2) Trans. Inv. 0 1 0 1 1.16 N/A| OOM
be (v2) Trans. Inv. o 0 1 1 0.39 3428 1027

and tried them on several examples showing significant improvement in running times.
This paper opens the doors for more investigation of the role that symmetry can help in
testing, verifying, and synthesizing dynamical and hybrid systems.

8 Acknowledgments
The authors are supported by a research grant from The Boeing Company and a research

grant from NSF (CPS 1739966). We would like to thank John L. Olson and Arthur S.
Younger from The Boeing Company for valuable technical discussions.

	Using Symmetry Transformations in Equivariant Dynamical Systems for their Safety Verification

